ATPESC

(Argonne Training Program on Extreme-Scale Computing)

Structured Parallel Programming

James-Reinders

August 1, 2016, Pheasant Run, St Charles, IL

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other counti .
*Other names and brands may be claimed as the property of others.

9:30 am - 10:15 am Presentation: Computer Architecture Essentials
Knights Landing Clustering
and Memory Modes, use and
Lecturer Room implications on the future of
architecture and memory
James Reinders, Recently Semi-retired, Former configurations.
Intel Director Vectorization, current state of
the art thinking, use and
implications on the future of

10:45 am - 12:00 pm Presentation: Structured Parallel Programming data parallelism through
threading + SIMD instructions.

Lecturer Room

James Reinders, Recently Semi-retired, Former
Intel Director

1:00 pm - 1:45 pm Presentation: Performance: SIMD, Vectorization and Performance Tuning

Lecturer Room

James Reinders, Recently Semi-retired, Former
Intel Director

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

KEEP
ALM

AND
THINK
PARALLEL

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Structured Parallel Programming

" Michael McCool Structured Parallel
= Arch Robison Programming

= James Reinders

Uses Cilk Plus and TBB as primary frameworks for
examples.

Appendices concisely summarize Cilk Plus
and TBB.

www.parallelbook.com

(pointers to teaching materials, ours and others!)

Parallel Patterns: Overview

Superscalar sequence Map Geometric decomposition Gather Reduction

O 01234567 Cooooooo
& @%@ :2;.5:..[00....] & =
© ooolpoooo| o

55855558 csscsmocmesses . O
Q

Recurrence 1

G0
o0
o0
G0
o0
o0
o0

Category Reduction

Speculative selection

s

Partition

'ﬂ
o
e
=
I
o
5

Pipeline

:

Structured Parallel
Programming

m

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Structured Programming with Patterns

* Patterns are “best practices” for solving specific problems.

* Patterns can be used to organize your code, leading to
algorithms that are more scalable and maintainable.

* A pattern supports a particular “algorithmic structure”
with an efficient implementation.

* Good parallel programming models support a set of useful
parallel patterns with low-overhead implementations.

>

Some Basic Patterns

Serial: Sequence

-> Parallel: Superscalar Sequence

Serial: Iteration

-> Parallel: Map, Reduction, Scan, Recurrence...

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

(Serial) Sequence

A serial sequence 1s executed 1n the
exact order given:

F = f£(A);

G = g(F);

B = h(G);

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Superscalar Sequence

Developer writes “serial” code:
£(A);
: : g(F);
h(B,G);
r(G) ;
p(F);
q(F);
s (H,R) ;
= t(S,P,Q);

QnoOo vxITmaH
I

* Tasks ordered only by data
dependencies
= Tasks can run whenever input data is
ready

r—
.

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. : =

(Serial) Iteration

The iteration pattern repeats some section of
code as long as a condition holds

while (c) {
£();
}
Each iteration can depend on values computed in
v any earlier iteration.

The loop can be terminated at any point based on
computations in any iteration

10

(Serial) Countable Iteration

The iteration pattern repeats some section of
code a specific number of times

for (i = 0; i<n; ++i) {
£();
}

This 1s the same as

i=20;
v while (i<n) {
£();
++1;

11

>

Parallel ““Iteration”

The serial iteration pattern actually maps to several different parallel patterns
It depends on whether and how iterations depend on each other...

Most parallel patterns arising from iteration require a fixed number of
invocations of the body, known in advance

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Examples: gamma correction and
thresholding in images; color space

conversions; Monte Carlo sampling; ray
tracing.

...............

........

* Map invokes a function on

every element of an index set.

* The index set may be abstract
or associated with the
clements of an array.

* Corresponds to “parallel
loop” where iterations are
independent.

FTTTH B s cemmme yo oo e
TR LSRR L
RN RO

i
ut

Reduction * Reduce combines every element in
a collection into one using an

[@]®) OO0 0O 0 associative operator:

XHy+2) = (xHy)

* For example: reduce can be used to
find the sum or maximum of an
array.

* Vectorization may require that the
operator also be commutative:

Examples: averaging of Monte Carlo

L. Xty = y+tx
samples; convergence testing; image
comparison metrics; matrix operations.
A LU L R e TEL m T R T | L S
K10 palg, Janies R righ ; , Intel , VT Corporation in the U.S. 1 ui
_oin il i it 1‘3“ y A i AR — it

elelele)

()
)

o000 o000 oooo 000y

Examples: random number generation, pack,
tabulated integration, time series analysis

» Scan computes all partial reductions of
a collection

A[0] = B[0] + init;
for (i=1; i<n; ++i) {
A[i] = B[i] + A[i-1];
}

* Operator must be (at least) associative.

* Diagram shows one possible parallel
implementation using three-phase
strategy

" ENs .
orporation in the U.S. tries. e A
Witiaet |0 BN e R ui
il =3 Tareanual

Geometric Decomposition/Partition

OCO0O00O0O0O00O0O . N
O0000000 * Geometric decomposition breaks an
OO00000o0Oo0O input collection into sub-collections
O000O000o00o0o Partition 1s a special case where
OO0O000Oo00Oo0Oo sub-collections do not overlap
OO0O0O0OO0cOoOOo * Does not move data, it just provides
OO0 0o0OoOoo an alternative “view” of its
O00g0o0oao organization

Examples: JPG and other macroblock compression;
divide-and-conquer matrix multiplication;
coherency optimization for

cone-beam recon.

yeaniedd 4§ ‘2»‘ T

Stencil

N

* Stencil applies a function to
neighbourhoods of an array.

* Neighbourhoods are given
by set of relative offsets.

* Boundary conditions need
to be considered.

Examples: image filtering including

convolution, median, anisotropic
diffusion

a8 i W —
_EAT prias RS Corporation in the U.S.
u:lw T ﬁ?ﬁ?ﬁi .};}:&“ "....'...‘...". e

Implementing Stencil

s(@lslslsl=l=I=lN o000 00 (00000000
Bu By B Bu Ba B B Be TITTITIT Y T

() () ()
OO0O0O0o00ooonoo Vectorization can include
O0000O0oO0Ooo converting regular reads into
O000000O0Oo a set of shifts.
O0O000000
O0O0OO0COoO00O0O00O Strip-mining reuses
OO0OO0COoO00OoO00O previously read inputs within
00000000 serialized chunks.
0000000

S a Q
n = U.o.
..........

nD Stencil

O000o0o000oo * nD Stencil applies a function to
O000O0O0OOoo neighbourhoods of an nD array
OO0 * Neighbourhoods are given by set of
OO0OO0OO«)EE) OO0 relative offsets

OO0 O0o0Ooo * Boundary conditions need to be
OCOOCOoooOooOoo considered
O0O000000O

o000 000

Examples: image filtering including convolution,
median, anisotropic diffusion; simulation

including fluid flow, electromagnetic, and
financial PDE solvers, lattice QCD

......

nnnnnnnn

........

) Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Co
tel <, VTune, Xeon, and Xeon Phi are trademarks of Intel Corpor

...............

llllllllllll

e U.o.

prs)) R 1 | R e B TRt 111 R L

LU P NS ST s AEeL VT T N

Pipeline

* Pipeline uses a sequence of stages
that transform a flow of data

* Some stages may retain state

* Data can be consumed and
produced incrementally: “online”

Examples: image filtering, data

compression and decompression,
signal processing

g naa‘ o —: :: . : -: : .".."".""'3:..2 :"".::';"'::.:.:: —" i
e ‘ igh s

T T BRBEE TS ey
T i ghi 8BRS '
Corporation in the U.S.

M

‘ AL ‘ rs, bl Thbitet | M e) Baes
= R LL il i W ,'&ﬁh\ nittil , 1da fLHHTIRCEY 5.3 -

y

Fork-Join: Efficient Nesting

* Fork-join can be nested

& Spreads cost of work distribution and

synchronization.

This 1s how cilk_for, and
tbb::parallel for are implemented.

Recursive fork-join enables high
parallelism.

= St

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon and Xeon Phl are trademarks of Intel Corporation in the U.S. and/or. other cotntries. £ 2
*Other names and brands may be claimed as the property of others B = o i __...-—-f-‘"‘
v -1 t -

Parallel Patterns: Overview

2

OO
G0
G0
G0
G0
G0
G0

Geometric decomposition Gather Reduction

) 0125456 7 00000000
i [EEEEEEE isissssieesees (SRope
& [BEeS e ..

Stencil
@%@ }%%;{{oo[......] o ®
01 2 3 4 5 6 7 o

Category Reduction Recurrence 1

Superscalar sequence

Speculative selection

=

4

Partition

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

KEEP
ALM

USE

ASK

AVOID

THREADS

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

-

Choosing a non-proprietary parallel abstraction

non-proprietary [BLAS, FFTW MPI OpenMP* TBB Cilk™ Plus
prog. lang. Fortran, C, C++ |Fortran, C, C++ (FortranorC C++ C++

Use abstractions !!!
Avoid direct programming to the low level interfaces (like pthreads).
PROGRAM IN TASKS, NOT THREADS

Is OpenCL* low level? For HPC — YES.

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

-

Choosing a non-proprietary parallel abstraction

non-proprietary [BLAS, FFTW MPI OpenMP* TBB Cilk™ Plus
prog. lang. Fortran, C, C++ |Fortran, C, C++ (FortranorC C++ C++

Choose First
(limited functions)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

-

Choosing a non-proprietary parallel abstraction

non-proprietary [BLAS, FFTW MPI OpenMP* TBB Cilk™ Plus
prog. lang. Fortran, C, C++ |Fortran, C, C++ (FortranorC C++ C++

11

Choose First Cluster
(limited functions) (distributed
memory)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

.

Choosing a non-proprietary parallel abstraction

non-proprietary BLAS, FFTW MPI OpenMP* TBB Cilk™ Plus
prog. lang. Fortran, C, C++ [Fortran, C, C++ [FortranorC C++ C++
Choose First Cluster Node
(limited functions) (distributed (shared
memory) memory)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

.

Choosing a non-proprietary parallel abstraction

non-proprietary | BLAS, FFTW MPI OpenMP* TBB Cilk™ Plus
prog. lang. Fortran, C, C++ |Fortran, C, C++ |FortranorC C++ C++
Up and coming
for C++
(keywords,
compilers)
Choose First Cluster Node Because... you
. . . just have to
(limited functions) (distributed (shared expect “more”
memory) memory)
Affect future
C++ standards?
(2021?)

=

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. =

Choosing a non-proprietary parallel abstraction

non-proprietary |BLAS, FFTW MPI OpenMP* TBB Cilk™ Plus
prog. lang. Fortran, C, C++ [Fortran, C, C++ [FortranorC C++ C++
implemer-1ted vendor libraries |many in compiler portable in compiler
standard open interfaces open interfaces OpenMP standard (1997-) |open source (2007, Intel) |open interfaces (MIT, Intel)
supported by [most vendors open src & vendors |most compilers ported most everywhere |gcc and Intel (llvm future)
Compare...

proprietary NVidia CUDA NVidia OpenACC |[Intel LEO

purpose data parallel |offload offload

target (perf.) |NVidia GPUs |NVidia GPUs portable

Lalternative OpenCL* OpenMP 4.0 OpenMP 4.0)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other colintries.

*Other names and brands may be claimed as the property of others.

Choosing a non-proprietary parallel abstraction

.

non-proprietary |BLAS, FFTW MPI OpenMP* TBB Cilk™ Plus
prog. lang. Fortran, C, C++ [Fortran, C, C++ [FortranorC C++ C++
implemer-1ted vendor libraries |many in compiler portable in compiler
standard open interfaces open interfaces OpenMP standard (1997-) |open source (2007, Intel) |open interfaces (MIT, Intel)
supported by [most vendors open src & vendors |most compilers ported most everywhere |gcc and Intel (llvm future)
Compare...

proprietary

purpose

target (perf.)

alternative |Opé MP40

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Choosing a non-proprietary parallel abstraction

<

non-proprietary | BLAS, FFTW MPI OpenMP* TBB Cilk™ Plus

prog. lang. Fortran, C, C++ [Fortran, C, C++ [FortranorC C++ C++

implemented |vendor libraries |many in compiler portable in compiler

standard open interfaces open interfaces OpenMP standard (1997-) |open source (2007, Intel) |open interfaces (MIT, Intel)
supported by |most vendors open src & vendors |most compilers ported most everywhere |gcc and Intel (llvm future)
composable? [usually YES NO YES YES

memory shared/distributed |distributed shared (in implementations) | shared memory shared memory
tasks YES YES limited keywords, TBB
explicit SIMD YES (OpenMP 4.0: SIMD) :Isfez:\’:;"z:gﬁr‘;’l’js f:j;(’:’:zs keywords

offload YES (OpenMP 4.0: SIMD) |use Cilk Plus or OpenMP |keywords

Best options for Performance and Performance Portability

*Other names and brands mapre claimed as the propertﬁpf others

¥

- e

. "]
© 2016, James Randers All rights reserved. Intel the {'nt'eTIolgo Intel Inside, Cilk, VTune 'Xﬂ:on and Xeon Phi are trademarks of Intel Corpor: tlon in the [VASH a\ngm};me-'cbn‘ﬁ'fﬁes.
' L3

"-——/T/ ;

For TBB - we asked ourselves:
= How should C++ be extended?

= “templates / generic programming”

= What do we want to solve?

= Abstraction with good performance (scalability)

= Abstraction that steers toward easier (less)
debugging

m Abstraction that 1s readable

=

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other colintries.

*Other names and brands may be claimed as the property of others. : =

Intel® Threading Building Blocks (Intel® TBB) w

. b e —— e
C ++ L]_bra,ry for p aral lel prO grammlng Outfitting C++ for Multi-core Processor Parallelism

* Takes care of managing multitasking

Runtime library

 Scalability to available number of threads

v
Cross-platform

* Windows*, Linux*, Mac OS* and others

" Tntel

Threading
Building Blocks

http://threadingbuildingblocks.org/

James Reinders
O’REILLY. Foreword by .'IIv.muth-r Stepernon

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Generic Parallel

Algorithms

Efficient scalable way
to exploit the power of
multi-core without
having to start from
scratch.

Rich Feature Set for Parallelism

Flow Graph

A set of classes to
express parallelism as
a graph of compute
dependencies and/or
data flow

Parallel algorithms and data structures

Concurrent Containers

Concurrent access, and a scalable alternative to serial
containers with external locking

Atomic operations, a variety of mutexes with different
properties, condition variables

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow
graph

OS API
wrappers

Thread-safe timers
and exception
classes

Unlimited number of
thread-local variables

Scalable memory manager and false-sharing free allocators

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

. .
Rich Feature Set for Parallelism Thveads and snchvonization

Memory allocation and task scheduling

Generic Parallel Flow Graph Concurrent Containers

AVEIR I Concurrent access, and a scalable alternative to serial
A set of classes to containers with external locking

express parallelism as
a graph of compute

dependencies and/or

data flow Atomic operations, a variety of mutexes with different
properties, condition variables

Efficient scalable way
to exploit the power of
multi-core without
having to start from
scratch.

Synchronization Primitives

Task Scheduler Thread Local Storage Threads Miscellaneous
Sophisticated work scheduling engine that Unlimited number of OS API Thread-safe timers
thread-local variables wrappers and exception

empowers parallel algorithms and the flow
graph

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Generic Algorithms

Loop parallelization Parallel Algorithms for Streams

parallel_for parallel_do

parallel_reduce - Use for unstructured stream or pile of work

- load balanced parallel execution - Can add additional work to pile while running

- fixed number of independent iterations parallel for_cach

parallel_scan - parallel do without an additional work feeder

- computes parallel prefix pipeline / parallel_pipeline

yIil = y[i-1] op x[i] - Linear pipeline of stages

- Each stage can be parallel or serial in-order or

Parallel sorting serial out-of-order.
parallel_sort - Uses cache efficiently
Computational graph]
Parallel function invocation flow::graph
parallel_invoke - Implements dependencies between
- Parallel execution of a number of user- nodes
specified functions - Pass messages between nodes

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Parallel For

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

tbb::parallel for , EEEEEs

(@le]ele]elsle]s)

Has several forms.

parallel_for(lower, upper, functor);

parallel for(lower, upper, stride, functor);

parallel_for(range, functor);

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

tbb::parallel for A

| #1nclude <tbb/blocked _range.h>
| #include <tbb/parallel for.h>
| #define N 10

inline int Prime(int & x) {
int limit, factor = 3;
limit = (long)(sqrtf((float)x)+0.5f);
while((factor <= 1limit) && (x % factor))
factor ++;
= (factor > limit ? x : 9);

}
int main (){
int a[N]; .
;? ingtialize array here.. A call to a template function
tbb: :parallel_for (0, N, 1, < parallel_for (lower, upper, stride, functor)
[&](int i){ -
3 Prime (a[il); % Task: loop body as C++ lambda expression
return 0;

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

-

Recursive parallelism

[Data, Data+N)

Split range... J l
! | [Data, Data+N/2)

. recursively... l

[Data, Data+N/k);"

...until < GrainSize ‘

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Generic Parallel

Algorithms

Efficient scalable way
to exploit the power of
multi-core without
having to start from
scratch.

Rich Feature Set for Parallelism

Flow Graph

A set of classes to
express parallelism as
a graph of compute
dependencies and/or
data flow

Parallel algorithms and data structures

Concurrent Containers

Concurrent access, and a scalable alternative to serial
containers with external locking

Atomic operations, a variety of mutexes with different
properties, condition variables

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow
graph

OS API
wrappers

Thread-safe timers
and exception
classes

Unlimited number of
thread-local variables

Scalable memory manager and false-sharing free allocators

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 201¢

*Other names aﬁ‘d brands may be claimed as the property of others. : —

1 -C ! 3 I(UU”('I'.\'"
h "“l ore 'UL(’\\UI

Outfitting C++ for

The MOST popular
abstract parallelism
model for C++

James Reinders

A~
Foreword by Alexander Stepant

—els. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

[

-

Outfitting €

The MOST popular
abstract parallelism
model for C++

Imm s Reinders
IOt
Foreword by ¢ Alexander Stefx e

rE=ER
*Other names and brands may be claimed as the property of others : =

Sorry OpenMP
ou just do not cut 1it.

(for C++)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

The next few slides are based on A
following paper from WHPCF’14:

STAC-A2 on Intel Architecture:
From Scalar Code to
Heterogeneous Application

Evgeny Fiksman Sania Salahuddin

evgeny.fiksman@intel.com sania.salahudin@intel.com

SC'14, New Orleans, November 16th, 2014

STAC'A2 OV@I’VIGW (https://stacresearch.com/)

A vendor independent market risk analysis benchmark
Defined by Securities Technology Analysis Center (STAC*)

Calculate “Greeks” — sensitivity of the option price to changes in
parameters of the underlying market

Heston option pricing model & Least Squares Monte Carlo of
Longstaff & Schwartz

Benchmark Metrics
Speed (GREEKS. TIME.COLD/WARM)
Workload scalability (MAX ASSETS, MAX PATHS)

Power & Space efficiency
Quality

A

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

TBB used on STAC-A2 Benchmark — beat OpenMP W

130829 and 140507 use Higher is Better

. . m 10 TBB
identical hardware G5 o TBB on
g E g on Haswell
140507 and 140814 use Sz Ivy Bridge = 1/TIME.MEAN
identical source code L * MAX_ASSETS
. . < g i I
This is portable code: D OpenMP " MAX_PATHS
. . . = YT on

no “intrinsics” EE 31— Ivy Bridge
~1.45x from each HW g’

. £ 1]
generation, SW change worth §& .

. > September 19,2013 May 15,2014 IVB September §, 2014
at least 2 HW generations - IVB OpenMP el TBB HSW Intel TBB
(INTC130829) (INTC140507) (INTC140814)

Configuration details in STAC vault

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Hold on!!! A

Who i1s the invited ?D O\N N‘Y \. ?
keynote speaker ' N
0'96 |

for OpenMP conference {o
in September 2015? ?

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi

*Other names and brands may be claimed as the property of others.

How did Intel TBB beat OpenMP ¥
annotations on STAC-A2?

OpenMP annotations work well when
= You control the whole machine

" You have one level of parallelism
= You want to take low level control of scheduling, placement,...

Intel TBB tends to out perform OpenMP when...

= You don’t know about the machine you’ll run on

= You have many levels of parallelism (recursive, or in libraries)
= You’re happy to let the runtime handle things

Both are portable: Intel TBB does not require compiler support.
Both are reasonably performance portable in practice, although
TBB 1s composable — which can be a significant advantage in perf. port.

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

OpenMP is very popular — and works very well on technical W
applications (like HPC) with C and Fortran.

But, for C++... TBB 1s better.

I was having a little fun... to make a point.

2016, James Reinders. rights reserved. Intel, Y
ther names and brands may be claimed as the property of others

Nested parallelism 1s
important to exploit.

Trending: more and more so.

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

OpenMP Nested Parallelism: HOT TEAMS

OpenMP worker threads —
created ONCE PER PROGRAM

NESTED PARALLEL.:

By DEFAULT, any parallel worker that
executes a parallel construct does that
work inside the same worker thread.

PRO: controlled memory footprint (including stack space)

CON: no load balancing

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

OpenMP Nested Parallelism: HOT TEAMS

OpenMP worker threads —
created ONCE PER PROGRAM

Additional level(s)
created and

released repeatedly
NESTED PARALLEL.:

TURN ON NESTING (no code changes — done with
environment variables)

PRO: load balancing

CON: high overhead, potential oversubscription (runaway
memory/stack usage being the key issue)

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Table of Contents...

Foreword

Introduction

Numerical Weather Prediction Optimization
http :// IOtSOfC OI'GS . COIn WRF Goddard Microphysics Scheme Optimization
Pairwise DNA Sequence Alignment Optimization
Accelerated Structural Bioinformatics for Drug Discovery

High Performance “Iioh Amber PME Molecular Dynamics Optimization
Parallelism Pearls 8 Low Latency Solutions for Financial Services
Performance Parallel Numerical Methods in Finance
Parallelism Wilson Dslash Kernel From Lattice QCD Optimization
Pearls Cosmic Microwave Background Analysis: Nested Parallelism In Practice
Visual Search Optimization
”
VOIume 2 Radio Frequency Ray Tracing

Exploring Use of the Reserved Core
High Performance Python Offloading
Fast Matrix Computations on Asynchronous Streams
. MPI-3 Shared Memory Programming Introduction
73 expert contributors . yrros & :
.. Coarse-Grain OpenMP for Scalable Hybrid Parallelism
23 affiliations
James Reinders and Jim Jeffers . Exploiting Multilevel Parallelism with OpenMP
10 countries .
24 contributed chanter OpenCL: There and Back Again
co uted chapters OpenMP vs. OpenCL: Difference in Performance?
Prefetch Tuning Optimizations
SIMD functions via OpenMP
Vectorization Advice
Portable Explicit Vectorization Intrinsics
Power Analysis for Applications and Data Centers

e 3
© 2016, James ‘Ra!'r ders. A‘righs reserved. Inte
*pfh rnames.an i ds maUeflalmed ;gfthe

)

| RS

18 OpenMP Nested Parallelism: HOT TEAMS

Chapter 18: Exploiting Multilevel Parallelism with OpenMP

Nested OpenMP is an optional feature of the OpenMP standard. Its support is subject to the com- ~ OpenMP 4.0 AFFINITY AND HOT TEAMS OF INTEL OpenMP RUNTIME

pilers and runtime libraries. The default is to ignore OpenMP parallel regions within a running A node contuines malipple paestlel units—multiple cores, multiple sockets, multiple hardware threads,
parallel region: in OpenMP parlance, the nested regions are serialized. This can be overridden by set- and optionally coprocessors. The ability to bind OpenMP threads to physical processing units has be-
ting OMP_NESTED=true. The Intel OpenMP runtime has greatly improved performance for nested come increasingly important to achieve high performance on these modem CPUs. OpenMP 4.0 affinity
OpenMP since releasing Intel Composer XE 15.1 with so-called HOT_TEAMS. They are enabled in features provide standard ways to control thread affinity that can have a dramatic performance effect.
our experiments by setting these environment variables: This impact is especially true on current generation Intel Xeon Phi coprocessors: four hardware threads
share the L1/L2 cache of an in-order core. We use OpenMP runtime environments to optimally bind
MPI tasks and OpenMP threads. For instance, when using S MPI and 12 OpenMP threads for the band
loop and 4 OpenMP threads for compute, they are set as

export KMP_HOT_TEAMS_MODE=1
export KMP_HOT_TEAMS_MAX_LEVEL=7
export MKL_DYNAMIC=false

export OMP_NESTE
export OMP_NUM_"
export OMP_PLAC
export OMP_PRO/
" -np 5./

ex
Note th MKL_DYNAMIC=fals¢ Po
for D%':EM;‘:: :IE'T':WL;::; they arcau; expO’l"tt:”P\Hor -~ T

HOT TEAMS MOTIVATION

“Hot teams™ s an extension 1o OpenMP supported by the Intel runu..
the overhead of OpenMP parallelism. It works with standard OpenMP code but cu...
It is a logical extension that may inspire similar capabilities in other implementations.

Tounderstand “hot teams,” it is important to know that any modem implementation of OpenMP, in
order to avoid the cost of creating and destroying pthreads, has the OpenMP runtime maintain a pool of
OS threads (pthreads on Linux) that it has already created. This is standard practice in OpenMP nun-
times because OS thread creation is normally quite expensive.

However, OpenMP also has a concept of a thread team, which is the set of pthreads that will execute

re=3
-

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other colintries.
*Other names and brands may be claimed as the property of others.

10 OpenMP Nested Parallelism: HOT TEAMS

Chapter 10: Cosmic Microwave Background Analysis: Nested Parallelism In Practice

CHAPTER 10 COSMIC MICROWAVE BACKGROUND ANALYSIS

costs are prohibitively expensive when the nested regions are encountered often, such as when the
threads are spawned for an inner-most loop.

There is, however, support for an experimental feature in the Intel® OpenMP runtime (Version 15
Update 1 or later) known as “hot teams™ that is able to reduce these overheads, by keeping a pool of
threads alive (but idle) during the execution of the non-nested parallel code. The use of hot teams is Ios bo Tormance
controlled by two environment variables: KMP_HOT_TEAMS_MODE and KMP_HOT_TEAMS_MAX_LEVEL. To Parallelism Pearls
keep unused team members alive when team sizes change we set KNP_HOT_TEAMS_MODE=1, and because
we have two levels of parallelism we set KMP_HOT_TEAMS_MAX_LEVEL=2.

Care must also be taken with thread affinity settings. OpenMP 4.0 provides new environment vari-
ables for handling the physical placement of threads, OMP_PROC_BIND and OMP_P LACES, and these are
compatible with nested parallel regions. To place team leaders on separate cores, and team members on
the same core, we set OMP_PROC_BIND=spread,close and OMP_PLACES=threads.

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other colintries.

*Other names and brands may be claimed as the property of others. : =

KEEP
ALM

AND
ASK SOME
UESTIONS

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

A

James Reinders. Parallel Programming Enthusiast

James has been involved in multiple engineering, research and educational efforts to increase use of parallel
programming throughout the industry. James worked 10,001 days as an Intel employee 1989-2016, and
contributed to numerous projects including the world's first TeraFLOP/s supercomputer (ASCI Red), first 3
TeraFLOP/s supercomputer (ASCI Red upgrade), the world's first TeraFLOP/s microprocessor (Intel® Xeon
Phi™ coprocessor) and the world's first 3 TeraFLOP/s microprocessor (Intel® Xeon Phi™ Processor).
James been an author on numerous technical books, including VTune™ Performance Analyzer Essentials
(Intel Press, 2005),

Intel® Threading Building Blocks (O'Reilly Media, 2007), Structured Parallel Programming (Morgan
Kaufmann, 2012), Intel® Xeon Phi™ Coprocessor High Performance Programming (Morgan Kaufmann,
2013), Multithreading for Visual Effects (A K Peters/CRC Press, 2014),

High Performance Parallelism Pearls Volume 1 (Morgan Kaufmann, Nov. 2014), High Performance
Parallelism Pearls Volume 2 (Morgan Kaufmann, Aug. 2015), and Intel® Xeon Phi™ Processor High
Performance Programming - Knights Landing Edition (Morgan Kaufmann, 2016).

© 2016, James Reinders. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

