

Next Generation Energy Storage: Beyond Lithium Ion

George Crabtree

Director, JCESR University of Illinois at Chicago Argonne National Laboratory

Outline

Today's revolution: lithium-ion \rightarrow personal electronics

Tomorrow's revolution: beyond lithium-ion → transportation and electricity grid

JCESR: a new paradigm for battery R&D

Promising technologies

How would life be different?

Argonne Training Program on Extreme Scale Computing Pheasant Run, IL August 4, 2015

Further Reading

In Press: Physics of Sustainable Energy III: Using Energy Efficiently and Producing It Renewably, edited by R. H. Knapp et al, AIP Conference Proceedings (Number ***), Melville, New York, 2014.

The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development

George Crabtree

Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, and University of Illinois at Chicago, 845 W. Taylor Street, Chicago IL 60607

Abstract. The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first

Keywords: energy storage, batteries, materials science, electrochemistry, solvation

PACS: 61, 66, 68, 71, 72, 73, 81, 82, 88

OVERVIEW

Transportation and the electricity grid account for two-thirds of U.S. energy use [1]. Each of these sectors is poised for transformation driven by high performance, low cost electricity storage. The Joint Center for Energy Storage Research (JCESR) pursues discovery, design, prototyping and commercialization of next generation batteries that will realize these transformational changes. High performance, low cost electricity storage will transform transportation through widespread deployment of electric vehicles; it will transform the electricity grid through high penetration of renewable wind and solar electricity and a new era of grid operation free of the centuryold constraint of matching instantaneous electricity generation to instantaneous demand. It is unusual to find transformational change in the two largest energy sectors driven by a single innovation: high performance, low cost

These transformative outcomes for transportation and the electricity grid require electricity storage with five

Electrolyte Genome Game-Changer How computational screening of molecules at Berkeley Lab could accelerate electrolyte discovery.

Video: Employee Spotlight

Chemical Engineer and Postdoctoral Researcher Damla Eroglu seeks to create new breakthrough energy storage technology. Learn more »

JCESR Accomplishments

JCESR Director, George Crabtree, published a detailed description of JCESR accomplishments, Learn more »

Event Wrap Up UIUC JCESR Symposium: Integrating Energy Storage on the Grid

NY-BEST JCESR Technical Conference Buffalo, New York Learn more x

Review Article

https://anl.app.box.com/s/wixxv7f3mg9ev3t926rc

http://arxiv.org/abs/1411.7042

Webpage http://www.jcesr.org/

This presentation:

Today

Lithium-ion batteries enabled the personal electronics revolution

http://www.vox.com/2015/3/9/8178213/apple-macbook-all-batteries

Battery size and weight limits the functionality of portable electronics

Tomorrow

\$20K electric cars?

Displace gasoline cars
Replace foreign oil with
domestic electricity
Reduce energy use and
carbon emissions

Grid-scale electricity storage?

Enable widespread deployment of wind and solar

Enhance reliability, flexibility, resilience
Uncouple instantaneous generation
from instantaneous demand

Next Generation Energy Storage Needed to Transform Transportation and the Grid

Two biggest energy uses and markets

Transportation 28%

Replace gasoline with electricity

Electricity 39%
Uncouple instantaneous generation from instantaneous demand

Personal electronics < 2%

In energy terms, half the market for

In energy terms, half the market for cars and the grid is ~10x personal electronics

2013 EIA Monthly Energy Review Table 2.1 (May 2014)

The bottleneck for both transitions is inexpensive, high performance electrical energy storage

JCESR: Beyond Lithium-ion Batteries for Cars and the Grid

Vision

Transform transportation and the electricity grid with high performance, low cost energy storage

Mission

Deliver electrical energy storage with five times the energy density and one-fifth the cost of today's commercial batteries within five years

Legacies

- A library of the fundamental science of the materials and phenomena of energy storage at atomic and molecular levels
- Two prototypes, one for transportation and one for the electricity grid, that, when scaled up to manufacturing, have the potential to meet JCESR's transformative goals
- A new paradigm for battery R&D that integrates discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization

\$100/kWh

400 Wh/kg 400 Wh/L 800 W/kg 800 W/L

1000 cycles

80% DoD C/5

15 yr calendar life

EUCAR

\$100/kw/k

95% round-trip efficiency at C/5 rate 7000 cycles C/5

20 yr calendar life Safety equivalent to a natural gas turbine

JCESR Creates a New Paradigm for Battery R&D

Lithium Ion Battery Technology

JCESR's Beyond Lithium-ion Concepts

Lithium-ion "Rocking Chair"

Li⁺ cycles between anode and cathode, storing and releasing energy

Multivalent Intercalation

Replace monovalent Li⁺ with di- or tri-valent ions: Mg⁺⁺, Ca⁺⁺, Al⁺⁺⁺, . . . Double or triple capacity

Chemical Transformation

Replace intercalation with high energy chemical reaction: Li-S, Li-O, Na-S, . . .

Non-aqueous Redox Flow

Replace solid electrodes with liquid solutions or suspensions: lower cost, higher capacity, greater flexibility

Materials

Systems

Intercalant electrodes

LiFePO₄, LiMnO₂

Battery Technology Readiness Level (BTRL)

Developed collaboratively with JCI, NASA-Glenn, TARDEC

JCESR "sweet spot"

Perspective

Vision: Transform transportation and electricity grid with high

performance, low cost energy storage

Mission: Deliver electrical energy storage with five times the energy

density and one-fifth the cost

→ Beyond lithium ion

Legacies:

A library of the fundamental science of the materials and phenomena of energy storage at atomic and molecular levels

Two prototypes, one for transportation and one for the electricity grid, that, when scaled up to manufacturing, have the potential to meet JCESR's performance and cost goals

A new paradigm for battery R&D that integrates discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization

- A bold new approach to battery R&D
- Accelerate the pace of discovery and innovation
- Bring the community to the beyond lithium-ion opportunity

How Would Life be Different?

Wind and Solar Electricity

- ✓ Stable climate
- ✓ Energy security

Viable technologies on deployment path

Remaining science challenges improve efficiency lower cost

Energy Storage Enables Variable Wind and Solar Generation

Figure A.30 - 2009/10 Daily Peak and Wind Generation

http://www.windbyte.co.uk/windpower.html

One or two calm days per month
Wind stronger at night
Wind does not follow diurnal pattern

gas plant

Back up the wind farm with

battery \$ = 5x gas plant \$

Energy Storage Flatttens Generation Peaks and Valleys

Centralized, Decentralized or Distributed?

Electricity grid

Internet

Highways

Until late 1960s
Central power plants
expensive
economies of scale
unique
unreliable

1970s - 2000s
Central power plants
inexpensive
reliable
fossil, nuclear, hydro
environmental stigma

2000s – 2015
Distributed wind and solar
inexpensive
robust
mass produced

Electricity grid
inexpensive
reliable: most outages due
central plants

Electricity grid
expensive
regulatory challenge
unreliable: most outages
due to grid

Electricity grid
aging
outmoded
security target
smart

Economic, environmental, technological evolution favors distributed energy

Smart Grid: Two Way Information and Power Flows

Energy Storage: Add a Third Dimension

Breaks the century old constraint to match instantaneous generation to instantaneous demand

Distributed Energy + Smart Grid + Energy Storage → Microgrid

Microgrid Generation – Demand – Storage

- Local energy management
- Renewable generation
- Co-generation: electricity+heating
- Short delivery distance
- Reduced dependence on grid
- Service profile tailored to customer
- "Personalized" energy

Tailor service for customer

- Residence
- Neighborhood
- Office buildings
- Shopping center
- Factory
- Campus
- Military base

One size does not fit all

A DC Microgrid?

DC components

- Solar panel
- Battery
- LED lighting
- Electronics
- Everything except motors
 Short delivery distance
 Simplified, less expensive

A network of interacting microgrids

Techno-economic Modeling

Transportation

Magnesium/Metal-Oxide

Metal oxide cathode

Lithium/Sulfur

Sulfur cathode

Lithium/Metal-Oxide

Metal oxide cathode

Grid

Polysulfide suspension semi-flow

Non-aqueous redox flow

Various tailored molecules

System-to-materials performance and cost thresholds

Various tailored molecules

All have challenges that must be overcome to bridge the gap from today to \$100/kWh

Aqueous redox flow

Multivalent Chemistries

- Metal anode is required
 - >99.9% coulombic efficiency
- Specific energy >800 Wh/kg
 - Cathode only value
 - Lower g/cm³ requires higher
 Wh/kg target
- U_{ave} > 2.75 V
 - Lower voltages penalized by inactive materials

Cell Open-Circuit Voltage (V)

Key challenges

Functioning conventional electrolyte
High energy cathodes that enable transport

Transportation Energy Storage Arc

Multivalent-ion Intercalation

2014

2015

New cathode: Mn₂O₄ Mg intercalation demonstrated

STEM, XRD, NMR, XAS, EDX Kim et al, Adv Mater 27, 3377 (2015)

Electrolyte conditioning and structure → Mg stripping/deposition
Barile et al, J Phys Chem C 2014, 2015

Phenol-based All-Mg (DTBP)MgCl-MgCl₂

Pan et al Chem Comm 51, 6214 (2015)

Role of H₂O and solvent cointercalation in V₂O₅ Gautam, Chem Mater 27, 3733 (2015)

Tepavcevik ACS Nano 2015

Sprints for

- Ca++ in metal oxide
 - → Prussian Blue
- Zn++ in metal oxide
- Mg++ in MoO_{2.8}F_{0.2}
- Mg compatible CI-free electrolytes

Battery Systems

Mg

Diglyme-TFSI (DTBP)MgCl-MgCl₂

 V_2O_5 Mn_2O_4

Li-Sulfur Transportation and Grid Batteries

Appeal

- Very high theoretical specific energy (2567 Wh/kg)
- Sulfur: Naturally abundant, non-toxic, low cost
 Challenges
- Instability of Li metal → Li/electrolyte depletion
- Polysulfide (PS) shuttle mechanism: self-discharge
- Insoluble S/Li₂S → Partial active material utilization

Common to Li-S Flow and Li-S Stationary

JCESR Convergent Solutions

Cathodes that trap polysulfide's with PEO₆TFSI and other binders

Sparingly solvent electrolytes that do not solvate polysulfides: LiTFSI(ACN)₂:HFE

Protect Li anode with

Intrinsic SEIs from high concentration salts in conventional electrolytes: 4M LiFSI in DME 6000 cycles Qian et al, Nature Comm 6:6362 (2015)

ALD-deposited artificial membranes: LiAIS_x: high Li conductivity

Composite polymer membranes: PFPE-diol + $\text{Li}_2\text{S-P}_2\text{S}_5$ Flexible, high Li+ conductivity, 5V operating window, impervious to polysulfides

Toward a Non-aqueous Redox Flow Grid Battery

Three JCESR innovations

2013 Redox Organic Molecules (ROM) < 1 nm

Design organic molecules Create long chain of

Active molecules

Solvent for active molecules

Salt: mobility

Rich design space Largely unexplored Electrolyte Genome

2014 **Redox Active** Polymers (RAP) Few nm to sub-micron

active molecules

Selectively filter from nonactive counterions by size

Dense chain of active molecules

2015 Redox Active Colloids (RAC) Microns and larger

Cross-link polymers to form large spherical colloids

Shape easier to control and filter

Challenge of mixing between energy storage tanks is solved

Electrolyte Genome – Crosscutting Science

2014: 4 800 molecules

High-throughput Calculations Chemical Molecule motif design Database Results 1. Redox analysis potential 2. Solubility 3. Stability ക്കാരി 4. More focused computational study **Synthesis** 2015 and testing

meets JCESR milestone

Cheng et al, J Phys Chem Lett 6, 283 (2014)

Qu et al, Comp Mat Sci 103, 56 (2015)

2015: Solvation and Interface Reactivity

Ion pairs are common in divalent solvation shells

Anions and solvents in divalent solvation shells are
not stable at electrochemical interfaces

TFSI- and diglyme cleave on partial charge transfer

New opportunity

Design solvation shell as delivery vehicle for metal anode stripping and plating

Crosscutting theory – experiment program
Rajput et al JACS 134, 3411 (2015)

Lessons from Lithium-ion inform JCESR

20 year incubation period Simple, elegant concepts, but . . .

Complex interfering side effects

Detrimental side chemical reactions

Incompatible materials

"Murphy's Law" worst case scenario

Many (most) ideas do not work

Many strategic pivots

Balance targeted outcomes with back up alternatives

"Convergent" and "divergent" research

After 40 years, the "holy grail" of Lithium metal anodes still eludes us

Nimble strategic pivots and a balance of convergent and divergent research are essential