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Knights Landing Clustering 
and Memory Modes, use and 
implications on the future of 
architecture and memory 
configurations.

Vectorization, current state of 
the art thinking, use and 
implications on the future of 
data parallelism through 
threading + SIMD instructions.
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KEEP
CALM

AND
THINK

PARALLEL
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For More Information

Structured Parallel Programming
§ Michael McCool
§ Arch Robison
§ James Reinders

Uses Cilk Plus and TBB as primary frameworks for 
examples.
Appendices concisely summarize Cilk Plus 
and TBB.
www.parallelbook.com
(pointers to teaching materials, ours and others!)
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Parallel Patterns: Overview
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Structured Programming with Patterns
• Patterns are “best practices” for solving specific problems.
• Patterns can be used to organize your code, leading to 

algorithms that are more scalable and maintainable.
• A pattern supports a particular “algorithmic structure” 

with an efficient implementation.  
• Good parallel programming models support a set of useful 

parallel patterns with low-overhead implementations.

6
6
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Some Basic Patterns
Serial: Sequence
à Parallel: Superscalar Sequence
Serial: Iteration
à Parallel: Map, Reduction, Scan, Recurrence…
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F = f(A);
G = g(F);
B = h(G);

A serial sequence is executed in the 
exact order given:

A

B

f

g

h

(Serial) Sequence

8
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F = f(A);
G = g(F);
H = h(B,G);
R = r(G);
P = p(F);
Q = q(F);
S = s(H,R);
C = t(S,P,Q);

• Tasks ordered only by data 
dependencies
• Tasks can run whenever input data is 

ready

Developer writes “serial” code:
A

B

C

f

g

p

q

h

r

s

t

A

B

C

f

g p q

h r

s

t

Superscalar Sequence

9
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while (c) {
f();

}

The iteration pattern repeats some section of 
code as long as a condition holds

(Serial) Iteration

10
10

Each iteration can depend on values computed in 
any earlier iteration.

The loop can be terminated at any point based on 
computations in any iteration
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for (i = 0; i<n; ++i) {
f();

}

The iteration pattern repeats some section of 
code a specific number of times

(Serial) Countable Iteration

11
11

This is the same as
i = 0;
while (i<n) {

f();
++i;

}
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Parallel “Iteration”
The serial iteration pattern actually maps to several different parallel patterns
It depends on whether and how iterations depend on each other…
Most parallel patterns arising from iteration require a fixed number of 
invocations of the body, known in advance
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•Map invokes a function on 
every element of an index set.

• The index set may be abstract 
or associated with the 
elements of an array.

• Corresponds to “parallel 
loop” where iterations are 
independent.

Examples: gamma correction and 
thresholding in images; color space 
conversions; Monte Carlo sampling; ray 
tracing.

Map
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• Reduce combines every element in 
a collection into one using an 
associative operator:

x+(y+z) = (x+y)+z

• For example: reduce can be used to 
find the sum or maximum of an 
array.

• Vectorization may require that the 
operator also be commutative:

x+y = y+xExamples: averaging of Monte Carlo 
samples; convergence testing; image 
comparison metrics; matrix operations.

Reduction
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• Scan computes all partial reductions of 
a collection

• Operator must be (at least) associative.
• Diagram shows one possible parallel 

implementation using three-phase 
strategy

A[0] = B[0] + init;
for (i=1; i<n; ++i) {
A[i] = B[i] + A[i-1];

}

Examples: random number generation, pack, 
tabulated integration, time series analysis

Scan

15
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• Geometric decomposition breaks an 
input collection into sub-collections
• Partition is a special case where 

sub-collections do not overlap
• Does not move data, it just provides 

an alternative “view” of its 
organization

Examples: JPG and other macroblock compression; 
divide-and-conquer matrix multiplication; 
coherency optimization for 
cone-beam recon.

Geometric Decomposition/Partition

16

16
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• Stencil applies a function to 
neighbourhoods of an array.

• Neighbourhoods are given 
by set of relative offsets.

• Boundary conditions need 
to be considered.

Examples: image filtering including 
convolution, median, anisotropic 
diffusion

Stencil
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Vectorization can include 
converting regular reads into 
a set of shifts.

Strip-mining reuses 
previously read inputs within 
serialized chunks.

Implementing Stencil

18
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• nD Stencil applies a function to 
neighbourhoods of an nD array
• Neighbourhoods are given by set of 

relative offsets
• Boundary conditions need to be 

considered

Examples: image filtering including convolution, 
median, anisotropic diffusion; simulation 
including fluid flow, electromagnetic, and 
financial PDE solvers, lattice QCD

nD Stencil

19
19
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• Pipeline uses a sequence of stages 
that transform a flow of data

• Some stages may retain state

• Data can be consumed and 
produced incrementally: “online”

Examples: image filtering, data 
compression and decompression, 
signal processing

Pipeline
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Fork-Join: Efficient Nesting
• Fork-join can be nested
• Spreads cost of work distribution and 

synchronization.
• This is how cilk_for, and 

tbb::parallel_for are implemented.

Recursive fork-join enables high 
parallelism.

21
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Parallel Patterns: Overview

22
22
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KEEP
CALM

USE
TASKS

AVOID
THREADS
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Choosing a non-proprietary parallel abstraction

Use abstractions !!!

Avoid direct programming to the low level interfaces (like pthreads).

PROGRAM IN TASKS, NOT THREADS

Is OpenCL* low level?  For HPC – YES. 
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Choosing a non-proprietary parallel abstraction

Choose First
(limited functions)
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Choosing a non-proprietary parallel abstraction

Choose First
(limited functions)

Cluster
(distributed
memory)
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Choosing a non-proprietary parallel abstraction

Choose First
(limited functions)

Cluster
(distributed
memory)

Node
(shared

memory)
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Choosing a non-proprietary parallel abstraction

Choose First
(limited functions)

Cluster
(distributed
memory)

Node
(shared

memory)

Up and coming
for C++

(keywords,
compilers)

Because… you
just have to

expect “more”

Affect future
C++ standards? 

(2021?)
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Choosing a non-proprietary parallel abstraction

Compare...
*

*
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Choosing a non-proprietary parallel abstraction

Compare...
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Choosing a non-proprietary parallel abstraction

Best options for Performance and Performance Portability
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Intel Threading Building Blocks
For TBB - we asked ourselves:

§ How should C++ be extended?
§ “templates / generic programming”

§ What do we want to solve?
§ Abstraction with good performance (scalability)
§ Abstraction that steers toward easier (less) 

debugging
§ Abstraction that is readable
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Intel® Threading Building Blocks (Intel® TBB)

С++ Library for parallel programming
• Takes care of managing multitasking

Runtime library
• Scalability to available number of threads

Cross-platform
• Windows*, Linux*, Mac OS* and others

http://threadingbuildingblocks.org/
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Rich Feature Set for Parallelism
Generic Parallel 

Algorithms

Efficient scalable way 
to exploit the power of 

multi-core without 
having to start from 

scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to serial 
containers with external locking

Task Scheduler

Sophisticated work scheduling engine that 
empowers parallel algorithms and the flow 

graph

Threads

OS API 
wrappers

Miscellaneous

Thread-safe timers 
and exception 

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with different 
properties, condition variables

Flow Graph

A set of classes to 
express parallelism as 

a graph of compute 
dependencies and/or 

data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling 

Thread Local Storage

Unlimited number of 
thread-local variables
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Loop parallelization
parallel_for

parallel_reduce

- load balanced parallel execution
- fixed number of independent iterations

parallel_scan

- computes parallel prefix 
y[i] = y[i-1] op x[i]

Parallel Algorithms for Streams
parallel_do

- Use for unstructured stream or pile of work

- Can add additional work to pile while running
parallel_for_each

- parallel_do without an additional work feeder

pipeline / parallel_pipeline
- Linear pipeline of stages 

- Each stage can be parallel or serial in-order or 
serial out-of-order. 

- Uses cache efficiently

Parallel function invocation
parallel_invoke

- Parallel execution of a number of user-
specified functions

Parallel sorting 
parallel_sort

Computational graph 
flow::graph

- Implements dependencies between 
nodes

- Pass messages between nodes

Generic Algorithms
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Parallel For
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tbb::parallel_for
Has several forms.

parallel_for( lower, upper, functor );

Execute functor(i) for all i Î [lower,upper)

parallel_for( lower, upper, stride, functor );

Execute functor(i) for all i Î {lower,lower+stride,lower+2*stride,...}

parallel_for( range, functor );

Execute functor(subrange) for all subrange in range

Map
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tbb::parallel_for
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#define N 10

inline int Prime(int & x) {
int limit, factor = 3;
limit = (long)(sqrtf((float)x)+0.5f);
while( (factor <= limit) && (x % factor))

factor ++;
x = (factor > limit ? x : 0);

}

int main (){
int a[N];
// initialize array here…
tbb::parallel_for (0, N, 1,

[&](int i){
Prime (a[i]);

});
return 0;

}

A call to a template function 
parallel_for (lower, upper, stride, functor)

Task: loop body as C++ lambda expression
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[Data, Data+N)

[Data, Data+N/2) [Data+N/2, Data+N)

[Data, Data+N/k)

[Data, Data+GrainSize)

tasks available to thieves

40

Split range...

.. recursively...

...until £ GrainSize

Recursive parallelism
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Rich Feature Set for Parallelism
Generic Parallel 

Algorithms

Efficient scalable way 
to exploit the power of 

multi-core without 
having to start from 

scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to serial 
containers with external locking

Task Scheduler
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Threads

OS API 
wrappers
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Thread-safe timers 
and exception 

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with different 
properties, condition variables

Flow Graph

A set of classes to 
express parallelism as 

a graph of compute 
dependencies and/or 

data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling 

Thread Local Storage

Unlimited number of 
thread-local variables



© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. 
*Other names and brands may be claimed as the property of others.

The MOST popular
abstract parallelism
model for C++



© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. 
*Other names and brands may be claimed as the property of others.

The MOST popular
abstract parallelism
model for C++
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Sorry OpenMP

You just do not cut it.

(for C++)
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Sorry OpenMP

You just do not cut it.

(for C++)
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The next few slides are based on 
following paper from WHPCF’14:
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• A vendor independent market risk analysis benchmark
• Defined by Securities Technology Analysis Center (STAC*)
• Calculate “Greeks” – sensitivity of the option price to changes in 

parameters of the underlying market
• Heston option pricing model & Least Squares Monte Carlo of 

Longstaff & Schwartz
• Benchmark Metrics

• Speed (GREEKS.TIME.COLD/WARM)
• Workload scalability ( MAX_ASSETS, MAX_PATHS)
• Power & Space efficiency
• Quality

STAC-A2 overview (https://stacresearch.com/)
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TBB used on STAC-A2 Benchmark – beat OpenMP

130829 and 140507 use 
identical hardware
140507 and 140814 use 
identical source code
This is portable code:
no “intrinsics”
~1.45x from each HW 
generation, SW change worth 
at least 2 HW generations

0
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September 19, 2013 
IVB OpenMP 
(INTC130829)

May 15, 2014 IVB 
Intel TBB 

(INTC140507)

September 8, 2014 
HSW Intel TBB 
(INTC140814)
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Configuration details in STAC vault

1/TIME.MEAN

MAX_ASSETS

MAX_PATHS

Parallelization choices matter

OpenMP
on

Ivy Bridge

TBB
on

Ivy Bridge

TBB
on

Haswell

Higher is Better
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Hold on!!!
Who is the invited 
keynote speaker
for OpenMP conference
in September 2015?



© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. 
*Other names and brands may be claimed as the property of others.

50

OpenMP annotations work well when
§ You control the whole machine
§ You have one level of parallelism
§ You want to take low level control of scheduling, placement,…

Intel TBB tends to out perform OpenMP when…
§ You don’t know about the machine you’ll run on
§ You have many levels of parallelism (recursive, or in libraries)
§ You’re happy to let the runtime handle things

Both are portable: Intel TBB does not require compiler support.
Both are reasonably performance portable in practice, although
TBB is composable – which can be a significant advantage in perf. port.

How did Intel TBB beat OpenMP 
annotations on STAC-A2?
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I was having a little fun… to make a point.

OpenMP is very popular – and works very well on technical 
applications (like HPC) with C and Fortran.
But, for C++… TBB is better.
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Nested parallelism is
important to exploit.

Trending: more and more so.

52
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OpenMP Nested Parallelism: HOT TEAMS

NESTED PARALLEL:

By DEFAULT, any parallel worker that
executes a parallel construct does that
work inside the same worker thread.

PRO: controlled memory footprint (including stack space)

CON: no load balancing

OpenMP worker threads –
created ONCE PER PROGRAM
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OpenMP Nested Parallelism: HOT TEAMS
OpenMP worker threads –
created ONCE PER PROGRAM

NESTED PARALLEL:

TURN ON NESTING (no code changes – done with 
environment variables)

PRO: load balancing

CON: high overhead, potential oversubscription (runaway
memory/stack usage being the key issue)

Additional level(s)
created and

released repeatedly
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OpenMP Nested Parallelism: HOT TEAMS
Chapter	18:	Exploiting	Multilevel	Parallelism	with	OpenMP
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KEEP
CALM

AND
ASK SOME

QUESTIONS
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