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“Data intensive” vs “Data Driven”

Depends on the C(I)qﬁzrqhons are driven and defined by
perspective BIG analytics
P Top-down query (well-defined operations)
rocle.sso.r, memaory, 0 Boﬁﬁ;n up discovery (unpredictable time-to-
application, storages resu
. ., BIG data processing
An CIppIICCITlon can be Predictive modeling
data intensive without Usage model further differentiates these
. . Single App, users
gneces.solrlly) belng I/O Large number, sharing, historical /temporal
Infensive

Very few large-scale applications of practical importance are NOT Data Intensive



-COZ levels hit new peak at key

Understanding Climate Change
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Understanding Climate Change — Physics-Based Approach

General Circulation Models: Mathematical models
with physical equations based on fluid dynamics

Parameterization and non-linearity
of differential equations are sources for uncertainty!

CCSM CAM3__



Understanding Climate Change - Physics Based Approach
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CCSM CAM3_ _

General Circulation Models: Mathematical
models with physical equations based on
fluid dynamics

Figure Courtesy: NCAR
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Understanding Climate Change - Physics
Based Approach

Temperature Increases for Various Emission Scenarios
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Physics based models are essential but
insufficient

Disagreement between IPCC models

- Relatively reliable predictions at global scale for ancillary
variables such as temperature

- Least reliable predictions for variables that are crucial for
impact assessment such as regional precipitation

“The sad truth of climate science is that the
most crucial information is the least reliable”
(Nature, 2010)

Physics based models

Temperature Hurricanes
Pressure Extremes

Large-scale wind Precipitation



Data-Driven Knowledge Discovery in
Climate Science

Transformation from Data-Poor to Data-Rich

Sensor Observations

Reanalysis Data

Model Simulations

Surface Temperature [*C]
01JAN2011

A new and transformative data-driven approach that:

Makes use of wealth of observational and simulation data

Advances understanding of climate processes

Informs climate change impacts and adaptation

“Climate change research is now ‘big science,’

comparable in its magnitude, complexity, and societal

importance to human genomics and bioinformatics.”
(Nature Climate Change, Oct 2012)



Need for data driven discovery

Physics based models

Temperature Hurricanes Fires
Pressure Extremes Malaria outbreaks
Large-scale wind Precipitation Landslides

Global sea surface temperatures Atlantic hurricanes Global fires

Sea Surface Temperature Anomaly [°C]
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End-to-End: From Transactional analytics to
relationship mining
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CMIP3 = CMIP5 => Climate BIG DATA : 10s of TBs to 10s of PBs



Data Mining, Analytics and Actionable Insights?




A Poem

.
The Unknown

As we know,
There are known knowns.
There are things we know we know.

Conventional Wisdom * High Humidity results in outbreak of Meningitis
 Customers switch carriers when contract is over

* Nuclear Reaction happens under these conditions
Validate Hypothesis * Did combustion occur at the expected parameter values
* | think this location contains a black hole

© Alok Choudhary  Northwestern University



The Unknown

[ We also know I

There are known unknowns.
That is to say
We know there are some things
We do not know.

* Will this hurricane strike the Atlantic coast?

* What is the likelihood of this patient to develop
cancer

Top-Down Discovery - We

know the question to ask

* Will this customer buy a new smart phone?

© Alok Choudhary  Northwestern University



The Unknown

But there are also unknown unknowns,
The ones we don't know
We don't know.

* Wow! | found a new galaxy?

Bottom up Discovery - We « Switch C fails when switch A fails followed by switch
don’t know the question to B failing
ask * On Thursday people buy beer and diaper together.
* The ratio K/P > X is an indicator of onset of
diabetes.

© Alok Choudhary  Northwestern University



Who Knew?

The Unknown
As we know,

There are known knowns.
There are things we know we know.
We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.

But there are also unknown unknowns,
The ones we don't know
We don't know.

—Feb. 12, 2002, Department of Defense news briefing by
Donald Rumsfeld

Northwestern University



Knowledge Discovery Life-Cycle: Transactional to
Relationships — Current to Historical

Instruments, sensors

supercomputers

Trigger/
questions



Relationship mining: Seasonal hurricane
activity

Contrast-based network mining for

discriminatory signatures {227 /22/ /#v

Novel dynamic graph clustering for
dense directed graphs

High activity _ Low activity

Statistically robust methodology for
automatic inference of modulating
networks

Hurricane

Improved forecast skill for seasonal % (G vind S e—
1 /1 % ;Anom JFHC Indo-Pacifi
hurricane activity W arrica st Anomaly )
gRH Anomaly
Discovered key factors and mechanisms e
modulating NA hurricane variability AMO: Atiante eriional Oscilation

Dlscov_ered novel cllmate.: mde.x with Sencan et al. LICAI (2011)
much improved correlation with NA  Pendse et al. SIAM SDM (2012)

hurricane varlablllty 0.69 vs 0.49 Chen et al. Data Mining & Knowledge Discovery (2012)
S ' Chen et al. SIAM SDM (2013)
Chen et al. IJCAI (2013)

Semazzi et al. in review at journal (2013)



Challenges in data driven analysis

5 71 Complex dependence
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From Science to Social

Activity/interaction
based Network
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Top Associations by Fans For
Bing, Google & Yahoo on FB

Windows Phone
users

5.30% of
0.98% of Google
.98% o
George Foreman 2.58% of Chrome users

. Microsoft users
Cooking users

2.48% of

TechCrunch 3:83% of
Logitech users
users

0.99% of 1.44% of
Chillclock users Dentyne Users

2.53% of
2.49% of Adobe Flash

Users

Microsoft users

1% of Chex Mix

users 2.58% of Crest
Users

2.49% of
Internet
Explorer users

2.15% of Chex 2.425% of Pepto-
Mix users Bismol users

2.20% of TridentA
Chewing Gum
users

2.37% of Dentyne
users

2.32% of Yahoo!
Sports users

All data for 16-34 age group only



A different way of thinking: Extreme Computing
+ Big data analytics => Accelerating Discovery

MATERIAL SCIENCE: A
“DATA DRIVEN

DISCOVERY” WORTH
A THOUSAND
SIMULATIONS? o



Discovery of stable compounds

\ | \
Datasetsof | '\ Materials

materials .
, discovery!
properties




Ranking — Approximation is good enough
for ranking © (closing the loop)

True positive rate (sensitivity)
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1 indicates a model prediction
associated with a known stable
ternary compound that had was
absent from DFT thermodynamic
database; the prediction

is thus confirmed, but no crystal

structure search was necessary.



Structure-Property Optimization - Try
optimization for 103 dimensions

Microstructure
Representation

®

Traditional Method

(Features that
mathematically or
statistically describe
microstructures

Global
Optimization
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Accelerating Time to Insights

Optimum Solution {(E-06)
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Extreme Computing + Big data : Not a
single dimensional challenge




Extreme Computing + Big Data Analytics = A

Knowledge Discovery Engine?
| 29 |

“““Extreme-Scale Computing «i#=Big Data Analytics “#*BDEC Knowledge Discovery Engine

Write Performance Read Performance
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Discovering Materials : Simulations = Analytics
- C:::;gcﬁ? of :E } - Predictive Modeling} - Madel Evaluation ] _
p on database

eConsists of compounds with known eConstruct data mining models to eTest model on unseen data

formation energy (FE) predict formation energy using *10-fold cross validation (data divided
eEmpiric periodic table information chemical formula and derivable into 10 segments, model built on 9
added (e.g. electro negativity, mass, empirical information segments and tested on remaining 1
atomic radii, # valence s, p, d, f segment; process repeated 10 times

electrons) with different test segment)

(a)

Large scale FE Validation

prediction

* Run combinatorial list
of compounds through
the FE model

e Structure prediction

e Quantum mechanical
modeling

¢ Thermodynamic
stability and heuristics

) )

e —
. . Shortlisted
Combinatorial . 5 Stable
) List of high- .
list of ternary . . , discovered
predictions potential
compounds structures

candidates

- / —

(b)



Climate Change = Analytics Challenges

Process Understanding

Extreme Events
Heat Waves
Rainfall Extremes
Droughts
Hurricanes
Model Evaluation
Downscaling
- Statistical
- Dynamical
Ocean-Atm.-Land Interactions

Change Detection

- Abrupt vs. Gradual

- Point vs. Regions/Intervals
- Change in Extremes
Spatio-Temporal Classification
Sparse/High-Dim. Methods
Causal Relationships
Networks/Graphs

HPC
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Understanding Climate Change




