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Supervised (deep) learning
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Automated machine learning for deep
learning

Lower-level problem:

solve  minimize errp ([X 4, Xp|;T;w)

w
Upper-level problem:

solve  minimize errv([X A, Xp] Viw™ [X g, Xp|)

XA, Xp

Architecture space Hyperparameter space



DeepHyper: Scalable AutoML package
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https://github.com/deephyper/deephyper 4



AMBS: Asynchronous model-based search

Unevaluated parameter
configurations

— Framework:

* Initialization phase

—Random or Latin
hypercube sampling

* |terative phase

— Fit model
—Sample using the model

Example Surrogate Model Fitted to Sampled Performance
(iterative refinement improves the learning model)

)



Bayesian optimization

functions

e Usual Gaussian process regression cannot handle nonordinal space natively
* Appropriate methods: random forest, extra tree regressor, Bayesian NN
* We use Random Forest 6



Bayesian optimization

1.96

=== True (unknown)
-—= u(x) . X Next sample point
e Observations




Bayesian optimization

=== True (unknown) — LCB(x)

——= u(x) : X Next sample point

® Observations




Bayesian optimization

=== True (unknown) — LCB(X)

-—= u(x) : X Next sample point
® Observations




Bayesian optimization

=== True (unknown) — LCB(x)
—-== u(x) . X Next sample point
® Observations
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Bayesian optimization

=== True (unknown) . — LCB(x)
—-== U(x) ) X Next sample point

e Observations
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Multipoint asynchronous sampling

Naive Conditioned
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Constant liar scheme for asynchronous
update
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Comparison of search methods
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Target platform: Theta@ALCF (128 KNL nodes)
Stopping criterion: 2 hours 14




Comparison of search methods
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Scaling search methods
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Target platform: Theta@ALCF (128 KNL nodes)
Benchmark: rnn2; Stopping criterion: 2 hours
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AMBS vs RS
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Target platform: Cooley (64 nodes Haswell + NVIDIA Tesla K80)
Benchmark: cifar10cnn; Stopping criterion: 1 hour
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DeepHyper: Scalable AutoML package
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https://github.com/deephyper/deephyper 18
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DeepHyper

DeepHyper

Benchmarks Workflow

AMBS,

- Hyperband,
Miniapps, etc DEAP, etc

Keras codes, Bal
alsam
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