

Argonne National Laboratory: Innovative Research in the National Interest

Mark T. Peters

Deputy Laboratory Director for Programs

Argonne National Laboratory

Argonne Training Program on Extreme-Scale Computing
Pheasant Run Resort
St. Charles, IL
August 7, 2013

Argonne National Laboratory

Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies

Argonne - a vital part of DOE National Laboratory System

Argonne is at the hub of America's innovation heartland

Argonne's mission: Delivering science-based solutions to national energy challenges

Through discovery and transformational research

World-leading hard x-ray sciences & sources

Discovery science for energy

Leadership computing and computational ecosystem

Fundamental physics and accelerator science

Materials & systems engineering solutions

and use-inspired science and engineering

Energy Storage

Sustainable Transportation

Nuclear Energy & Security

Biological & Environmental Systems

Argonne offers a unique suite of major scientific facilities

The Advanced Photon Source: The brightest, sharpest x-rays in the Western Hemisphere

- Powerful APS x-ray beams help scientists see things in unprecedented detail, get extraordinary results, extremely quickly
- The APS is a tremendous tool for almost every scientific discipline, from materials science to biology, chemistry, environmental science, and fundamental physics
- Used by >5,000 scientists each year, from private industry, universities, medical schools and research laboratories across the country and around the world

As scale of national challenges expands, HPC plays increasing role in scientific inquiry

South Pole Telescope

- Scale of leading-edge science yielding very large datasets
- Massively parallel computing necessary for analysis, modeling and simulations
- HPC is key to the future of science (and technology)

MACHO et al.: 1 TB Palomar: 3 TB

2MASS: 10 TB

GALEX: 30 TB

Sloan; 40 TB

Pan-STARRS: 40,000 TB

LSST: 100,000 TB

Argonne's major research initiatives bring together `dream teams' to address grand challenges

Argonne's battery research program: From fundamental research to cars on the road

Discovered new composite structures for stable, high-capacity cathodes

Tailored electrodeelectrolyte interface using nanotechnology

Created high-energy Li-ion cells with double cathode capacity, enhanced stability

Licenses to materials cell manufacturers and automobile companies

New energy storage hub offers great opportunities for discovery, innovation, and impact

Building a new model of innovation

Discovery, innovation and collaboration = at every point in the pipeline Concepts **Distinguishing Tools** CROSSCUTING Multivalent Intercalation Systems SCIENCE Cell Design Commercial **Analysis and Chemical Transformation** and **Deployment Translation Prototyping** Non-Aqueous Redox Flow

Integration

Argonne's EFRCs address barriers to energy production, conversion and use

'Nanobowls' allow inorganic catalysts to operate selectively on particular molecules.

Developing `self-healing' materials to prevent thermal runaway in li-ion batteries

Computational chemistry and materials science: Designing what you make

- New and improved ab initio methods
- Simpler models with same/better accuracy as ab initio
- Effective means of multiscale computation
- Software engineering and code support
- Computation to aid materials synthesis
- Path to exascale computation

Volcano plots for screening of catalysts for Li-air batteries

Multiscale theory & computation: `Battery computer simulator'

Building an electrolyte genome: A new horizon for designing novel electrolytes and redox-active molecules

Computational structure/composition/property platform 10^4 - 10^5 solvents, salts, and redox molecules; organized for interactive searching and design

- Redox activity
- Stability against cathode / anode
- Solvation structure and mobility
- Solvation / desolvation dynamics
- Solubility
- Energy storage capacity

Intelligent engine design strategy

- Creating virtuous cycle of chemistry, simulation and engineering in engines
- Combustion simulations with a biofuel/ diesel blend show a strong dependence on the rate constants of several fundamental chemical reactions
- Towards the 'virtual engine'

Modeling Caterpillar single cylinder test engine

Potential energy surface for HO_2 + HO_2 + HO_2 = H_2O_2 + O_2

Fundamental quantum effects can influence predictions from engine simulations

Well-to-wheels analysis enables effective energy policies

Argonne's roles in enabling future of nuclear energy

Argonne facility for studying passive cooling of reactor vessels during postulated accidents

Nuclear Safety

- Accident-tolerant fuels
- Corrosion of reactor materials
- Severe accident mitigation

Design concept for a small, modular burner reactor

Nonproliferation

- Fast burner reactor technologies
- Safeguards for reprocessing
- LEU conversion of research and medical isotope facilities (NNSA)

Cross section optical micrograph of Zircaloy-4 cladding in high-burnup PWR fuel; M. Billone, ANL

Nuclear Waste

- Cladding and fuel performance
- Geologic disposal concepts
- Advanced fuel cycles

Our major research initiatives are supported, expanded by wide-ranging computational ecosystem

Mihai Anitescu et al.

Grid optimization simulation

Stochastic programming formulation for Illinois:

- 2,000 transmission nodes
- 2,500 transmission lines
- 900 demand nodes
- 300 generation nodes
- Considered over 24 successive hourly time periods
- Simulation can reach billions of variables/constraints

Result

Up to 20% wind penetration can be accommodated without significant reserve increase (e.g., peaker plants) if using stochastic optimization

Argonne's scientist and engineers: Seeking the next big idea...

