
C O M P U T E | S T O R E | A N A L Y Z E

Chapel:
Productive, Multiresolution Parallel Programming

Brad Chamberlain, Chapel Team, Cray Inc.
ATPESC 2016

August 3rd, 2016

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2016 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Motivation for Chapel

Copyright 2016 Cray Inc.
3

Q: Can a single language be…
…as productive as Python?
…as fast as Fortran?
…as portable as C?
…as scalable as MPI?
…as fun as <your favorite language here>?

A: We believe so.

C O M P U T E | S T O R E | A N A L Y Z E

Chapel:
Putting the “Whee!” back in HPC

Brad Chamberlain, Chapel Team, Cray Inc.
ATPESC 2016

August 3rd, 2016

C O M P U T E | S T O R E | A N A L Y Z E

The Challenge

Copyright 2016 Cray Inc.
5

Q: So why don’t we have such languages already?

A: Technical challenges?
● while they exist, we don’t think this is the main issue…

A: Due to a lack of…
…long-term efforts
…resources
…community will
…co-design between developers and users
…patience

Chapel is our attempt to reverse this trend

C O M P U T E | S T O R E | A N A L Y Z E

Chapel:
Putting the “We” back in HPC

Brad Chamberlain, Chapel Team, Cray Inc.
ATPESC 2016

August 3rd, 2016

C O M P U T E | S T O R E | A N A L Y Z E

What is Chapel?

7

Chapel: A productive parallel programming language
● extensible
● portable
● open-source
● a collaborative effort
● a work-in-progress

Goals:
● Support general parallel programming

● “any parallel algorithm on any parallel hardware”
● Make parallel programming far more productive

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2016 Cray Inc.
8

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers need,
implemented in a language as attractive as recent graduates want.”

want full control
to ensure performance”

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element	vectors	A,	B,	C

Compute: "i Î 1..m,	Ai = Bi + α×Ci

In	pictures:

STREAM Triad: a trivial parallel computation

Copyright 2016 Cray Inc.
9

=

α

+

A

B

C
·

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element	vectors	A,	B,	C

Compute: "i Î 1..m,	Ai = Bi + α×Ci

In	pictures,	in	parallel:

STREAM Triad: a trivial parallel computation

Copyright 2016 Cray Inc.
10

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element	vectors	A,	B,	C

Compute: "i Î 1..m,	Ai = Bi + α×Ci

In	pictures,	in	parallel	(distributed	memory):

STREAM Triad: a trivial parallel computation

Copyright 2016 Cray Inc.
11

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element	vectors	A,	B,	C

Compute: "i Î 1..m,	Ai = Bi + α×Ci

In	pictures,	in	parallel	(distributed	memory	multicore):

STREAM Triad: a trivial parallel computation

Copyright 2016 Cray Inc.
12

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: MPI

Copyright 2016 Cray Inc.
13

#include <hpcc.h>

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

MPI
if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: MPI+OpenMP

Copyright 2016 Cray Inc.
14

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP
if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: MPI+OpenMP vs. CUDA

Copyright 2016 Cray Inc.
15

#define N 2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x);
if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

CUDAMPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

C O M P U T E | S T O R E | A N A L Y Z E

HPC tends to approach programming models bottom-up:
Given a system and its core capabilities…

…provide features that can access the available performance.
● portability? generality? programmability? …not strictly required.

s

Why so many programming models?

Copyright 2016 Cray Inc.
16

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

Type of HW Parallelism Programming Model Unit of Parallelism
Inter-node MPI executable

Intra-node/multicore OpenMP / pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA / Open[CL|MP|ACC] SIMD function/task

C O M P U T E | S T O R E | A N A L Y Z E

Rewinding a few slides…

Copyright 2016 Cray Inc.
17

#define N 2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x);
if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

CUDAMPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: Chapel

Copyright 2016 Cray Inc.
18

#define N 2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x);
if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

CUDAMPI + OpenMP

Philosophy: Good, top-down language design can tease system-specific
implementation details away from an algorithm, permitting the compiler,
runtime, applied scientist, and HPC expert to each focus on their strengths.

config const m = 1000,
alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;
C = 3.0;

A = B + alpha * C;

the special
sauce

Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2016 Cray Inc.
19

üMotivation

ØSurvey of Chapel Concepts

● Chapel Project and Characterizations

● Chapel Resources

C O M P U T E | S T O R E | A N A L Y Z E
20

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity
● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower
● permit the user to intermix layers arbitrarily

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2016 Cray Inc.

Chapel’s Multiresolution Philosophy

C O M P U T E | S T O R E | A N A L Y Z E

Base Language

Copyright 2016 Cray Inc.
21

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Lower-level Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

22

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

0
1
1
2
3
5
8
…

Copyright 2016 Cray Inc.

config const n = 10;

for f in fib(n) do
writeln(f);

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

23

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2016 Cray Inc.

CLU-style iteratorsCLU-style iteratorsCLU-style iterators

0
1
1
2
3
5
8
…

config const n = 10;

for f in fib(n) do
writeln(f);

C O M P U T E | S T O R E | A N A L Y Z E

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

24

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2016 Cray Inc.

Configuration declarations
(to avoid command-line argument parsing)

./a.out –n=1000000

0
1
1
2
3
5
8
…

C O M P U T E | S T O R E | A N A L Y Z E

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

25

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2016 Cray Inc.

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• variables
• arguments
• return types

0
1
1
2
3
5
8
…

Static type inference for:
• arguments
• return types
• variables

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

26

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2016 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Zippered iteration

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

27

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2016 Cray Inc.

range types and
operators

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Range types and
operators

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

28

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2016 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

tuples

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

29

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2016 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

C O M P U T E | S T O R E | A N A L Y Z E

Other Base Language Features

Copyright 2016 Cray Inc.
30

● interoperability features

● OOP (value- and reference-based)

● overloading, where clauses

● argument intents, default values, match-by-name

● compile-time features for meta-programming
● e.g., compile-time functions to compute types, values; reflection

● modules (for namespace management)

● rank-independent programming features

● …

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism

Copyright 2016 Cray Inc.
31

Task Parallelism
Base Language

Target Machine

Locality Control

Domain Maps
Data Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Begin Statements

Copyright 2016 Cray Inc.
32

Possible outputs:

// create a fire-and-forget task for a statement
begin writeln(“hello world”);
writeln(“goodbye”);

hello world
goodbye

goodbye
hello world

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Coforall Loops

Copyright 2016 Cray Inc.
33

Sample output:

// create a task per iteration
coforall t in 0..#numTasks {
writeln(“Hello from task ”, t, “ of ”, numTasks);

} // implicit join of the numTasks tasks here

writeln(“All tasks done”);

Hello from task 2 of 4
Hello from task 0 of 4
Hello from task 3 of 4
Hello from task 1 of 4
All tasks done

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Data-Driven Synchronization

Copyright 2016 Cray Inc.
34

● atomic variables: support atomic operations
● e.g., compare-and-swap; atomic sum, multiply, etc.
● similar to C/C++

● sync variables: store full-empty state along with value
● by default, reads/writes block until full/empty, leave in opposite state

C O M P U T E | S T O R E | A N A L Y Z E

Other Task Parallel Concepts

Copyright 2016 Cray Inc.
35

● cobegins: create tasks using compound statements

● single variables: like sync variables, but write-once

● sync statements: join unstructured tasks

● serial statements: conditionally squash parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Locality Control

Copyright 2016 Cray Inc.
36

Task Parallelism
Base Language

Target Machine

Locality Control

Domain Maps
Data Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

The Locale Type

Copyright 2016 Cray Inc.
37

Definition:
● Abstract unit of target architecture
● Supports reasoning about locality

● defines “here vs. there” / “local vs. remote”
● Capable of running tasks and storing variables

● i.e., has processors and memory

Typically: A compute node (multicore processor or SMP)

C O M P U T E | S T O R E | A N A L Y Z E

Getting started with locales

Copyright 2016 Cray Inc.
38

● Specify # of locales when running Chapel programs

● Chapel provides built-in locale variables

● main() starts execution as a task on locale #0

% a.out --numLocales=8

config const numLocales: int = …;
const Locales: [0..#numLocales] locale = …;

L0 L1 L2 L3 L4 L5 L6 L7Locales:

% a.out –nl 8

C O M P U T E | S T O R E | A N A L Y Z E

Locale Operations

Copyright 2016 Cray Inc.
39

● Locale methods support queries about the target system:

● On-clauses support placement of computations:

proc locale.physicalMemory(…) { … }
proc locale.numCores { … }
proc locale.id { … }
proc locale.name { … }

writeln(“on locale 0”);

on Locales[1] do
writeln(“now on locale 1”);

writeln(“on locale 0 again”);

on A[i,j] do
bigComputation(A);

on node.left do
search(node.left);

C O M P U T E | S T O R E | A N A L Y Z E

Parallelism and Locality: Orthogonal in Chapel

Copyright 2016 Cray Inc.
40

● This is a parallel, but local program:

● This is a distributed, but serial program:

● This is a distributed parallel program:

writeln(“Hello from locale 0!”);
on Locales[1] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!”);

coforall i in 1..msgs do
writeln(“Hello from task ”, i);

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln(“Hello from task ”, i,

“ running on locale ”, here.id);

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
41

var i: int;

0 1 2 3 4

i

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
42

var i: int;
on Locales[1] {

0 1 2 3 4

i

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
43

var i: int;
on Locales[1] {
var j: int;

0 1 2 3 4

i j

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
44

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {

0 1 2 3 4

i j

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
45

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
…

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
46

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*i + j;

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

OK to access i, j, and k
wherever they live k = 2*i + j;

C O M P U T E | S T O R E | A N A L Y Z E

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
47

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*i + j;

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

here, i and j are remote, so
the compiler + runtime will

transfer their values
k = 2*i + j;

(j)

(i)

C O M P U T E | S T O R E | A N A L Y Z E

0 1 2 3 4

Chapel: Locality queries

Copyright 2016 Cray Inc.
48

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;

…here… // query the locale on which this task is running
…j.locale… // query the locale on which j is stored

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Reasoning about Communication

Copyright 2016 Cray Inc.
49

● Though implicit, users can reason about communication
● semantic model is explicit about where data is placed / tasks execute
● execution-time queries support reasoning about locality

● e.g., here, x.locale
● tools should also play a role here

● e.g., chplvis, contained in the release (developed by Phil Nelson, WWU)

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism

Copyright 2014 Cray Inc.
50

Task Parallelism
Base Language

Target Machine

Locality Control

Higher-level Chapel

Domain Maps
Data Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism By Example: STREAM Triad

Copyright 2016 Cray Inc.
51

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

forall (a,b,c) in zip(A,B,C) do
a = b + alpha*c;

=

α·
+

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism By Example: STREAM Triad

Copyright 2016 Cray Inc.
52

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C; // equivalent to the zippered forall

=

α·
+

C O M P U T E | S T O R E | A N A L Y Z E

Other Data Parallel Features

Copyright 2016 Cray Inc.
53

● Rich Domain/Array Types:
● multidimensional
● strided
● sparse
● associative

● Slicing: Refer to subarrays using ranges/domains
… A[2..n-1, lo..#b] …
… A[ElementsOfInterest] …

● Promotion: Call scalar functions with array arguments
… pow(A, B)… // equivalent to: forall (a,b) in zip(A,B) do pow(a,b)

● Reductions/Scans: Apply operations across collections
… + reduce A …
… myReduceOp reduce A …

C O M P U T E | S T O R E | A N A L Y Z E

Domain Maps

Copyright 2014 Cray Inc.
54

Task Parallelism
Base Language

Target Machine

Locality Control

Higher-level Chapel

Domain Maps
Data Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: Chapel (multicore)

Copyright 2016 Cray Inc.
55

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

No domain map specified � use default layout
• current locale owns all domain indices and array values
• computation will execute using local processors only

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: Chapel (multilocale, cyclic)

Copyright 2016 Cray Inc.
56

const ProblemSpace = {1..m}
dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

startIdx = 1

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: Chapel (multilocale, blocked)

Copyright 2016 Cray Inc.
57

const ProblemSpace = {1..m}
dmapped Block(boundingBox={1..m});

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

boundingBox

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: Chapel

Copyright 2016 Cray Inc.
58

#define N 2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x);
if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

CUDAMPI + OpenMP

Philosophy: Good, top-down language design can tease system-specific
implementation details away from an algorithm, permitting the compiler,
runtime, applied scientist, and HPC expert to each focus on their strengths.

config const m = 1000,
alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;
C = 3.0;

A = B + alpha * C;

the special
sauce

Chapel

C O M P U T E | S T O R E | A N A L Y Z E

All Chapel domain types support domain maps

Chapel Has Several Domain/Array Types

Copyright 2016 Cray Inc.
59

dense strided sparse

unstructured

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

associative

C O M P U T E | S T O R E | A N A L Y Z E

LULESH: a DOE Proxy Application

Copyright 2016 Cray Inc.
60

Goal: Solve one octant of the spherical Sedov problem (blast
wave) using Lagrangian hydrodynamics for a single
material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

C O M P U T E | S T O R E | A N A L Y Z E

LULESH in Chapel

Copyright 2016 Cray Inc.
61

C O M P U T E | S T O R E | A N A L Y Z E

LULESH in Chapel

Copyright 2016 Cray Inc.
62

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in the Chapel release in examples/benchmarks/lulesh/

1288 lines of source code
plus 266 lines of comments

487 blank lines

C O M P U T E | S T O R E | A N A L Y Z E

LULESH in Chapel

Copyright 2016 Cray Inc.
63

This is the only representation-dependent code.
It specifies:

• data structure choices:
• structured vs. unstructured mesh
• local vs. distributed data
• sparse vs. dense materials arrays

• a few supporting iterators
Domain maps insulate the rest of the application

(“the science”) from these choices

C O M P U T E | S T O R E | A N A L Y Z E

Domain Maps

Copyright 2016 Cray Inc.
64

Domain maps are “recipes” that instruct the compiler how to
map the global view of a computation…

=
+

α •

Locale 0

=
+

α •

=
+

α •

=
+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:

A = B + alpha * C;

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s Domain Map Philosophy

Copyright 2016 Cray Inc.
65

1. Chapel provides a library of standard domain maps
● to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel
● to cope with any shortcomings in our standard library

3. Chapel’s standard domain maps are written using the
same end-user framework
● to avoid a performance cliff between “built-in” and user-defined cases

Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

C O M P U T E | S T O R E | A N A L Y Z E

Two Other Thematically Similar Features

Copyright 2016 Cray Inc.
66

1) parallel iterators: Permit users to specify forall-loop policies
● e.g., parallelism, work decomposition, and locality

● including zippered forall loops

2) locale models: Permit users to target new architectures
● e.g., how to manage memory, create tasks, communicate, …

Like domain maps, these are…
…written in Chapel by expert users
…exposed to the end-user via higher-level abstractions

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is Extensible

Copyright 2016 Cray Inc.
67

Advanced users can create their own…
…parallel loop schedules…
…array layouts and distributions…
…models of the target architecture…

…as Chapel code, without modifying the compiler.

Why? To create a future-proof language.

This has been our main research challenge: How to create a
language that does not lock these policies into the
implementation without sacrificing performance?

C O M P U T E | S T O R E | A N A L Y Z E

Language Summary

Copyright 2016 Cray Inc.
68

HPC programmers deserve better programming models

Higher-level programming models can help insulate
algorithms from parallel implementation details
● yet, without necessarily abdicating control
● Chapel does this via its multiresolution design

● domain maps, parallel iterators, and locale models are all examples
● avoids locking crucial policy decisions into the language definition

We believe Chapel can greatly improve productivity
…for current and emerging HPC architectures
…for HPC users and mainstream uses of parallelism at scale

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2016 Cray Inc.
69

üMotivation

üSurvey of Chapel Concepts

ØChapel Project and Characterizations

● Chapel Resources

C O M P U T E | S T O R E | A N A L Y Z E

A Year in the Life of Chapel

Copyright 2016 Cray Inc.
70

● Two major releases per year (April / October)
● ~a month later: detailed release notes available online

● CHIUW: Chapel Implementers and Users Workshop (May/June)
● held three years so far, typically at IPDPS
● CHIUW 2017 proposal being submitted this week

● SC (Nov)
● tutorials, BoFs, panels, posters, educator sessions, exhibits, …
● annual CHUG (Chapel Users Group) happy hour
● for SC16:

● full-day Chapel tutorial (Sunday)
● Chapel Lightning Talks BoF proposal submitted
● likely to be additional events as well…

● Talks, tutorials, collaborations, social media, … (year-round)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is Portable

Copyright 2016 Cray Inc.
71

● Chapel is designed to be hardware-independent

● The current release requires:
● a C/C++ compiler
● a *NIX environment (Linux, OS X, BSD, Cygwin, …)
● POSIX threads
● RDMA, MPI, or UDP (for distributed memory execution)

● Chapel can run on…
…laptops and workstations
…commodity clusters
…the cloud
…HPC systems from Cray and other vendors
…modern processors like Intel Xeon Phi, GPUs*, etc.

* = academic work only; not yet supported in the official release

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is Open-Source

Copyright 2016 Cray Inc.
72

● Chapel’s development is hosted at GitHub
● https://github.com/chapel-lang

● Chapel is licensed as Apache v2.0 software

● Instructions for download + install are online
● see http://chapel.cray.com/download.html to get started

C O M P U T E | S T O R E | A N A L Y Z E

The Chapel Team at Cray (Summer 2016)

Copyright 2016 Cray Inc.
73

14 full-time employees + 2 summer interns + 1 contracting professor
(one of each started after this photo was taken)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is a Collaborative Effort

Copyright 2016 Cray Inc.
74

http://chapel.cray.com/collaborations.html

(and several others…)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is a Work-in-Progress

Copyright 2016 Cray Inc.
75

● Currently being picked up by early adopters
● Last two releases got ~3500 downloads total in a year
● Users who try it generally like what they see

● Most current features are functional and working well
● some areas need improvements, particularly object-oriented features

● Performance is improving, but remains hit-or-miss
● shared memory performance is often competitive with C+OpenMP
● distributed memory performance continues to need more work

● We are actively working to address these lacks

C O M P U T E | S T O R E | A N A L Y Z E

A notable early adopter

Copyright 2016 Cray Inc.
76

Chapel in the (Cosmological) Wild 1:00 – 2:00
Nikhil Padmanabhan, Yale University Professor, Physics & Astronomy

Abstract: This talk aims to present my personal experiences using Chapel in my
research. My research interests are in observational cosmology; more
specifically, I use large surveys of galaxies to constrain the evolution of the
Universe and to probe the physics underlying that evolution. Operationally, this
involves measuring a number of spatial statistics of the distribution of galaxies,
both on actual observations, but also on large numbers of simulated universes.
I'll start by presenting a whirlwind introduction to cosmology, the problems that
keep me up at night and our approaches to solving these. I'll then discuss what
attracted me to Chapel—the ability to prototype algorithms quickly and the
promised ease and flexibility of writing parallel programs. I'll then present a
worked example of Chapel being used in a real-world application, discussing
some of these aspects as well highlighting its interoperability with existing
libraries, as well as some of the challenges. I'll conclude with what it would take
for me to switch over to using Chapel all of the time.

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is a Work-in-Progress

Copyright 2016 Cray Inc.
77

● Currently being picked up by early adopters
● Last two releases got ~3500 downloads total in a year
● Users who try it generally like what they see

● Most current features are functional and working well
● some areas need improvements, particularly object-oriented features

● Performance is improving, but can be hit-or-miss
● shared memory performance is often competitive with C+OpenMP
● distributed memory performance continues to need more work

● We are actively working to address these lacks

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s 5-year push

Copyright 2016 Cray Inc.
78

● Based on positive user response to Chapel in its research
phase, Cray undertook a five-year effort to improve it
● we’ve just completed our third year

● Focus Areas:
1. Improving performance and scaling
2. Fixing immature aspects of the language and implementation

● e.g., strings, memory management, error handling, …

3. Porting to emerging architectures
● Intel Xeon Phi, accelerators, heterogeneous processors and memories, …

4. Improving interoperability
5. Growing the Chapel user and developer community

● including non-scientific computing communities

6. Exploring transition of Chapel governance to a neutral, external body

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2016 Cray Inc.
79

üMotivation

üSurvey of Chapel Concepts

üChapel Project and Characterizations

ØChapel Resources

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Websites

80

Project page: http://chapel.cray.com
● overview, papers, presentations, language spec, …

GitHub: https://github.com/chapel-lang
● download Chapel; browse source repository; contribute code

Facebook: https://www.facebook.com/ChapelLanguage

Twitter: https://twitter.com/ChapelLanguage

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Suggested Reading

81

Chapel chapter from Programming Models for Parallel Computing
● a detailed overview of Chapel’s history, motivating themes, features
● published by MIT Press, November 2015
● edited by Pavan Balaji (Argonne)
● chapter is now also available online

Other Chapel papers/publications available at http://chapel.cray.com/papers.html

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Blog Articles

82

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
● a short-and-sweet introduction to Chapel

Chapel Springs into a Summer of Code, Cray Blog, April 2016.
● coverage of recent events

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
● a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
● a series of articles answering common questions about why we are pursuing

Chapel in spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog
(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.

● a series of technical opinion pieces designed to argue against standard
reasons given for not developing high-level parallel languages

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Mailing Lists

83

low-traffic / read-only:
chapel-announce@lists.sourceforge.net: announcements about Chapel

community lists:
chapel-users@lists.sourceforge.net: user-oriented discussion list
chapel-developers@lists.sourceforge.net: developer discussions
chapel-education@lists.sourceforge.net: educator discussions
chapel-bugs@lists.sourceforge.net: public bug forum

(subscribe at SourceForge: http://sourceforge.net/p/chapel/mailman/)

To contact the Cray team:
chapel_info@cray.com: contact the team at Cray
chapel_bugs@cray.com: for reporting non-public bugs

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Questions?

Copyright 2016 Cray Inc.

Chapel:
Productive, Multiresolution Parallel Programming

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2016 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

85

