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Argonne is at the hub of America’s innovation heartland
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Argonne’s mission: Delivering science-based
solutions to national energy challenges

Through discovery and transformational research

World-leading Discovery Leadership Fundamental Materials &
hard x-ray science for computing and physics and systems

sciences & energy computational accelerator engineering
sources ecosystem science solutions

and use-inspired science and engineering




Argonne offers a unique suite
of major scientific facilities
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The Advanced Photon Source: The brightest,

sharpest x-rays in the Western Hemisphere

Powerful APS x-ray beams help
scientists see things in
unprecedented detail, get
extraordinary results, extremely
quickly

The APS is a tremendous tool for
almost every scientific discipline,
from materials science to biology,
chemistry, environmental science,
and fundamental physics

Used by >5,000 scientists each
year, from private industry,
universities, medical schools and
research laboratories across the
country and around the world

Nobel Prize
in Chemistry
2012
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As scale of national challenges expands, HPC
plays increasing role in scientific inquiry

= Scale of leading-edge science yielding very
large datasets

= Massively parallel computing necessary for
analysis, modeling and simulations

= HPCis key to the future of science (and

technology)
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Precision Cosmology, Salman Habib, ANL
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Argonne’s major research initiatives bring together
“dream teams’ to address grand challenges
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Argonne’s battery research program:
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Discovered new composite

structures for stable,
high-capacity cathodes

Tailored electrode-
electrolyte interface
using nanotechnology
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Created high-energy
Li-ion cells with
double cathode
capacity, enhanced
stability
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'From fundamental research to cars on the road

Licenses to materials cell
manufacturers and
automobile companies




New energy
storage hub
offers great
opportunities
for discovery,
innovation,
and impact
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Building a new model of innovation

Discovery, innovation and collaboration === at every point in the pipeline
®

Loncepts m .
N
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Distinguishing Tools

Multivalent Intercalation
Systems Cell Design

Chemical Transformation Analysis and and Commereci:
Deployme

Translation Prototyping

Non-Aqueous Redox Flow

& Integration

Management



Argonne’s EFRCs address barriers to
energy production, conversion and use

"Nanobowls’ allow inorganic
catalysts to operate selectively
on particular molecules.
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'E"""i"'" Developing ‘self-healing’
AN S E R e rgy materials to prevent thermal

Solar Energy Research Center research center . . .
runaway in li-ion batteries




Computational chemistry and materials
science: Designing what you make

Increasing activity
-1.7 -1.6 -1.5 -14 -1.3 -1.2

New and improved ab initio T
methods T

Simpler models with same/better
accuracy as ab initio

' Volcano plots
PdAu, POAY pdAg, | forscreening
Ppg,cuP%% pd g, Of catalysts
Cu, for Li-air
batteries

(eV)

d,Co,

AE__ O

Effective means of multiscale
computation

Software engineering and code
support

Computation to aid materials -
synthesis ' o

a5 3 25 2 15
‘\t,‘“CO (eV)

Path to exascale computation ' ek e
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(Li;05)250

Growth of Li,O, nanoparticles
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Multiscale theory & computation: "Battery computer simulator’

lon diffusion in
Li-air battery

Li-peroxide nanoparticle (DFT)

sec days

ms

(%)
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ATOMISTIC MESO-SCALE CONTINUUM

Phase Field Thermochemical
Calculations

TIMESCALE

Kinetic
Monte Carl/ Dislocation
Dynamics

‘ i .
Molecular Velocity field

DenSiEynamlcs and heat profile
¢ in an air-cooled

Functional
LENGTHSCALE battery (FEM)
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Building an electrolyte genome: A new horizon for
designing novel electrolytes and redox-active molecules
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Computational structure/composition/property platform
104-10° solvents, salts, and redox molecules;

175 2 225 25 27 1 128 35
Potential (V) vs. Li/U*

organized for interactive searching and design

= Redox activity ‘,@‘f_

= Stability against cathode / anode "bl‘:‘

= Solvation structure and mobility q’ /

= Solvation / desolvation dynamics »

= Solubility P &0
.

= Energy storage capacity
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Mateming\ earchEacility"(MERF) enables—

scale-up of advan pattery materials
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Argonne’s transportation research program
is world-renowned __
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' Charging Sequence

Chevy Vaolt Battery Simulation




Intelligent engine design strategy

= Creating virtuous cycle of chemistry,
simulation and engineering in engines

= Combustion simulations with a biofuel/
diesel blend show a strong dependence
on the rate constants of several
fundamental chemical reactions

= Towards the ‘virtual engine’

Modeling Caterpillar single
cylinder test engine

Time = -24.84723

Maximum Temperature [K] Maximum NOx Level
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Potential energy surface for HO, +
HO,+ HO, = H,0,+0,

Fundamental quantum effects can influence predictions from engine simulations



Well-to-wheels analysis enables effective energy policies

Gasoline (Today's Vehicle)
Gasoline

Natural Gas

Gasoline

Natural Gas

Diesel

Corn Ethanol (E85)
Cellulosic Ethanol (E85)
Gasoline & 2035 U.S. Grid Mix

Gasoline & 2010 WV Grid Mix

Gasoline & 2010 CA Grid Mix

Gasd|ine & Ultra-low Carbon Renewable

Cellulosic Kthanol (E85) & 2035 U.S. Grid Mix

Cellulosic Ethanol (E85) & 2010 WV Grid Mix

Cellulosic Eghanol (E85) & 2010 CA Grid Mix

Cellulosic Ethanol (E85) & Ultra-low Carbon Renewable
asoline & 2035 U.S. Grid Mix

soline & 2010 WV Grid Mix

soline & 2010 CA Grid Mix

Gasoline & Ulya-low Carbon Renewable

Cellulosic Ethanol (A85) & 2035 U.S. Grid Mix

Cellulosic Ethanol (E§5) & 2010 WV Grid Mix

Cellulosic Ethanol (E&5) & 2010 CA Grid Mix

Cellulosic Ethanol (E85) & Ultra-Iqw Carbon Renewable

I . . 2035 U.S. Grid Mix
GREET ana VSIS' 2010 WV Grid Mix
2010 CA Grid Mix

>18'009 users ra-low Carbon Renewable
W0r|dWIde H2 - Distributed Natural Gas
H2 - Coal Gagification w/ Sequestration

H2 - Biomass Gasification
H2 - Nuclear High-T Electrolysis or Ultra-low Carbon Renewable

2035 U.S. Grid Mix
2010 WV Grid Mix
2010 CA Grid Mix
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Conventional Internal
Combustion Vehicles

Hybrid Electric
Vehicles

Plug-in Hybrid
Electric Vehicles
(power-split, 10-mile
electric range)

Plug-in Hybrid
Electric Vehicles
(series, 40-mile
electric range)

Battery Electric
Vehicles (150-mile range)
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Argonne S roles in enabling future of nuclear energy

Argonne faC|I|ty for studying
passive cooling of reactor vessels
during postulated accidents

Nuclear Safety

= Accident-tolerant
ES

= Corrosion of reactor
MEIEELS

= Severe accident
mitigation

Design concept for a small,
modular burner reactor

Nonproliferation

= Fast burner reactor
technologies

= Safeguards for
reprocessing

= LEU conversion of
research and medical
isotope facilities (NNSA)

Cross section optical m|crograph of
Zircaloy-4 cladding in high-burnup

PWR fuel; M. Billone, ANL

Nuclear Waste

= Cladding and fuel
performance

= Geologic disposal
concepts

= Advanced fuel cycles




Our major research initiatives are supported, expanded
by wide-ranging computational ecosystem
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Mihai Anitescu et al.

Grid optimization simulation

Stochastic programming formulation

for lllinois:

= 2,000 transmission nodes

= 2,500 transmission lines

= 900 demand nodes

= 300 generation nodes

= Considered over 24 successive
hourly time periods

= Simulation can reach billions of
variables/constraints

Result

Up to 20% wind penetration can be

accommodated without significant

reserve increase (e.g., peaker plants) if

using stochastic optimization



Argonne’s scientist and engineers:
Seeking the next big idea...







