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Supervised	(deep)	learning	
Does	it	do	well	
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Done	

Increase	model	
complexity	 Collect	more	data	

NO	 NO	 Magic/Art		
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Ng	A.,	Challenges	of	Deep	Learning,	
GTC,	2015	



Automated	machine	learning	for	deep	
learning	
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Lower-level	problem:	

Upper-level	problem:	

Architecture	space	 Hyperparameter	space	



DeepHyper:	Scalable	AutoML	package	
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4	https://github.com/deephyper/deephyper	



AMBS:	Asynchronous	model-based	search	

– Framework:	
•  Initialization	phase	

– Random	or	Latin	
hypercube		sampling	

•  Iterative	phase	
– Fit	model	
– Sample	using	the	model	
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Example	Surrogate	Model	Fitted	to	Sampled	Performance	
(iterative	refinement	improves	the	learning	model)	



Bayesian	optimization		
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functions	

•  Usual	Gaussian	process	regression	cannot	handle	nonordinal	space	natively	
•  Appropriate	methods:	random	forest,	extra	tree	regressor,	Bayesian	NN	
•  We	use	Random	Forest	



Bayesian	optimization		
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1.96	
LCB(x,�) = µ(x)� � ⇥ �(x)



Bayesian	optimization		
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Bayesian	optimization		
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Bayesian	optimization		
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Bayesian	optimization		
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Multipoint	asynchronous	sampling	
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Naive	 Conditioned	



Constant	liar	scheme	for	asynchronous	
update				
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Comparison	of	search	methods	
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Target	platform:	Theta@ALCF	(128	KNL	nodes)		
Stopping	criterion:	2	hours		



Comparison	of	search	methods	
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Target	platform:	Theta@ALCF	(128	KNL	nodes)		
Stopping	criterion:	2	hours		



Scaling	search	methods	
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Target	platform:	Theta@ALCF	(128	KNL	nodes)		
Benchmark:	rnn2;	Stopping	criterion:	2	hours		



AMBS	vs	RS	
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Target	platform:	Cooley	(64	nodes	Haswell	+	NVIDIA	Tesla	K80)		
Benchmark:	cifar10cnn;		Stopping	criterion:	1	hour		
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