

Dawn of the Era of Quantum Computation

Bob Lucas USC – Lockheed Martin Quantum Computing Center August 5, 2013

University of Southern California

Outline

Historical Perspective

Tomorrow's Uncertainty

Adiabatic Quantum Annealing

Summary

-

University of Southern California

Long History of DOE Leadership in HPC

John von Neumann Head of AFC Los Alamos IBM Stretch Introduced pipelines Los Alamos Cray 1 Vector mainframe Oak Ridge Intel iPSC 1 Commercial parallel computer

Sandia ASCI Red

Aggressive COTS-based scaling

Today's Leadership Computing Facilities

Continued tradition of National leadership

School of Engineering

USC

Long History of DOE Leadership in HPC

Scientific Disciplines	Math and CS
Physics	Differential Equations
Chemistry	Sparse Solvers
Biology	System Software
Material Science	Programming Environments
Earth Sciences	Visualization

Summary | X University of Southern California

Looming Challenge Thirty Years Ago

Technology driver transition

LSI to VLSI Emergence of MOS, RISC microprocessors Availability of dense semiconductor DRAM Local area and system area networks

Paradigm Shift required

Exploit "killer micro" Increase performance, reduce cost Transition away from vector, PVP, and SIMD-array How to structure and program new class of systems

Everything was about to change

How do we program future class of systems Do we keep a shared memory model New programming methods; what about legacy codes

The Future was Uncertain **BBN TC-2000 NUMA Denelcor HEP multithreaded Intel Touchstone Delta** TMC CM-2 Alliant FX/8 KSR-1 Cray T3D/E **J-Machine** Ncube Cray C90 **UIUC/CSRD** Cedar

Summary | X University of Southern California

HPC Finally Reached a Stable Point

COTS Components

Leverage mainstream commercial processors Cache-based hierarchical memories

Distributed Memory Architecture

Familiar software on processors (Fortran, C, and C++)

Message Passing Interface (MPI) Evolving for two decades Beowulf is the epitome

All off-the-self PC components Ethernet networks Linux gcc

DOE Made Major Contributions

Programming model

Message Passing Interface ANL's MPICH was the reference implementation OpenMPI & OpenMP today Performance analysis tools: Jumpshot, TAU, HPCToolkit, etc.

Mathematics

New scalable algorithms (e.g., AMG) Reference implementations: PETSc, HYPRE, BOXLIB, etc.

System Software

Micro-kernel O/S Parallel file systems Performance modeling

Outline

Historical Perspective

Tomorrow's Uncertainty

Adiabatic Quantum Annealing

Summary

-

University of Southern California

USC School of Engineering

Introduction | 1 University of Southern California

Uncertain Future has Returned

End of Moore's Law looming

Already lost relevance to strong-scaled problems

New Technologies on the near horizon

Phase change memories Stacked dies

Exponential growth in parallelism

Tianhe-2 has 3M cores

Heterogeneous systems increase Flops/watt

Multicore chips have partitioned shared memory

Power is a constraint

Resilience a very real concern

Need More Capability?

Exploit a New Phenomenon D-Wave Quantum Annealer

Massive Scaling Tianhe-2 (3M cores)

Application Specific Systems D.E. Shaw Research Anton

Introduction | 2 University of Southern California

Exascale Challenges

Energy

Hundreds of MWatts

Concurrency

Billions of ALUs

Memory

DRAM falling off Moore's Law

Resilience

Soft error rates expected to climb

Algorithms

Dot products and Courant numbers will be huge Amdahl fractions

Specialized Systems

Nothing new

Enigma

Germans invent machine cryptography

Bombe

Poles invent machine cryptanalysis

Summary | X University of Southern California **Specialized Systems**

Not new to science either

Many QCD devices

Commercial protein folding too

Summary | X University of Southern California

Outline

Historical Perspective

Tomorrow's Uncertainty

Adiabatic Quantum Annealing

Summary

-

University of Southern California

Predicting the Future

Memo to IBM

The transistor: Nothing to worry about ...

Rolf Landauer "Information is physics"

Summary | X University of Southern California

Predicting the Future is Fraught with Uncertainty

Rolf Landauer

The memo was precisely right about the first transistor... but not the second.

Summary | X University of Southern California

USC School of Engineering

D-Wave| X University of Southern California

Adiabatic Quantum Annealing

Problem: find the ground state of

$$H_{\text{Ising}} = \sum_{j} h_{j} \sigma_{j}^{z} + \sum_{(i,j)\in E} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z}$$

Shown by Barahona (1982) to be NP-hard in 2D, $J_{ij} = \pm$, $h_j \neq 0$.

Use adiabatic interpolation from transverse field (Farhi et al., 2000)

Graph Embedding implemented on DW-1 via Chimera graph retains NP-hardness (V. Choi, 2010)

Introduction | 3 University of Southern California

D-Wave Eight Qubit Unit Cell

Images courtesy D-Wave

D-Wave | X University of Southern California

D-Wave Chimera Graph Topology

The topology of the D-Wave Two at the USC – Lockheed Martin Quantum Computing Center.

503 of 512 qubits calibrated and mapped.

D-Wave's Version of "Moore's Law"

USC School of Engineering

D-Wave | X University of Southern California

USC School of Engineering

USC School of Engineering

Simulated Quantum Annealing

USC School of Engineering

D-Wave One Experiments

144 embeddings

Reference: S. Boixo,, T. Albash, F.M. Spedalieri, N. Chancello, D.A. Lidar, Nature Comm. 4, 2067 (2013).

Scalable Quantum Signature

USC School of Engineering

Witness for Entanglement?

Collaborating with D-Wave

Only they can take the measurements needed

Currently preparing calculations for 8-qubit witness

It will take a lot of computation, O(10M) CPU hours

Spedaliari, AQC 2013

Ongoing Research | 2 University of Southern California

Performance of Classical Exact Solvers

USC School of Engineering

Quantum Annealing vs. Simulated Annealing

D-Wave 2 vs. Eight-core Pentium (USC & ETH)

Quantum Annealing vs. Simulated Annealing

D-Wave 2 vs. Nvidia Kepler GPU (USC & ETH)

What Problems Might be Amenable?

Problem	Application
Traveling salesman	Logistics, vehicle routing
Minimum Steiner tree	Circuit layout, network design
Graph coloring	Scheduling, register allocation
MAX-CLIQUE	Social networks, bioinformatics
QUBO	Machine learning
Integer Linear Programming	Natural language processing
Sub-graph isomorphism	Cheminformatics, drug discovery
Motion planning	Robotics
MAX-2SAT	Artificial intelligence

NP-complete problems from Wikipedia

Ongoing Research | X University of Southern California

Software Verification and Validation

Applying Machine Learning Collaboration with Lockheed Martin

Optimization of System Design

Collaboration with Lockheed Martin

Image Processing

Image registration at D-Wave Image recognition at Google

Organic photovoltaic triage at Harvard

Missile Defense

Sensor assignment Tracking

Ongoing Research | X University of Southern California

Reordering is an Algorithmic Bottleneck

Timing inform CP	n a t i o n PU(seconds)	%CPU	Clock(seconds)	%Clock
Initialization 4	.2627E+02	1.97	5.3379E+01	1.97
Element processing 1	.4466E+03	6.69	1.8085E+02	6.68
Binary databases 7	.4405E+00	0.03	9.2917E-01	0.03
ASCII database 3	.0924E-05	0.00	3.1000E-05	0.00
Contact algorithm 1	•2142E+02	0.56	1.5175E+01	0.56
Interf. ID 1 2	2.3144E+01	0.11	2.8875E+00	0.11
Interf. ID 2 2	2.2887E+01	0.11	2.8631E+00	0.11
Interf. ID 3 2	2.3338E+01	0.11	2.9167E+00	0.11
Interf. ID 4 2	2.2896E+01	0.11	2.8623E+00	0.11
Interf. ID 5 2	2.9136E+01	0.13	3.6410E+00	0.13
Contact entities 0	.0000E+00	0.00	0.0000E+00	0.00
Rigid bodies 5	.4509E-04	0.00	5.5300E-04	0.00
Implicit Nonlinear 9	.6004E+01	0.44	1.1997E+01	0.44
Implicit Lin. Alg 1	•9539E+04	90.30	2.4431E+03	90.30
Totals 2	2.1637E+04	100.00	2.7055E+03	100.00
LS-DYNA, half million elements, eight threads				

Reordering with Metis WND took ~43 sec., ~1.6% of total time

Best reordering algorithm for many linear systems

Widely used in practice today Available in packages such as Metis and Scotch

Basic ND algorithm

Find a small separator to partition the matrix into two halves In general, this is an NP-complete problem Refine the separator, "straightening" it minimize separator length balance the two subgraphs Recursively partition the remaining subgraphs

Many Partitioning Heuristics Available

Ones I know used

Level Sets George and Liu Ashcraft and Grimes

Moment of Inertia

Fiduccia-Mattheyses

Spectral Bisection Fiedler vectors Ones I don't know of

Simplex Method

Interior Point Method

Simulated Annealing

Quantum Annealing

Introduction | X University of Southern California **Ising Models for NP-hard Problems**

Graph bisection can be described as an Ising spin glass J Phys **A19** 1605 (1986)

Since then, Ising models for many other problems have been found too arXiv: 1302.5843

The general goal: find a cost function H (Hamiltonian) whose solutions correspond to the hard problem Create energy penalties for suboptimal solutions

Partition the graph into two domains: spin up or down Add energy penalty A to configurations that don't bisect Add energy penalty B to edges in the separator Finds an edge separator

Direct embedding of Ising Model to Chimeral Graph

Embedded 10-Node Line

Use strong couplings between qubits to create virtual nodes with full connectivity

Strong coupling forces coupled qubits into the same state for low energy solutions

Pros: Allows embedding of any graph topology with N nodes, no classical post-processing necessary

Cons: Limited by number of qubits, Mapping problem to chimeral graph for large N is NP-Hard, Each additional strong coupling reduces effect of weaker couplings

Test Results: Fully Embedded 10 Node Line Graph

E (-30)	N	State
-7.40E-03	11	[1 1 1 1 1 -1 -1 -1 -1 -1]
-7.40E-03	1	[-1 -1 -1 -1 -1 1 1 1 1 1]
-6.40E-03	29	[1 1 1 1 -1 -1 -1 -1 -1 -1]
-6.40E-03	3	[111111 -1 -1 -1 -1]
-6.40E-03	1	[-1 -1 -1 -1 1 1 1 1 1]
-6.40E-03	3	[-1 -1 -1 -1 -1 -1 1 1 1 1]
-6.00E-03	35	[-1 -1 1 1 1 1 1 -1 -1 -1]
-6.00E-03	32	[-111111-1-1-1-1]

Dense Hamiltonian Coupling Factors:

> Strong: **-1** Adjacent: **.0002** Weak: **.0005**

Small differences in solution state energies due to large relative weight of strong couplings

Future Quantum Annealers with higher connectivity and more qubits may make Direct Embedding more realistic

85 Node Graph Test 1: Black Box Results

 H_A = Difference in Partition sizes H_B = Number of edges crossed $H = 2 \cdot H_A^2 + H_B$

Time(s	s) Energy	H _A	H _B	Н
1	177.5	1	109	111
5	179.9	1	115	117
10	164.7	1	77	79
50	150.7	1	42	44
100	147.9	1	35	37
200	143.9	1	25	27
500	140.3	1	16	18
750	142.3	1	21	23

(Note: Because the number of nodes is odd, $|H_A|$ will always be != 0)

D-Wave's Black Box can produce low energy partitions of complex graphs, but at the expense of time

Adjacency Matrix of 85 Node Graph

85 Node Graph Test 2: Sequential Embedding

Greedy embedding algorithm used to sequentially map dense Hamiltonian to D-Wave Chimeral topology

Time(s)	Post-Processing Steps	Energy	H _A	H _B	н
15.48	0	-1406.4	-1	107	109
19.56	1	-1405.2	1	115	117
21.51	2	-1413.2	1	79	81
26.62	5	-1423.2	-1	54	56
38.89	10	-1432.4	-1	31	33
46.57	25	-1432.8	-1	30	32
49.43	50	-1435.6	-1	23	25
50.42	200	-1436.8	-1	20	22

Classical Post-Processing of solutions drastically improves partitions quality for complex topologies

Results Produced by Black Box versus Sequential Embedding 140 Black Box 120 Sequential Embedding 100 Hamiltonian 80 60 40 20 0 10 20 30 40 50 60 0 Time (s)

Sequential Embedding produces high quality results with lower time cost than Black Box

Outline

Historical Perspective

Tomorrow's Uncertainty

Adiabatic Quantum Annealing

Summary

-

University of Southern California

Summary

After little over a decade, adiabatic quantum annealing is moving from theory to practice.

Today's D-Wave system raises a variety of research questions that USC, Lockheed Martin, and our colleagues are jointly investigating

Future D-Wave systems might soon be the most powerful on Earth for a range of problems

What those might be, and how to program them, are still open research problems.

Open Research Problems

Why does the D-Wave even work?

Its an open system How much quantum speedup will there be? Any? If so, on what problems? What applications will it ultimately solve? We've had half a century to find competing heuristics How should you program it? Specifically excluded from recent research programs What should the topology be? Reduce critical scaling limitation Other adiabatic quantum systems will face these.

These questions are all bigger than just D-Wave

Broader Open Research Problems

Quantum Optimization

New class of algorithms of which annealing is a subset Could transform "big data" analytics Google's "killer app"

Adiabatic Quantum Computing

D-Wave is an annealer, not a general purpose computer What other phenomenon are there besides flux-qubits?

Circuit Model Quantum Computers

Goal of most of the quantum computing research community

Summary | X University of Southern California

We are entering a period of great uncertainty about the future of High Performance Computing

This creates great challenges and opportunities for DOE computational scientists

You will have a chance to shape this future

New computing systems New mathematical algorithms Ultimately, unimaginable scientific discoveries

Back Up

Summary | X University of Southern California

Quantum Annealing vs. Classical Annealing

Classical annealing: The state must jump over the barrier using temperature

Quantum annealing: The state can go through the barrier using quantum tunneling

Recently confirmed for D-Wave's processor

M. W. Johnson et al., "Quantum annealing with manufactured spins," Nature, vol. 473, no. 7346, pp. 194-198, May. 2011.

Ongoing Research | X University of Southern California

Theory Predicts Quantum Speed-Up

A general version of quantum annealing is universal quantum computation (Shor's algorithm).

 $\ensuremath{{}_{\odot}}$ We have shown that the general version gives a quadratic speed-up of simulated annealing

R. D. Somma, **SB**, and H. Barnum, arXiv:0712.1008, 2007. R. D. Somma, **SB**, H. Barnum, and E. Knill, PRL, 2008.

Error Correction

In preparation

Ongoing Research | X University of Southern California

Ongoing Research | X University of Southern California

School of Engineering

USC

Slide Courtesy of Steve Adachi, Lockheed Martin

ati Advanced Technology & Innovation

Link Costs

x12 x13 x14 x21 x23 x24 x31 x32 x34 x41 x42 x43 c12 5.86 x12 -2 c13 9.70 -2 x13 c14 5.51 -2 x14 c21 6.75 x21 -2 c23 3.91 x23 -2 c24 8.18 -2 x24 c31 1.31 x31 -2 c32 1.31 -2 x32 c34 4.39 -2 x34 c41 5.86 -2 x41 c42 3.30 x42 -2 c43 5.51 x43 -2

Energy distribution of annealing iterations

Case Study: 4-city Traveling Salesman (LM 2011)

- 4 city directed Traveling Salesman Problem
- 12 logical qubits (1 per directed link)
 - Embeddable on 92-gubit processor
- Found optimal solution in 10% of iterations

Case Study: Protein Folding (Harvard/D-Wave)

Ref: A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose & A. Aspuru-Guzik, "Finding low-energy conformations of lattice protein models by quantum annealing," doi:10.1038/srep00571.

Slide Courtesy of Steve Adachi, Lockheed Martin

Advanced Technology & Innovation

ati