ATPESC Track 4: Scalable Molecular Visualization and Analysis Tools in VMD

John E. Stone
Theoretical and Computational Biophysics Group
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/vmd/

Argonne Training Program on Exascale Computing (ATPESC)
2:45pm-3:45pm,
Monday August 3 rd, 2020
VMD – “Visual Molecular Dynamics”

- 100,000 active users worldwide
- Visualization and analysis of:
 - Molecular dynamics simulations
 - Lattice cell simulations
 - Quantum chemistry calculations
 - Cryo-EM densities, volumetric data
- User extensible scripting and plugins
- http://www.ks.uiuc.edu/Research/vmd/
VMD Hands-On Tutorials

- http://www.ks.uiuc.edu/Training/Tutorials/#vmd
 - Main VMD tutorial
 - QwikMD simulation preparation and analysis plugin
 - VMD images and movies tutorial
 - Structure check
 - VMD quantum chemistry visualization tutorial
 - Visualization and analysis of CPMD data with VMD
 - Parameterizing small molecules using ffTK
Goal: A Computational Microscope
Study the molecular machines in living cells

Ribosome: target for antibiotics

Poliovirus
VMD: Building A Next Generation Modeling Platform

- Provide tools for simulation preparation, visualization, and analysis
 - Reach cell-scale modeling w/ all-atom MD, coarse grained, Lattice Microbes
 - Improved performance, visual fidelity, exploit advanced technologies (GPUs, VR HMDs)
- Enable hybrid modeling and computational electron microscopy
 - Load, filter, process, interpret, visualize multi-modal structural information
- Connect key software tools to enable state-of-the-art simulations
 - Support new data types, file formats, software interfaces
- Openness, extensibility, and interoperability are VMD hallmarks
 - Reusable algorithms made available in NAMD, for other tools
QwikMD: Guided MD Simulation and Training

Smoothes initial learning curve (non-expert users)

Speed up tedious simulation preparation tasks (expert users)

Reproducibility: detailed log of all steps

Interactive preparation, simulation, and analysis

Selected VMD Plugins: Center Developed, and **User Developed**

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Modeling</th>
<th>Visualization</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>APBSRun</td>
<td>AutoIonize</td>
<td>Clipping Plane Tool</td>
<td>Remote Control</td>
</tr>
<tr>
<td>CatDCD</td>
<td>AutoPSF</td>
<td>Clone Rep</td>
<td>Data Import and Plotting</td>
</tr>
<tr>
<td>Contact Map</td>
<td>Chirality</td>
<td>DemoMaster</td>
<td>Data Import</td>
</tr>
<tr>
<td>GofRGUI</td>
<td>Cionize</td>
<td>Dipole Watcher</td>
<td>Multiplot</td>
</tr>
<tr>
<td>HeatMapper</td>
<td>Cispeptide</td>
<td>Intersurf</td>
<td>PDBTool</td>
</tr>
<tr>
<td>ILSTools</td>
<td>CGTools</td>
<td>Navigate</td>
<td>MultiText</td>
</tr>
<tr>
<td>IRSpecGUI</td>
<td>Dowser</td>
<td>NavFly</td>
<td>Externally Hosted Plugins and Extensions</td>
</tr>
<tr>
<td>MultiSeq</td>
<td>ftkTK</td>
<td>MultiMolAnim</td>
<td>Check sidechains</td>
</tr>
<tr>
<td>NAMD Energy</td>
<td>Inorganic Builder</td>
<td>Color Scale Bar</td>
<td>MultiMSMS</td>
</tr>
<tr>
<td>NAMD Plot</td>
<td>MDF</td>
<td>Remote</td>
<td>Interactive Essential Dynamics</td>
</tr>
<tr>
<td>NetworkView</td>
<td>Membrane</td>
<td>Palette Tool</td>
<td>Mead Ionize</td>
</tr>
<tr>
<td>NMWiz</td>
<td>Merge Structs</td>
<td>ViewChangeRender</td>
<td>Clustering Tool</td>
</tr>
<tr>
<td>ParseFEP</td>
<td>Molefacture</td>
<td>ViewMaster</td>
<td>iTrajComp</td>
</tr>
<tr>
<td>PBCTools</td>
<td>Mutator</td>
<td>Virtual DNA Viewer</td>
<td>Swap RMSD</td>
</tr>
<tr>
<td>PEMpot</td>
<td>Nanotube</td>
<td>VMD Movie Maker</td>
<td>Intervor</td>
</tr>
<tr>
<td>PropKa GUI</td>
<td>Psfgen</td>
<td>Simulation</td>
<td>SurfVol</td>
</tr>
<tr>
<td>RamaPlot</td>
<td>RESPTool</td>
<td>AlaScan</td>
<td>vmdICE</td>
</tr>
<tr>
<td>RMSD Tool</td>
<td>RNAView</td>
<td>AutoIMD</td>
<td>75 MolFile I/O Plugins:</td>
</tr>
<tr>
<td>RMSD Trajectory Tool</td>
<td>Solvate</td>
<td>IMDMenu</td>
<td>structure, trajectory, sequence, and density map</td>
</tr>
<tr>
<td>RMSD Visualizer Tool</td>
<td>SSRestraints</td>
<td>NAMD GUI</td>
<td></td>
</tr>
<tr>
<td>Salt Bridges</td>
<td>TopoTools</td>
<td>NAMD Server</td>
<td></td>
</tr>
<tr>
<td>Sequence Viewer</td>
<td></td>
<td>QMTool</td>
<td></td>
</tr>
<tr>
<td>Symmetry Tool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timeline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TorsionPlot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VolMap</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.ks.uiuc.edu/Research/vmd/plugins/
VMD “Coming Soon”:
VMD 1.9.4 and VMD-Next
VMD 1.9.4, and VMD-Next

- Python 3.x support
- New “molefacture” structure editor plugin
- Improved structure building and analysis tools
- High performance GPU structure+data clustering
- Density map and volume processing features: high performance GPU image segmentation, density map simulation, masking, visualization
- Many new and updated user-contributed plugins
- Deeper integration of interactive ray tracing
 - Seamless interactive RT in main VMD display window
 - Support trajectory playback in interactive RT
 - Enable multi-node interactive RT on HPC systems
- Built-in (basic) interactive remote visualization on HPC clusters and supercomputers

GPU Ray Tracing of HIV-1 Capsid Detail
VMD Visualization Concepts
VMD Approach to Visualization

- Molecular scene is composed of “graphical representations”
- Each representation encapsulates a group of selected atoms, a drawing style, coloring style, and other parameters
- Representations are independent of each other, can be toggled on/off easily, allowing molecular scenes to be built-up incrementally
- VMD atom selection language is shared with its analytical and scripting interfaces
Selection, Filtering

- Most viz tools allow interactive visual picking, menu-driven selections of structure components to display or operate on.
- VMD also extensively uses a text-based selection language (think google):
 - water within 10 of protein and z > 0
 - nucleic or protein or ions
 - segname BR
 - name “C.*”
 - Allows selection on user-defined data fields
 - *Promotes synergy between interactive and scripting interfaces, visualization and quantitative analysis tasks*
 - Works well with huge time-varying structures
Structure Visualization

Molecular representations provide different levels of abstraction, atomic detail vs. higher level organizational information

- Atoms, VdW spheres, bonds, ball-stick, …
- Coarse-grained “beads”
- Ribbons, secondary structure, “cartoon” reps, RNA/DNA
- Molecular surfaces
- Molecular orbitals (quantum chemistry)
Computed Properties

- Smoothing of thermal noise
- Secondary structure
- Hydrogen bonds, salt bridges
- Forces, energies, stress, strain
- Time averaging of electrostatic fields, occupancy maps
- Quality-of-fit cross correlation with cryo-EM density maps
- Normal modes, principal component analysis, essential dynamics
- Cluster simulation trajectory timesteps by structural similarity

Chemoreceptor trimer-of-dimers analysis with Bendix plugin in VMD
Display of Computed Properties on Structures

Per-residue solvent-accessible surface area of Ubiquitin

PME electrostatic potential contour for a helicase on a volumetric slice plane
CheA kinase PCA: first principal component porcupine plot
VMD Shading Comparison: EF-Tu

Outline Shader

“Goodsell” Shader

Glossy Shader

Ray Tracing: Ambient Occlusion, Shadowing
Trajectory Analysis and Visualization
Visualization of MD Trajectories

• Allow researchers study trajectories by analyzing force profiles, energies, structural changes, etc.

• **Visualization selections, graphics, structure properties, colors can all be recomputed for each trajectory timestep!**
Time-Averaged Volumetric Properties

- Compute density, distance, occupancy, potential maps for a frame or averaged over a trajectory.
- Example: display binding sites for diffusively bound ions as probability density isosurfaces.

`tRNA magnesium ion occupancy: VMD volmap plugin`
Large System Analysis and Visualization
VMD Petascale Visualization and Analysis

• Combination of growing system sizes and timescales of simulation trajectories poses a major data size challenge for molecular visualization and analysis

• Parallel I/O rates up to 275 GB/sec on 8192 Cray XE6 nodes – can read in 231 TB in 15 minutes!

• Analyze/visualize large trajectories too large to transfer off-site:
 – User-defined parallel analysis operations, data types
 – Parallel rendering, movie making

• Supports GPU-accelerated compute nodes for both visualization and analysis tasks:
 – GPU accelerated trajectory analysis w/ CUDA
 – OpenGL and GPU ray tracing for visualization and movie rendering

NCSA Blue Waters Hybrid Cray XE6 / XK7
22,640 XE6 dual-Opteron CPU nodes
4,224 XK7 nodes w/ Telsa K20X GPUs

Parallel VMD currently available on:
ORNL Summit and Titan, NCSA Blue Waters, IU Big Red II, CSCS Piz Daint, many similar systems
NAMD simulations can generate up to 10TB of output per day on 20% of Summit.
Next Generation: Simulating a Proto-Cell

- Emulate aspects of the *Mycoplasma mycoides* bacterium
- 200nm diameter
- ~1 billion atoms w/ solvent
- ~1400 proteins in membrane

Cryo-ET image of ultra-small bacteria (scale bar 100nm)
Proto-Cell Data Challenges

- 1B-atom proto-cell requires nodes with more than TB RAM to build complete model...
- 1B-atom proto-cell binary structure file: 63GB
- Trajectory frame atomic coordinates: 12GB, 1.2TB/ns of simulation (1 frame per 10ps)
- Routine modeling and visualization tasks are a big challenge at this scale
 - Models contain thousands of atomic-detail components that must work together in harmony
 - Exploit persistent memory technologies to enable “instant on” operation on massive cell-scale models – eliminate several minutes of startup during analysis/visualization of known structure
 - Sparse output of results at multiple timescales will help ameliorate visualization and analysis I/O
 - Data quantization, compression, APIs like ZFP
IBM AC922 Summit Node

3 GPUs Per CPU Socket

- Tesla V100 GPU
- Tesla V100 GPU
- Tesla V100 GPU

Nvlink 2.0
2x 50GBps: 100GBps

- DDR4 DRAM
- POWER9 CPU
- X-Bus 64GBps
- InfiniBand 12GBps
- 1.6TB SSD “Burst Buffer”
- DDR4 DRAM
- POWER9 CPU
- InfiniBand 12GBps

120GBps
64GBps
120GBps
VMD Off-Screen Rendering w/ EGL

- Containers+Cloud+Workstations with recent NVIDIA drivers
- VMD on HPC systems w/ latest GPUs:
 - Cray XC50, CSCS Piz Daint
 - ORNL Summit
 - IBM OpenPOWER, drivers 375.66 and later support both GLX and EGL
Running VMD on Distributed Memory Clouds, Clusters, and Supercomputers with MPI
Using VMD MPI Builds

- See “Running VMD on Supercomputers” section in the VMD tutorial
- Run one MPI rank (VMD process) per compute node
 - Each rank uses all CPU cores and all GPU accelerators they find
 - GPUs are shared between graphics/visualization and computing tasks
- Parallel VMD Scripting APIs:
 - “parallel” script subcommands, e.g., “parallel for ...”:
 - “nodename”, “noderank”, “nodecount”, “barrier”, “allgather”, “allreduce”, “for”
 - Available even in non-MPI builds, for single-node script compatibility
- Work scheduling:
 - Intra-node work scheduled via multithreading, CUDA, etc.
 - Inter-node distributed memory work scheduling of user analysis/viz scripts is provided by built-in load balancing implementation for VMD
Parallel MDFF Cross Correlation Analysis on Cray XK7

Rabbit Hemorrhagic Disease Virus (RHDV)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traj. frames</td>
<td>10,000</td>
</tr>
<tr>
<td>Structure component selections</td>
<td>720</td>
</tr>
<tr>
<td>Single-node XK7 (projected)</td>
<td>336 hours (14 days)</td>
</tr>
<tr>
<td>128-node XK7</td>
<td>3.2 hours 105x speedup</td>
</tr>
<tr>
<td>2048-node XK7</td>
<td>19.5 minutes 1035x speedup</td>
</tr>
</tbody>
</table>

Calculation of 7M CCs would take 5 years using serial CPU algorithm!

RHDV colored by relative CC

VMD EGL Performance on Amazon EC2 Cloud

<table>
<thead>
<tr>
<th>MPI Ranks</th>
<th>EC2 “G2.8xlarge” GPU Instances</th>
<th>HIV-1 movie rendering time (sec), (I/O %) 3840x2160 resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>626s (10% I/O)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>347s (19% I/O)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>221s (31% I/O)</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>141s (46% I/O)</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>107s (64% I/O)</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>90s (76% I/O)</td>
</tr>
</tbody>
</table>

Performance at 32 nodes reaches ~48 FPS

Trajectory I/O on Parallel Filesystems

- Don’t use old/inefficient trajectory file formats if they can be avoided
- DO use file formats like DCD, NetCDF, JS, that permit efficient strided reads
- DO enable file striping for large trajectory files (more I/O parallelism)
- DO write simulation outputs to multiple files (more I/O parallelism)
- DO use VM page-aligned file formats that permit kernel-bypass direct-I/Os, and support for technologies like GPU-Direct Storage
- VMD has read trajectories at up to 71GB/sec from JS files on DGX-2 dense multi-GPU nodes with GDS, w/ Weka I/O !!!
High Fidelity Ray Tracing for Interactive and Cinematic Visualization
High Fidelity Ray Tracing

- Advanced rendering techniques save scientists time, produce images that are easier to interpret
- Ambient Occlusion, Depth of Field, high quality transparency, instancing,
- Interactive RT on laptops, desk, cloud, and remote supercomputers
- Large-scale MPI parallel rendering: in situ or post hoc visualization tasks
- Stereoscopic panorama and full-dome projections
- Omnidirectional VR: YouTube, HMDs
- Built-in ray tracing engines:
 - Tachyon: cross-platform RT
 - NVIDIA OptiX: GPU RTX-accelerated
 - Intel OSPRay: CPU x86-optimized

VMD/OptiX all-atom Chromatophore
Lighting Comparison, STMV Capsid

Two lights, no shadows

Ambient occlusion + two lights, 144 AO rays/hit
Geometrically Complex Scenes

Ray tracing techniques well matched to molecular viz. needs:

- Curved geometry, e.g. spheres, cylinders, toroidal patches, easily supported
- Greatly reduced memory footprint vs. polygonalization
- Runtime scales only moderately with increasing geometric complexity
- Occlusion culling is “free”, RT acceleration algorithms do this and much more
Goal: Intuitive interactive viz. in crowded molecular complexes

Results from 64 M atom, 1 μs sim!

Close-up view of chloride ions permeating through HIV-1 capsid hexameric centers
Satellite Tobacco Mosaic Virus

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu
VMD w/ OptiX 6

- Interactive RT on laptops, desktops, and cloud
- Large-scale parallel rendering: in situ or post hoc visualization
- Remote ray tracing with NvPipe video streaming
- Stereoscopic panoramic and full-dome projections
- Omnidirectional VR for YouTube, VR HMDs
- VMD+OptiX NGC container: https://ngc.nvidia.com/registry/
- GPU memory sharing via NVLink
- In-progress:
 Denoising: faster turnaround w/ AO, DoF, etc

VMD/OpiX RTX Acceleration
ANARI Overview
Analytic Rendering API
Portable access to live rendering systems
August 2020
Khronos Connects Software to Silicon

Khronos creates and promotes open interoperability standards to enable software to effectively harness the power of multiprocessors and accelerator silicon

3D graphics, XR, parallel programming, vision acceleration and machine learning

Non-profit, member-driven standards-defining industry consortium

Open to any interested company

All Khronos standards are royalty-free

Well-defined IP Framework protects participant’s intellectual property

Founded in 2000
>150 Members ~ 40% US, 30% Europe, 30% Asia
Khronos Active Initiatives

- **3D Graphics**
 - Desktop, Mobile, Web, Embedded and Safety Critical
 - Vulkan
 - ANARI
 - OpenGL
 - WebGL
 - EGL
 - OpenGL ES
 - Vulkan SC

- **3D Assets**
 - Authoring and Delivery
 - glTF
 - 3DCommerce

- **Portable XR**
 - Augmented and Virtual Reality
 - OpenXR

- **Parallel Computation**
 - Vision, Inferencing and Machine Learning
 - SPIR
 - SYCL
 - NNEF
 - OpenVX
Industry Need and Opportunity

• New rendering technology - including ray tracing - is impacting scientific visualization
 - Accurate generation of imagery
 - Sophisticated visual cues provide intuitive understanding of complex data

• But low-level APIs - such as Vulkan - are too complex for scientists to program
 - Rendering is just a necessary technique to be utilized
 - True for scientific visualization and emerging data analytics space

• Define a high level API to simplify scientific visualization applications
 - Leveraging the full potential of modern rendering capabilities
 - Platform independent
 - Portable code

Ray tracing was catalyst to create a standard
But ANARI design will enable any style of renderer
Not limited to scientific visualization
E.g. Data Analytics and other domains with lots of data
ANARI Goals
Where are we now?

- Use case definition
- Investigation of existing APIs
 - Selected starting API
- Exploratory implementations
 - Different types of backends
 - Frontend apps
- Identifying friction points
 - issues requiring clarification
 - API changes
- Starting to write specs
- Anyone welcome to join!

https://www.khronos.org/anari
ANARI Software Stack

Scientific Visualization Portability
Common API to describe objects in a scene
The renderer takes care of generating imagery
API to build the description of a scene
Rather than specifying the details of the rendering process
Rendering details left to the implementation of the API
Subset of more general scene graph APIs
VMD Examples from In-Progress ANARI Impl.

Tachyon Ray Tracer (AO) OSPRay Path Tracer OptiX Path Tracer
Khronos for Global Industry Collaboration

Promoter Members
Participate and vote in Working Groups, Board seat for setting strategy and budget

Contributor Members
Participate & vote in Working Groups

Non-Profit, Associate, and Academic Members
Participate in Working Groups

Working Groups
For each Standard, open to all members

Specifications & Learning Materials
Public & free of charge

Ecosystem
Samples, tools, webinars, tutorials, meetups

Conformance is Key
Comprehensive testing frameworks available

Adopters
Build conformant implementations

Developers
Freely develop software using Khronos standards

Khronos membership is open to any company
Influence the design and direction of key open standards that will drive your business
Accelerate time-to-market with early access to specification drafts
Provide industry thought leadership and gain insights into industry trends and directions
Benefit from Adopter discounts
www.khronos.org/members/
VMD Application Examples and Implementation Details
Cinematic Rendering: “Birth of Planet Earth” Fulldome Show

- Joint project with:
 - NCSA Advanced Visualization Lab
 - Thomas Lucas Productions, Inc.
 - Spitz Creative Media
 - Tellus Science Museum
- NSF Support: CADENS award ACI-1445176
- Premiered March 2019, Zeiss Großplanetarium, Berlin, Germany
Omnidirectional Stereoscopic Ray Tracing

- Ray trace 360° images and movies for Desk and VR HMDs: Oculus, Vive, Cardboard
- Stereo spheremaps or cubemaps allow very high-frame-rate interactive OpenGL display
- AO lighting, depth of field, shadows, transparency, curved geometry, …
- Summit 6x Tesla V100 GPU nodes:
 - Render many omni-stereo viewpoints, no acceleration structure rebuilds, tens of frames/sec per-node!
 - OptiX multi-GPU rendering, NVLink compositing and data distribution, etc…
 - Future: AI for warping between views

Ray Tracing Gems

- Ch. 4, “A Planetarium Dome Master Camera”
- Ch. 27, “Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization”
- Tons of great material and code samples!
Density Map Segmentation

VMD GPU-accelerated density map segmentation of GroEL

Evaluating Quality-of-Fit for Structures Solved by Hybrid Fitting Methods

Compute Pearson correlation to evaluate quality-of-fit between a reference cryo-EM density map and a simulated density map from an all-atom structure.

MDFF Cross Correlation Timeline

Regions with poor fit
Regions with good fit
VMD Tesla V100 Cross Correlation Performance

Rabbit Hemorrhagic Disease Virus: 702K atoms, 6.5Å resolution
Volta GPU architecture almost 2x faster than previous gen Pascal:

<table>
<thead>
<tr>
<th>Application and Hardware platform</th>
<th>Runtime, Speedup vs. Chimera, VMD+GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimera Xeon E5-2687W (2 socket) [1]</td>
<td>15.860s, 1x</td>
</tr>
<tr>
<td>VMD-CUDA IBM Power8 + 1x Tesla K40 [2]</td>
<td>0.488s, 32x 0.9x</td>
</tr>
<tr>
<td>VMD-CUDA Intel Xeon E5-2687W + 1x Quadro K6000 [1,2]</td>
<td>0.458s, 35x 1.0x</td>
</tr>
<tr>
<td>VMD-CUDA Intel Xeon E5-2698v3 + 1x Tesla P100</td>
<td>0.090s, 176x 5.1x</td>
</tr>
<tr>
<td>VMD-CUDA IBM Power8 “Minsky” + 1x Tesla P100</td>
<td>0.080s, 198x 5.7x</td>
</tr>
<tr>
<td>VMD-CUDA Intel Xeon E5-2697Av4 + 1x Tesla V100</td>
<td>0.050s, 317x 9.2x</td>
</tr>
<tr>
<td>VMD-CUDA IBM Power9 “Newell” + 1x Tesla V100</td>
<td>0.049s, 323x 9.3x</td>
</tr>
</tbody>
</table>

Clustering Analysis of Molecular Dynamics Trajectories: Requires I/O+Memory for All-Pairs of Trajectory Frames

Use of Node-Local Burst Buffers and Non-Volatile Memory DIMMs

• Perform viz+analysis in-transit in node-local SSDs, persistent memory NVDIMMs
• ORNL Summit I/O:
 – Parallel FS: 2.5 TB/s
 – Node-local PCIe “burst buffer” SSDs: 10+ TB/sec, 7PB capacity
• Plenty of capacity for full-detail MD trajectories, could enable ~100x increase in temporal resolution in cases where it would be valuable to the science
• Enable all-pairs trajectory clustering analyses and resulting visualizations
• Future systems with NVDIMMs (3D Xpoint, phase change memory) could eventually provide bandwidths approaching DRAM
• Use NVDIMMs w/ `mmap()`, APIs like PMDK to perform formerly-out-of-core calculations using persistent memory: https://github.com/pmem/pmdk
• Imagine future Summit-like machines w/ NVLink-connected GPUs w/ access to high-bandwidth persistent memory on each node
Acknowledgements

- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
- CUDA Center of Excellence, University of Illinois at Urbana-Champaign
- NVIDIA CUDA and OptiX teams
- Intel OSPRay team
- Funding:
 - NIH support: P41-GM104601
 - DOE INCITE, ORNL Summit
 - NSF Blue Waters:
 NSF OCI 07-25070, PRAC “The Computational Microscope”,
 ACI-1238993, ACI-1440026
“When I was a young man, my goal was to look with mathematical and computational means at the inside of cells, one atom at a time, to decipher how living systems work. That is what I strived for and I never deflected from this goal.” – Klaus Schulten