
ATPESC
(Argonne Training Program on Extreme-Scale Computing)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Structured Parallel Programming
James Reinders
August 1, 2016, Pheasant Run, St Charles, IL
10:45-12:00

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Knights Landing Clustering
and Memory Modes, use and
implications on the future of
architecture and memory
configurations.

Vectorization, current state of
the art thinking, use and
implications on the future of
data parallelism through
threading + SIMD instructions.

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

3

KEEP
CALM

AND
THINK

PARALLEL

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

For More Information

Structured Parallel Programming
§ Michael McCool
§ Arch Robison
§ James Reinders

Uses Cilk Plus and TBB as primary frameworks for
examples.
Appendices concisely summarize Cilk Plus
and TBB.
www.parallelbook.com
(pointers to teaching materials, ours and others!)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Parallel Patterns: Overview

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Structured Programming with Patterns
• Patterns are “best practices” for solving specific problems.
• Patterns can be used to organize your code, leading to

algorithms that are more scalable and maintainable.
• A pattern supports a particular “algorithmic structure”

with an efficient implementation.
• Good parallel programming models support a set of useful

parallel patterns with low-overhead implementations.

6
6

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Some Basic Patterns
Serial: Sequence
à Parallel: Superscalar Sequence
Serial: Iteration
à Parallel: Map, Reduction, Scan, Recurrence…

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

F = f(A);
G = g(F);
B = h(G);

A serial sequence is executed in the
exact order given:

A

B

f

g

h

(Serial) Sequence

8
8

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

F = f(A);
G = g(F);
H = h(B,G);
R = r(G);
P = p(F);
Q = q(F);
S = s(H,R);
C = t(S,P,Q);

• Tasks ordered only by data
dependencies
• Tasks can run whenever input data is

ready

Developer writes “serial” code:
A

B

C

f

g

p

q

h

r

s

t

A

B

C

f

g p q

h r

s

t

Superscalar Sequence

9
9

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

while (c) {
f();

}

The iteration pattern repeats some section of
code as long as a condition holds

(Serial) Iteration

10
10

Each iteration can depend on values computed in
any earlier iteration.

The loop can be terminated at any point based on
computations in any iteration

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

for (i = 0; i<n; ++i) {
f();

}

The iteration pattern repeats some section of
code a specific number of times

(Serial) Countable Iteration

11
11

This is the same as
i = 0;
while (i<n) {

f();
++i;

}

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Parallel “Iteration”
The serial iteration pattern actually maps to several different parallel patterns
It depends on whether and how iterations depend on each other…
Most parallel patterns arising from iteration require a fixed number of
invocations of the body, known in advance

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

•Map invokes a function on
every element of an index set.

• The index set may be abstract
or associated with the
elements of an array.

• Corresponds to “parallel
loop” where iterations are
independent.

Examples: gamma correction and
thresholding in images; color space
conversions; Monte Carlo sampling; ray
tracing.

Map

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

• Reduce combines every element in
a collection into one using an
associative operator:

x+(y+z) = (x+y)+z

• For example: reduce can be used to
find the sum or maximum of an
array.

• Vectorization may require that the
operator also be commutative:

x+y = y+xExamples: averaging of Monte Carlo
samples; convergence testing; image
comparison metrics; matrix operations.

Reduction

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

• Scan computes all partial reductions of
a collection

• Operator must be (at least) associative.
• Diagram shows one possible parallel

implementation using three-phase
strategy

A[0] = B[0] + init;
for (i=1; i<n; ++i) {
A[i] = B[i] + A[i-1];

}

Examples: random number generation, pack,
tabulated integration, time series analysis

Scan

15

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

• Geometric decomposition breaks an
input collection into sub-collections
• Partition is a special case where

sub-collections do not overlap
• Does not move data, it just provides

an alternative “view” of its
organization

Examples: JPG and other macroblock compression;
divide-and-conquer matrix multiplication;
coherency optimization for
cone-beam recon.

Geometric Decomposition/Partition

16

16

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

• Stencil applies a function to
neighbourhoods of an array.

• Neighbourhoods are given
by set of relative offsets.

• Boundary conditions need
to be considered.

Examples: image filtering including
convolution, median, anisotropic
diffusion

Stencil

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Vectorization can include
converting regular reads into
a set of shifts.

Strip-mining reuses
previously read inputs within
serialized chunks.

Implementing Stencil

18

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

• nD Stencil applies a function to
neighbourhoods of an nD array
• Neighbourhoods are given by set of

relative offsets
• Boundary conditions need to be

considered

Examples: image filtering including convolution,
median, anisotropic diffusion; simulation
including fluid flow, electromagnetic, and
financial PDE solvers, lattice QCD

nD Stencil

19
19

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

• Pipeline uses a sequence of stages
that transform a flow of data

• Some stages may retain state

• Data can be consumed and
produced incrementally: “online”

Examples: image filtering, data
compression and decompression,
signal processing

Pipeline

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Fork-Join: Efficient Nesting
• Fork-join can be nested
• Spreads cost of work distribution and

synchronization.
• This is how cilk_for, and

tbb::parallel_for are implemented.

Recursive fork-join enables high
parallelism.

21

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Parallel Patterns: Overview

22
22

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

23

KEEP
CALM

USE
TASKS

AVOID
THREADS

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Choosing a non-proprietary parallel abstraction

Use abstractions !!!

Avoid direct programming to the low level interfaces (like pthreads).

PROGRAM IN TASKS, NOT THREADS

Is OpenCL* low level? For HPC – YES.

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Choosing a non-proprietary parallel abstraction

Choose First
(limited functions)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Choosing a non-proprietary parallel abstraction

Choose First
(limited functions)

Cluster
(distributed
memory)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Choosing a non-proprietary parallel abstraction

Choose First
(limited functions)

Cluster
(distributed
memory)

Node
(shared

memory)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Choosing a non-proprietary parallel abstraction

Choose First
(limited functions)

Cluster
(distributed
memory)

Node
(shared

memory)

Up and coming
for C++

(keywords,
compilers)

Because… you
just have to

expect “more”

Affect future
C++ standards?

(2021?)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Choosing a non-proprietary parallel abstraction

Compare...
*

*

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Choosing a non-proprietary parallel abstraction

Compare...

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Choosing a non-proprietary parallel abstraction

Best options for Performance and Performance Portability

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Intel Threading Building Blocks
For TBB - we asked ourselves:

§ How should C++ be extended?
§ “templates / generic programming”

§ What do we want to solve?
§ Abstraction with good performance (scalability)
§ Abstraction that steers toward easier (less)

debugging
§ Abstraction that is readable

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Intel® Threading Building Blocks (Intel® TBB)

С++ Library for parallel programming
• Takes care of managing multitasking

Runtime library
• Scalability to available number of threads

Cross-platform
• Windows*, Linux*, Mac OS* and others

http://threadingbuildingblocks.org/

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

34

Rich Feature Set for Parallelism
Generic Parallel

Algorithms

Efficient scalable way
to exploit the power of

multi-core without
having to start from

scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to serial
containers with external locking

Task Scheduler

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow

graph

Threads

OS API
wrappers

Miscellaneous

Thread-safe timers
and exception

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with different
properties, condition variables

Flow Graph

A set of classes to
express parallelism as

a graph of compute
dependencies and/or

data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling

Thread Local Storage

Unlimited number of
thread-local variables

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

35

Rich Feature Set for Parallelism
Generic Parallel

Algorithms

Efficient scalable way
to exploit the power of

multi-core without
having to start from

scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to serial
containers with external locking

Task Scheduler

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow

graph

Threads

OS API
wrappers

Miscellaneous

Thread-safe timers
and exception

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with different
properties, condition variables

Flow Graph

A set of classes to
express parallelism as

a graph of compute
dependencies and/or

data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling

Thread Local Storage

Unlimited number of
thread-local variables

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Loop parallelization
parallel_for

parallel_reduce

- load balanced parallel execution
- fixed number of independent iterations

parallel_scan

- computes parallel prefix
y[i] = y[i-1] op x[i]

Parallel Algorithms for Streams
parallel_do

- Use for unstructured stream or pile of work

- Can add additional work to pile while running
parallel_for_each

- parallel_do without an additional work feeder

pipeline / parallel_pipeline
- Linear pipeline of stages

- Each stage can be parallel or serial in-order or
serial out-of-order.

- Uses cache efficiently

Parallel function invocation
parallel_invoke

- Parallel execution of a number of user-
specified functions

Parallel sorting
parallel_sort

Computational graph
flow::graph

- Implements dependencies between
nodes

- Pass messages between nodes

Generic Algorithms

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

37

Parallel For

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

38

tbb::parallel_for
Has several forms.

parallel_for(lower, upper, functor);

Execute functor(i) for all i Î [lower,upper)

parallel_for(lower, upper, stride, functor);

Execute functor(i) for all i Î {lower,lower+stride,lower+2*stride,...}

parallel_for(range, functor);

Execute functor(subrange) for all subrange in range

Map

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

39

tbb::parallel_for
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#define N 10

inline int Prime(int & x) {
int limit, factor = 3;
limit = (long)(sqrtf((float)x)+0.5f);
while((factor <= limit) && (x % factor))

factor ++;
x = (factor > limit ? x : 0);

}

int main (){
int a[N];
// initialize array here…
tbb::parallel_for (0, N, 1,

[&](int i){
Prime (a[i]);

});
return 0;

}

A call to a template function
parallel_for (lower, upper, stride, functor)

Task: loop body as C++ lambda expression

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

[Data, Data+N)

[Data, Data+N/2) [Data+N/2, Data+N)

[Data, Data+N/k)

[Data, Data+GrainSize)

tasks available to thieves

40

Split range...

.. recursively...

...until £ GrainSize

Recursive parallelism

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

41

Rich Feature Set for Parallelism
Generic Parallel

Algorithms

Efficient scalable way
to exploit the power of

multi-core without
having to start from

scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to serial
containers with external locking

Task Scheduler

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow

graph

Threads

OS API
wrappers

Miscellaneous

Thread-safe timers
and exception

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with different
properties, condition variables

Flow Graph

A set of classes to
express parallelism as

a graph of compute
dependencies and/or

data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling

Thread Local Storage

Unlimited number of
thread-local variables

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

The MOST popular
abstract parallelism
model for C++

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

The MOST popular
abstract parallelism
model for C++

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Sorry OpenMP

You just do not cut it.

(for C++)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Sorry OpenMP

You just do not cut it.

(for C++)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

46

The next few slides are based on
following paper from WHPCF’14:

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

47

• A vendor independent market risk analysis benchmark
• Defined by Securities Technology Analysis Center (STAC*)
• Calculate “Greeks” – sensitivity of the option price to changes in

parameters of the underlying market
• Heston option pricing model & Least Squares Monte Carlo of

Longstaff & Schwartz
• Benchmark Metrics

• Speed (GREEKS.TIME.COLD/WARM)
• Workload scalability (MAX_ASSETS, MAX_PATHS)
• Power & Space efficiency
• Quality

STAC-A2 overview (https://stacresearch.com/)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

48

TBB used on STAC-A2 Benchmark – beat OpenMP

130829 and 140507 use
identical hardware
140507 and 140814 use
identical source code
This is portable code:
no “intrinsics”
~1.45x from each HW
generation, SW change worth
at least 2 HW generations

0

1

2

3

4

5

6

7

8

9

10

September 19, 2013
IVB OpenMP
(INTC130829)

May 15, 2014 IVB
Intel TBB

(INTC140507)

September 8, 2014
HSW Intel TBB
(INTC140814)

Pe
rf

or
m

an
ce

 n
or

m
al

is
ed

 to
 J

un
26

 2
01

3
(S

N
B

O

pe
nM

P)
 IN

T
C

13
06

07
 B

ig
ge

r
is

 b
et

te
r.

Configuration details in STAC vault

1/TIME.MEAN

MAX_ASSETS

MAX_PATHS

Parallelization choices matter

OpenMP
on

Ivy Bridge

TBB
on

Ivy Bridge

TBB
on

Haswell

Higher is Better

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

49

Hold on!!!
Who is the invited
keynote speaker
for OpenMP conference
in September 2015?

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

50

OpenMP annotations work well when
§ You control the whole machine
§ You have one level of parallelism
§ You want to take low level control of scheduling, placement,…

Intel TBB tends to out perform OpenMP when…
§ You don’t know about the machine you’ll run on
§ You have many levels of parallelism (recursive, or in libraries)
§ You’re happy to let the runtime handle things

Both are portable: Intel TBB does not require compiler support.
Both are reasonably performance portable in practice, although
TBB is composable – which can be a significant advantage in perf. port.

How did Intel TBB beat OpenMP
annotations on STAC-A2?

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

51

I was having a little fun… to make a point.

OpenMP is very popular – and works very well on technical
applications (like HPC) with C and Fortran.
But, for C++… TBB is better.

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Nested parallelism is
important to exploit.

Trending: more and more so.

52

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

53

OpenMP Nested Parallelism: HOT TEAMS

NESTED PARALLEL:

By DEFAULT, any parallel worker that
executes a parallel construct does that
work inside the same worker thread.

PRO: controlled memory footprint (including stack space)

CON: no load balancing

OpenMP worker threads –
created ONCE PER PROGRAM

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

54

OpenMP Nested Parallelism: HOT TEAMS
OpenMP worker threads –
created ONCE PER PROGRAM

NESTED PARALLEL:

TURN ON NESTING (no code changes – done with
environment variables)

PRO: load balancing

CON: high overhead, potential oversubscription (runaway
memory/stack usage being the key issue)

Additional level(s)
created and

released repeatedly

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

55

Volume 2: August 2015

“High
Performance
Parallelism
Pearls
Volume 2”

Foreword
Introduction
Numerical	Weather	Prediction	Optimization
WRF	Goddard	Microphysics	Scheme	Optimization
Pairwise	DNA	Sequence	Alignment	Optimization
Accelerated	Structural	Bioinformatics	for	Drug	Discovery						
Amber	PME	Molecular	Dynamics	Optimization
Low	Latency	Solutions	for	Financial	Services
Parallel	Numerical	Methods	in	Finance					
Wilson	Dslash	Kernel	From	Lattice	QCD	Optimization

Cosmic	Microwave	Background	Analysis:	Nested	Parallelism	In	Practice			
Visual	Search	Optimization
Radio	Frequency	Ray	Tracing
Exploring	Use	of	the	Reserved	Core
High	Performance	Python	Offloading	
Fast	Matrix	Computations	on	Asynchronous	Streams		
MPI-3	Shared	Memory	Programming	Introduction
Coarse-Grain	OpenMP	for	Scalable	Hybrid	Parallelism			
Exploiting	Multilevel	Parallelism	with	OpenMP
OpenCL:	There	and	Back	Again
OpenMP	vs.	OpenCL:	Difference	in	Performance?							
Prefetch	Tuning	Optimizations
SIMD	functions	via	OpenMP
Vectorization	Advice			
Portable	Explicit	Vectorization	Intrinsics
Power	Analysis	for	Applications	and	Data	Centers

Table of Contents…

http:// lotsofcores.com

73 expert contributors
23 affiliations
10 countries
24 contributed chapters

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

56

OpenMP Nested Parallelism: HOT TEAMS
Chapter	18:	Exploiting	Multilevel	Parallelism	with	OpenMP

18

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

57

OpenMP Nested Parallelism: HOT TEAMS
Chapter 10: Cosmic	Microwave	Background	Analysis:	Nested	Parallelism	In	Practice			

10

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

58

KEEP
CALM

AND
ASK SOME

QUESTIONS

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

James Reinders. Parallel Programming Enthusiast
James has been involved in multiple engineering, research and educational efforts to increase use of parallel
programming throughout the industry. James worked 10,001 days as an Intel employee 1989-2016, and
contributed to numerous projects including the world's first TeraFLOP/s supercomputer (ASCI Red), first 3
TeraFLOP/s supercomputer (ASCI Red upgrade), the world's first TeraFLOP/s microprocessor (Intel® Xeon
Phi™ coprocessor) and the world's first 3 TeraFLOP/s microprocessor (Intel® Xeon Phi™ Processor).
James been an author on numerous technical books, including VTune™ Performance Analyzer Essentials
(Intel Press, 2005),
Intel® Threading Building Blocks (O'Reilly Media, 2007), Structured Parallel Programming (Morgan
Kaufmann, 2012), Intel® Xeon Phi™ Coprocessor High Performance Programming (Morgan Kaufmann,
2013), Multithreading for Visual Effects (A K Peters/CRC Press, 2014),
High Performance Parallelism Pearls Volume 1 (Morgan Kaufmann, Nov. 2014), High Performance
Parallelism Pearls Volume 2 (Morgan Kaufmann, Aug. 2015), and Intel® Xeon Phi™ Processor High
Performance Programming - Knights Landing Edition (Morgan Kaufmann, 2016).

