
Scientific
Computing

while
Supercomputing

Aron Ahmadia

Thursday, August 1, 13

2

This talk will be about (mostly) the free and /
or open source software we are building.

Enterprise

Python

Scientific

Computing

Data Processing

Data Analysis

Visualisation

Scalable

Computing

• Products
• Training
• Support
• Consulting

Continuum Analytics Spring 2013 Sabbatical

Thursday, August 1, 13

Dark Matter,
Public Health,

and
Scientific
Computing

Greg Wilson

This Talk is a Fork

Thursday, August 1, 13

4

“Dark Matter Developers”

Scott Hanselman (March 2012)

[We] hypothesize that there is another kind
of developer than the ones we meet all the
time. We call them Dark Matter Developers.
They don't read a lot of blogs, they never write blogs,
they don't go to user groups, they don't tweet or
facebook, and you don't often see them at large
conferences... [They] aren't chasing the latest beta
or pushing...limits, they are just producing.

http://www.hanselman.com/blog/DarkMatterDevelopersTheUnseen99.aspx

Thursday, August 1, 13

5

We’re Not That Optimistic
 90% of scientists have their heads down

− Doing science instead of talking about using
Charm++ to asynchronously distribute their
CUDA-accelerated heterogeneous N-body
Universe simulations

 Not because they don't
want to do all that Star
Trek stuff

 But because exascale
is out of reach

Thursday, August 1, 13

6

Shiny Toys

Thursday, August 1, 13

7

Grimy Reality

Thursday, August 1, 13

8

So Here We Are

Us Them

Thursday, August 1, 13

9

Surely You're Exaggerating

1. How many graduate students write shell
scripts to analyze each new data set
 instead of running those analyses by hand?

Thursday, August 1, 13

10

Surely You're Exaggerating

2. How many of them use version control
 to keep track of their work and collaborate
 with colleagues?

Thursday, August 1, 13

11

Surely You're Exaggerating

3. How many routinely break large problems
 into pieces small enough to be
 - comprehensible,
 - testable, and
 - reusable?

Thursday, August 1, 13

12

Surely You're Exaggerating

3. How many routinely break large problems
 into pieces small enough to be
 - comprehensible,
 - testable, and
 - reusable?
 And how many know those are the
 same things?

Thursday, August 1, 13

13

We've Left the Majority Behind

Thursday, August 1, 13

14

We've Left the Majority Behind

Other than
Googling for things,
the majority of scientists
do not use computers
more effectively today
than they did 28 years ago.

Thursday, August 1, 13

15

“Not My Problem”
Actually your biggest problem

If your colleagues aren’t using your computers, you
don’t benefit from their contributions.

And Science Loses
Thursday, August 1, 13

16

“Not My Problem”
Actually your biggest problem

If your colleagues ARE using your computers:
they are:

And Science Loses

• filling your front-end with useless jobs
• and filling all of your queues
• and filling all of your disk

Thursday, August 1, 13

Some Quotes from ATPESC 2013

Your code will outlive the machine. Most
successful machine lasts 5 years. The most
successful codes may reach 5 decades. There
are currently 40 year-old quantum chemistry
codes still being used. - Jeff Hammond

Design for the future. Software lifecycles should
be long, but often are not - Salman Habib

I recommend you invest in... nightly test and
build, configuration, embedded versioning and
metadata - Pete Beckman

17

Thursday, August 1, 13

18

Where Are Your Goalposts?

A scientist is computationally competent if she
can build, use, validate, and share software to:

•Manage software and data

•Tell if it's working correctly

•Find and fix problems when it hasn't been

•Keep track of what they've done

•Share work with others

•Do all of these things efficiently

Thursday, August 1, 13

19

A Driver's License Exam
 Developed with the Software Sustainability

Institute for the DiRAC Consortium
 Formative assessment

− Do you know what you need to know in order to
get the most out of this gear?

 Pencils ready?

Note: actual exam allows for several different
programming languages, version control systems, etc.

Thursday, August 1, 13

20

A Driver's License Exam

1. Check out a working copy of the exam
2. materials from a git repository.
3.
4.
5.
6.
7.

Could do it easily 1.0

Could struggle through 0.5

Wouldn’t know where to start 0

Don’t understand the question -1

Thursday, August 1, 13

21

A Driver's License Exam

1. Use find and grep in a pipe to create a
2. list of all .dat files in the working copy,
3. redirect the output to a file, and add that
4. file to the repository.
5.
6.
7.

Could do it easily 1.0

Could struggle through 0.5

Wouldn’t know where to start 0

Don’t understand the question -1

Thursday, August 1, 13

22

A Driver's License Exam

1. Write a shell script that runs a legacy
2. program for each parameter in a set.
3.
4.
5.
6.
7.

Could do it easily 1.0

Could struggle through 0.5

Wouldn’t know where to start 0

Don’t understand the question -1

Thursday, August 1, 13

23

A Driver's License Exam

1. Edit the Makefile provided so that if any
2. .dat file changes, analyze.py is re-run to
3. create the corresponding .out file.
4.
5.
6.
7.

Could do it easily 1.0

Could struggle through 0.5

Wouldn’t know where to start 0

Don’t understand the question -1

Thursday, August 1, 13

24

A Driver's License Exam

1. Write four unit tests to exercise a function
2. that calculates running sums. Explain why
3. your four tests are most likely to uncover
4. bugs in the function.
5.
6.
7.

Could do it easily 1.0

Could struggle through 0.5

Wouldn’t know where to start 0

Don’t understand the question -1

Thursday, August 1, 13

25

A Driver's License Exam

1. Explain when and how a function could
2. pass your tests, but still fail on real data.
3.
4.
5.
6.
7.

Could do it easily 1.0

Could struggle through 0.5

Wouldn’t know where to start 0

Don’t understand the question -1

Thursday, August 1, 13

26

A Driver's License Exam

1. Do a code review of the legacy program
2. from Q3 (about 50 lines long) and list
3. the four most important improvements
4. you would make.
5.
6.
7.

Could do it easily 1.0

Could struggle through 0.5

Wouldn’t know where to start 0

Don’t understand the question -1

Thursday, August 1, 13

27

How Are We Doing?

a) How well did you do?

Thursday, August 1, 13

28

How Are We Doing?

a) How well did you do?

b) How well do you think most computational

scientists would do?

Thursday, August 1, 13

29

How Are We Doing?

a) How well did you do?

b) How well do you think most computational

scientists would do?

c) Do you think a computational scientist could

use your petascale supercomputer without

having these skills?

Thursday, August 1, 13

30

How Are We Doing?

a) How well did you do?

b) How well do you think most computational

scientists would do?

c) Do you think a computational scientist could

use your petascale supercomputer without

having these skills?

d) Or a grasp of the principles behind them?

Thursday, August 1, 13

31

So Why Is This Your Problem?

If you're only helping the (small) minority
lucky enough to have acquired the base skills
that use of your supercomputer depends on...

then your potential user base is many times
smaller than it could be.

Thursday, August 1, 13

32

It Is Therefore Obvious That...
 Put more computing courses in the curriculum!

− Except the curriculum is already full

Thursday, August 1, 13

33

It Is Therefore Obvious That...
 Put a little computing in every course!

− Still adds up: 5 minutes/lecture = 4 courses/degree
− First thing cut when running late
− The blind leading the blind

Thursday, August 1, 13

34

What Has Worked
 Target graduate students
 Intensive short courses (2 days to 2 weeks)
 Focus on practical skills

Thursday, August 1, 13

35

What Has Worked
 Target graduate students
 Intensive short courses (2 days to 2 weeks)
 Focus on practical skills

http://software-carpentry.org

Thursday, August 1, 13

36

Thursday, August 1, 13

37

What We Teach

 Unix shell
 Python
 Version control
 Testing
 Array computing,

image processing,
SQL, ...

Thursday, August 1, 13

38

Thursday, August 1, 13

39

Thursday, August 1, 13

40

Thursday, August 1, 13

41

Thursday, August 1, 13

42

What We Teach

 Unix shell
 Python
 Version control
 Testing
 Array computing,

image processing,
SQL, ...

Thursday, August 1, 13

43

“That's Merely Useful”
 None of this is publishable any longer

− Which means it's ineffective career-wise for
academic computer scientists

Thursday, August 1, 13

44

“That's Merely Useful”
 None of this is publishable any longer

− Which means it's ineffective career-wise for
academic computer scientists

 But it works
− Two independent assessments have validated the

impact of what we do

Thursday, August 1, 13

45

Host a Workshop

Thursday, August 1, 13

46

Teach a Workshop
 All our materials are CC-BY licensed
 We will help train you

Thursday, August 1, 13

47

Shine Some Light

 Include a few lines about your software stack
and working practices in your scientific papers

 Ask about them when reviewing
− Where's the repository containing the code?
− What's the coverage of your unit tests?
− How did you track provenance?

Thursday, August 1, 13

48

Links!

ATPESC2013 on Facebook:
http://bit.ly/atpesc2013

Me:
http://aron.ahmadia.net

Continuum:
http://continuum.io

Software Carpentry:
http://software-carpentry.org

Performance Challenge:
https://github.com/ahmadia/atpesc-2013

Thursday, August 1, 13

http://bit.ly/atpesc2013
http://bit.ly/atpesc2013
http://aron.ahmadia.net
http://aron.ahmadia.net
http://continuum.io
http://continuum.io
http://software-carpentry.org
http://software-carpentry.org
https://github.com/ahmadia/atpesc-2013
https://github.com/ahmadia/atpesc-2013

