Communication-Avoiding Algorithms for Linear Algebra and Beyond

Jim Demmel
EECS \& Math Departments
UC Berkeley

Why avoid communication? (1/3)

Algorithms have two costs (measured in time or energy):

1. Arithmetic (FLOPS)
2. Communication: moving data between

- levels of a memory hierarchy (sequential case)
- processors over a network (parallel case).

Why avoid communication? (2/3)

- Running time of an algorithm is sum of 3 terms:
- \# flops * time_per_flop
- \# words moved / bandwidth
- \# messages * latency
- Time_per_flop << 1/ bandwidth << latency
- Gaps growing exponentially with time [FOSC]

Annual improvements			
Time_per_flop		Bandwidth	Latency
59%	Network	26%	15%
	DRAM	23%	5%

- Avoid communication to save time

Why Minimize Communication? (3/3)

Why Minimize Communication? (3/3)

Minimize communication to save energy

Goals

- Redesign algorithms to avoid communication
- Between all memory hierarchy levels
- L1 $\leftrightarrow ~ L 2 ~ \leftrightarrow ~ D R A M ~ \leftrightarrow ~ n e t w o r k, ~ e t c ~$
- Attain lower bounds if possible
- Current algorithms often far from lower bounds
- Large speedups and energy savings possible

Sample Speedups

- Up to 12 x faster for 2.5 D matmul on 64 K core IBM BG/P
- Up to $3 x$ faster for tensor contractions on 2K core Cray XE/6
- Up to $6.2 x$ faster for APSP on 24K core Cray CE6
- Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P
- Up to 11.8x faster for direct N -body on 32K core IBM BG/P
- Up to 13x faster for TSQR on Tesla C2050 Fermi NVIDIA GPU
- Up to 6.7x faster for symeig (band A) on 10 core Intel Westmere
- Up to $2 x$ faster for 2.5D Strassen on 38K core Cray XT4
- Up to 4.2x faster for MiniGMG benchmark bottom solver, using CA-BiCGStab (2.5x for overall solve)
- 2.5x / 1.5x for combustion simulation code

President Obama cites Communication-Avoiding Algorithms in the FY 2012 Department of Energy Budget Request to Congress:
"New Algorithm Improves Performance and Accuracy on Extreme-Scale Computing Systems. On modern computer architectures, communication between processors takes longer than the performance of a floating point arithmetic operation by a given processor. ASCR researchers have developed a new method, derived from commonly used linear algebra methods, to minimize communications between processors and the memory hierarchy, by reformulating the communication patterns specified within the algorithm. This method has been implemented in the TRILINOS framework, a highly-regarded suite of software, which provides functionality for researchers around the world to solve large scale, complex multi-physics problems."

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing
CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD)
"Tall-Skinny" QR (Grigori, Hoemmen, Langou, JD)

Outline

- Survey state of the art of CA (Comm-Avoiding) algorithms
- Review previous Matmul algorithms
- CA O(n ${ }^{3}$) 2.5D Matmul and LU
- TSQR: Tall-Skinny QR
- CA Strassen Matmul
- Beyond linear algebra
- Extending lower bounds to any algorithm with arrays
- Communication-optimal N -body algorithm
- CA-Krylov methods
- Related Topics

Outline

- Survey state of the art of CA (Comm-Avoiding) algorithms
- Review previous Matmul algorithms
- CA O(n³) 2.5D Matmul and LU
- TSQR: Tall-Skinny QR
- CA Strassen Matmul
- Beyond linear algebra
- Extending lower bounds to any algorithm with arrays
- Communication-optimal N -body algorithm
- CA-Krylov methods
- Related Topics

Summary of CA Linear Algebra

- "Direct" Linear Algebra
- Lower bounds on communication for linear algebra problems like $A x=b$, least squares, $A x=\lambda x$, SVD, etc
- Mostly not attained by algorithms in standard libraries
- New algorithms that attain these lower bounds
- Being added to libraries: Sca/LAPACK, PLASMA, MAGMA
- Large speed-ups possible
- Autotuning to find optimal implementation
- Ditto for "Iterative" Linear Algebra

Lower bound for all " n^{3}-like" linear algebra

- Let M = "fast" memory size (per processor)
\#words_moved (per processor) $=\Omega$ (\#flops (per processor) / $\mathbf{M}^{1 / 2}$)
- Parallel case: assume either load or memory balanced
- Holds for
- Matmul

Lower bound for all " n^{3}-like" linear algebra

- Let M = "fast" memory size (per processor)
\#words_moved (per processor) $=\Omega$ (\#flops (per processor) / $\mathbf{M}^{1 / 2}$)
\#messages_sent \geq \#words_moved / largest_message_size
- Parallel case: assume either load or memory balanced
- Holds for
- Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...
- Some whole programs (sequences of these operations, no matter how individual ops are interleaved, eg A^{k})
- Dense and sparse matrices (where \#flops << n^{3})
- Sequential and parallel algorithms
- Some graph-theoretic algorithms (eg Floyd-Warshall)

Lower bound for all " n^{3}-like" linear algebra

- Let M = "fast" memory size (per processor)
\#words_moved (per processor) $=\Omega$ (\#flops (per processor) / $\mathbf{M}^{1 / 2}$)
\#messages_sent (per processor) $=\Omega\left(\right.$ \#flops (per processor) $/ \mathbf{M}^{3 / 2}$)
- Parallel case: assume either load or memory balanced
- Holds for
- Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...
- Some whole programs (sequences of these operations, no matter how individual ops are interleaved, eg A^{k})

SIAM SIAG/Linear Algebra Prize, 2012 Ballard, D., Holtz, Schwartz

Can we attain these lower bounds?

- Do conventional dense algorithms as implemented in LAPACK and ScaLAPACK attain these bounds?
- Often not
- If not, are there other algorithms that do?
- Yes, for much of dense linear algebra, APSP
- New algorithms, with new numerical properties, new ways to encode answers, new data structures
- Not just loop transformations (need those too!)
- Only a few sparse algorithms so far
- Ex: Matmul of "random" sparse matrices
- Ex: Sparse Cholesky of matrices with "large" separators
- Lots of work in progress

Outline

- Survey state of the art of CA (Comm-Avoiding) algorithms
- Review previous Matmul algorithms
- CA O(n³) 2.5D Matmul and LU
- TSQR: Tall-Skinny QR
- CA Strassen Matmul
- Beyond linear algebra
- Extending lower bounds to any algorithm with arrays
- Communication-optimal N -body algorithm
- CA-Krylov methods
- Related Topics

Naïve Matrix Multiply

\{implements $\left.\mathrm{C}=\mathrm{C}+\mathrm{A}^{*} \mathrm{~B}\right\}$
for $\mathrm{i}=1$ to n

```
for j= 1 to n
```

for $\mathrm{k}=1$ to n

$$
C(i, j)=C(i, j)+A(i, k) * B(k, j)
$$

Naïve Matrix Multiply

```
{implements C = C + A*B
for i=1 to n
    {read row i of A into fast memory}
    for j=1 to n
        {read C(i,j) into fast memory}
        {read column j of B into fast memory}
        for k=1 to n
        C(i,j) = C(i,j) +A(i,k) * B(k,j)
    {write C(i,j) back to slow memory}
```


Naïve Matrix Multiply

```
{implements C = C + A*B }
for i = 1 to n
    {read row i of A into fast memory} ... n}\mp@subsup{n}{}{2}\mathrm{ reads altogether
    for j = 1 to n
        {read C(i,j) into fast memory} ... n}\mp@subsup{n}{}{2}\mathrm{ reads altogether
        {read column j of B into fast memory} ... n}\mp@subsup{n}{}{3}\mathrm{ reads altogether
        for k = 1 to n
        C(i,j) =C(i,j) +A(i,k) * B(k,j)
        {write C(i,j) back to slow memory} ... n}\mp@subsup{n}{}{2}\mathrm{ writes altogether
```

$C(i, j)$	$=$	$\stackrel{C(i, j)}{\square}$	+	A(i,)	*	B(:,j)

$n^{3}+3 n^{2}$ reads/writes altogether - dominates $2 n^{3}$ arithmetic

Blocked (Tiled) Matrix Multiply

Consider A, B, C to be $n / b-b y-n / b$ matrices of $b-b y-b$ subblocks where b is called the block size; assume 3 b-by-b blocks fit in fast memory for $\mathrm{i}=1$ to n / b for $\mathrm{j}=1$ to n / b
\{read block $C(i, j)$ into fast memory \}
for $\mathrm{k}=1$ to n / b
\{read block $A(i, k)$ into fast memory\}
\{read block $B(k, j)$ into fast memory\}
$C(i, j)=C(i, j)+A(i, k) * B(k, j)\{d o$ a matrix multiply on blocks $\}$
\{write block $C(i, j)$ back to slow memory\}

Blocked (Tiled) Matrix Multiply

Consider A, B, C to be $n / b-b y-n / b$ matrices of $b-b y-b$ subblocks where b is called the block size; assume 3 b-by-b blocks fit in fast memory for $\mathrm{i}=1$ to n / b for $\mathrm{j}=1$ to n / b
\{read block $C(i, j)$ into fast memory\} ... $b^{2} \times(n / b)^{2}=n^{2}$ reads for $k=1$ to n / b
\{read block $A(i, k)$ into fast memory\} ... $b^{2} \times(n / b)^{3}=n^{3} / b$ reads
\{read block $B(k, j)$ into fast memory\} $\quad . . b^{2} \times(n / b)^{3}=n^{3} / b$ reads
$C(i, j)=C(i, j)+A(i, k) * B(k, j)$ \{do a matrix multiply on blocks\}
$\left\{\right.$ write block $C(i, j)$ back to slow memory\} $\ldots b^{2} \times(n / b)^{2}=n^{2}$ writes

Does blocked matmul attain lower bound?

- Recall: if 3 b -by-b blocks fit in fast memory of size M, then \#reads/writes $=2 n^{3} / b+2 n^{2}$
- Make b as large as possible: $3 b^{2} \leq M$, so \#reads/writes $\geq 3^{1 / 2} n^{3} / M^{1 / 2}+2 n^{2}$
- Attains lower bound $=\Omega$ (\#flops / $\mathrm{M}^{1 / 2}$)
- But what if we don't know M?
- Or if there are multiple levels of fast memory?
- Can use "Cache Oblivious" algorithm

Recursive Matrix Multiplication (RMM) (1/2)

- For simplicity: square matrices with $n=2^{m}$
- $C=\left(\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right)=A \cdot B=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{23}\end{array}\right) \cdot\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)$
$=\left(\begin{array}{ll}A_{11} \cdot B_{11}+A_{12} \cdot B_{21} & A_{11} \cdot B_{12}+A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11}+A_{22} \cdot B_{21} & A_{21} \cdot B_{12}+A_{22} \cdot B_{22}\end{array}\right)$
- True when each $A_{i j}$ etc 1×1 or $n / 2 \times n / 2$

```
func C = RMM (A, B, n)
    if n = 1,C = A*B, else
    { C C11 = RMM (A A1, B B11 , n/2) + RMM (A ( 
        C
        C 21 = RMM (A A1, B B1, n/2) + RMM (A A2, B B1, n/2)
        C22 = RMM (A ( 
    return
```


Recursive Matrix Multiplication (RMM) (2/2)

```
func \(C=\operatorname{RMM}(A, B, n)\)
    if \(n=1, C=A\) * \(B\), else
    \(\left\{C_{11}=\operatorname{RMM}\left(A_{11}, B_{11}, n / 2\right)+\operatorname{RMM}\left(A_{12}, B_{21}, n / 2\right)\right.\)
        \(C_{12}=\operatorname{RMM}\left(A_{11}, B_{12}, n / 2\right)+\operatorname{RMM}\left(A_{12}, B_{22}, n / 2\right)\)
        \(C_{21}=\operatorname{RMM}\left(A_{21}, B_{11}, n / 2\right)+\operatorname{RMM}\left(A_{22}, B_{21}, n / 2\right)\)
        \(\left.C_{22}=\operatorname{RMM}\left(A_{21}, B_{12}, n / 2\right)+\operatorname{RMM}\left(A_{22}, B_{22}, n / 2\right)\right\}\)
    return
```

A(n) = \# arithmetic operations in RMM(. . . , n)
$=8 \cdot A(n / 2)+4(n / 2)^{2}$ if $n>1$, else 1
$=2 n^{3} \ldots$ same operations as usual, in different order
$\mathrm{W}(\mathrm{n})=$ \# words moved between fast, slow memory by RMM(. , . , n)
$=8 \cdot W(n / 2)+12(n / 2)^{2}$ if $3 n^{2}>M$, else $3 n^{2}$
$=O\left(n^{3} / M^{1 / 2}+n^{2}\right) \quad \ldots$ same as blocked matmul
"Cache oblivious", works for memory hierarchies, but not panacea

How hard is hand-tuning matmul, anyway?

- Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09
- Students given "blocked" code to start with (7x faster than naïve)
- Still hard to get close to vendor tuned performance (ACML) (another 6x)
- For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/

How hard is hand-tuning matmul, anyway?

SUMMA- $\mathrm{n} \times \mathrm{n}$ matmul on $\mathrm{P}^{1 / 2} \times \mathrm{P}^{1 / 2}$ grid (nearly) optimal using minimum memory $\mathrm{M}=\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{P}\right)$

For $k=0$ to $n / b-1 \quad \ldots b=$ block size = \#cols in $A(i, k)=$ \#rows in $B(k, j)$
for all $\mathbf{i}=1$ to $\mathbf{P}^{1 / 2}$
owner of $A(i, k)$ broadcasts it to whole processor row (using binary tree)
for all $\mathrm{j}=1$ to $\mathrm{P}^{1 / 2}$
owner of $B(k, j)$ broadcasts it to whole processor column (using bin. tree)
Receive $A(i, k)$ into Acol
Receive $B(k, j)$ into Brow
C_myproc = C_myproc + Acol * Brow

Summary of dense parallel algorithms attaining communication lower bounds

- Assume nxn matrices on P processors
- Minimum Memory per processor $=M=O\left(n^{2} / P\right)$
- Recall lower bounds:

$$
\begin{array}{ll}
\text { \#words_moved } & =\Omega\left(\left(n^{3} / P\right) / M^{1 / 2}\right)=\Omega\left(n^{2} / P^{1 / 2}\right) \\
\text { \#messages } & =\Omega\left(\left(n^{3} / P\right) / M^{3 / 2}\right)=\Omega\left(P^{1 / 2}\right)
\end{array}
$$

- Does ScaLAPACK attain these bounds?
- For \#words_moved: mostly, except nonsym. Eigenproblem
- For \#messages: asymptotically worse, except Cholesky
- New algorithms attain all bounds, up to polylog(P) factors
- Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD

Can we do Better?

Can we do better?

- Aren't we already optimal?
- Why assume $M=O\left(n^{2} / p\right)$, i.e. minimal?
- Lower bound still true if more memory
- Can we attain it?
- Special case: "3D Matmul"
- Uses $M=O\left(n^{2} / p^{2 / 3}\right)$
- Dekel, Nassimi, Sahni [81], Bernsten [89], Agarwal, Chandra, Snir [90], Johnson [93], Agarwal, Balle, Gustavson, Joshi, Palkar [95]
- Not always $p^{1 / 3}$ times as much memory available...

Can we do better?

- Aren't we already optimal?
- Why assume $\mathrm{M}=\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{p}\right)$, i.e. minimal?
- Lower bound still true if more memory
- Can we attain it?
- Special case: "3D Matmul"
- Uses $M=0\left(n^{2} / p^{2 / 3}\right)$
- Dekel, Nassimi, Sahni [81], Bernsten [89], Agarwal, Chandra, Snir [90], Johnson [93], Agarwal, Balle, Gustavson, Joshi, Palkar [95]
- Processors arranged in $p^{1 / 3} \times p^{1 / 3} \times p^{1 / 3}$ grid
- Processor (i,j,k) performs $C(i, j)=C(i, j)+A(i, k) * B(k, j)$, where each submatrix is $n / p^{1 / 3} \times n / p^{1 / 3}$
- Not always that much memory available...

Outline

- Survey state of the art of CA (Comm-Avoiding) algorithms
- Review previous Matmul algorithms
- CA O(n³) 2.5D Matmul and LU
- TSQR: Tall-Skinny QR
- CA Strassen Matmul
- Beyond linear algebra
- Extending lower bounds to any algorithm with arrays
- Communication-optimal N -body algorithm
- CA-Krylov methods
- Related Topics

2.5D Matrix Multiplication

- Assume can fit $\mathrm{cn}^{2} / \mathrm{P}$ data per processor, $\mathrm{c}>1$
- Processors form $(P / c)^{1 / 2} \times(P / c)^{1 / 2} \times c$ grid

Example: $\mathrm{P}=32, \mathrm{c}=2$

2.5D Matrix Multiplication

- Assume can fit $\mathrm{cn}^{2} / \mathrm{P}$ data per processor, $\mathrm{c}>1$
- Processors form $(P / c)^{1 / 2} \times(P / c)^{1 / 2} \times c$ grid

$$
\text { Initially } P(i, j, 0) \text { owns } A(i, j) \text { and } B(i, j)
$$ each of size $n(c / P)^{1 / 2} \times n(c / P)^{1 / 2}$

(1) $P(i, j, 0)$ broadcasts $A(i, j)$ and $B(i, j)$ to $P(i, j, k)$
(2) Processors at level k perform $1 / c$-th of SUMMA, i.e. $1 / c$-th of $\Sigma_{m} A(i, m) * B(m, j)$
(3) Sum-reduce partial sums $\Sigma_{m} A(i, m)^{*} B(m, j)$ along k-axis so $P(i, j, 0)$ owns $C(i, j)$

2.5D Matmul on BG/P, 16K nodes / 64K cores

Matrix multiplication on 16,384 nodes of $B G / P$

2.5D Matmul on BG/P, 16K nodes / 64K cores

$$
c=16 \text { copies }
$$

Matrix multiplication on 16,384 nodes of $B G / P$

Distinguished Paper Award, EuroPar'11 (Solomonik, D.) SC'11 paper by Solomonik, Bhatele, D.

Perfect Strong Scaling - in Time and Energy

- Every time you add a processor, you should use its memory M too
- Start with minimal number of procs: $\mathrm{PM}=3 \mathrm{n}^{2}$
- Increase P by a factor of $\mathrm{c} \rightarrow$ total memory increases by a factor of c
- Notation for timing model:
$-\gamma_{T}, \beta_{T}, \alpha_{T}=$ secs per flop, per word_moved, per message of size m
- $T(c P)=n^{3} /(c P)\left[\gamma_{T}+\beta_{T} / M^{1 / 2}+\alpha_{T} /\left(m M^{1 / 2}\right)\right]$

$$
=T(P) / c
$$

- Notation for energy model:
$-\gamma_{E}, \beta_{E}, \alpha_{E}=$ joules for same operations
$-\delta_{E}=$ joules per word of memory used per sec
$-\varepsilon_{\mathrm{E}}=$ joules per sec for leakage, etc.
- $E(c P)=c P\left\{n^{3} /(c P)\left[\gamma_{E}+\beta_{E} / M^{1 / 2}+\alpha_{E} /\left(\mathrm{mM}^{1 / 2}\right)\right]+\delta_{E} M T(c P)+\varepsilon_{E} T(c P)\right\}$ $=E(P)$
- Extends to N-body, Strassen, ...
- Can prove lower bounds on needed network (eg 3D torus for matmul)

Perfect Strong Scaling - in Time and Energy (2/2)

- $T(c P)=n^{3} /(c P)\left[\gamma_{T}+\beta_{T} / M^{1 / 2}+\alpha_{T} /\left(m M^{1 / 2}\right)\right]=T(P) / c$
- $E(c P)=c P\left\{n^{3} /(c P)\left[\gamma_{E}+\beta_{E} / M^{1 / 2}+\alpha_{E} /\left(\mathrm{mM}^{1 / 2}\right)\right]+\delta_{E} M T(c P)+\varepsilon_{E} T(c P)\right\}=E(P)$
- Perfect scaling extends to N-body, Strassen, ...
- We can use these models to answer many questions, including:
- What is the minimum energy required for a computation?
- Given a maximum allowed runtime \mathbf{T}, what is the minimum energy \mathbf{E} needed to achieve it?
- Given a maximum energy budget \mathbf{E}, what is the minimum runtime \mathbf{T} that we can attain?
- The ratio $\mathbf{P}=\mathbf{E} / \mathbf{T}$ gives us the average power required to run the algorithm. Can we minimize the average power consumed?
- Given an algorithm, problem size, number of processors and target energy efficiency (GFLOPS/W), can we determine a set of architectural parameters to describe a conforming computer architecture?

2.5D vs 2D LU With and Without Pivoting

Thm: Perfect Strong Scaling impossible, because Latency*Bandwidth $=\Omega\left(\mathrm{n}^{2}\right)$

Outline

- Survey state of the art of CA (Comm-Avoiding) algorithms
- Review previous Matmul algorithms
- CA O(n³) 2.5D Matmul and LU
- TSQR: Tall-Skinny QR
- CA Strassen Matmul
- Beyond linear algebra
- Extending lower bounds to any algorithm with arrays
- Communication-optimal N -body algorithm
- CA-Krylov methods
- Related Topics

TSQR: QR of a Tall, Skinny matrix

$$
\mathrm{W}=\binom{\frac{\mathrm{W}_{0}}{\mathrm{~W}_{1}}}{\frac{\mathrm{~W}_{2}}{\mathrm{~W}_{3}}}
$$

$$
\begin{array}{r}
\left(\begin{array}{l}
R_{00} \\
\frac{R_{10}}{R_{20}} \\
R_{30}
\end{array}\right)=\left(\frac{Q_{01} R_{01}}{Q_{11} R_{11}}\right) \\
\left(\frac{R_{01}}{R_{11}}\right)=\left(Q_{02} R_{02}\right)
\end{array}
$$

TSQR: QR of a Tall, Skinny matrix

$$
\begin{aligned}
W= & \binom{\frac{W_{0}}{W_{1}}}{\frac{W_{2}}{W_{3}}}=\left(\frac{\left.\frac{Q_{00} R_{00}}{\frac{Q_{10} R_{10}}{R_{20}}}\right)}{\frac{Q_{20} R_{20}}{Q_{30} R_{30}}}\right)=\left(\frac{\frac{Q_{00}}{Q_{10}}}{\frac{Q_{20}}{Q_{30}}}\right) \cdot\left(\frac{\frac{R_{00}}{R_{10}}}{\frac{R_{20}}{R_{30}}}\right) \\
\binom{\frac{R_{00}}{R_{10}}}{\frac{R_{20}}{R_{30}}}=\left(\frac{Q_{01} R_{01}}{R_{11} R_{11}}\right) & =\left(\frac{Q_{01}}{Q_{11}}\right) \cdot\left(\frac{R_{01}}{R_{11}}\right) \\
\left(\frac{R_{01}}{R_{11}}\right) & =\left(Q_{02} R_{02}\right)
\end{aligned}
$$

Output $=\left\{\mathrm{Q}_{00}, \mathrm{Q}_{10}, \mathrm{Q}_{20}, \mathrm{Q}_{30}, \mathrm{Q}_{01}, \mathrm{Q}_{11}, \mathrm{Q}_{02}, \mathrm{R}_{02}\right\}$

TSQR: An Architecture-Dependent Algorithm

Parallel: $W=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \rightarrow R_{00} \rightarrow R_{01} \rightarrow R_{20} \longrightarrow R_{11} \longrightarrow R_{02}$
Sequential: $W=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \longrightarrow R_{00} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{03}$

Dual Core: $W=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{\longrightarrow} R_{00} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{11} \longrightarrow R_{03}$
Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?
Can choose reduction tree dynamically

TSQR Performance Results

- Parallel
- Intel Clovertown
- Up to 8 x speedup (8 core, dual socket, 10M x 10)
- Pentium III cluster, Dolphin Interconnect, MPICH
- Up to 6.7x speedup (16 procs, 100K x 200)
- BlueGene/L
- Up to $4 x$ speedup (32 procs, $1 \mathrm{M} \times 50$)
- Tesla C 2050 / Fermi
- Up to $13 x(110,592 \times 100)$
- Grid - 4x on 4 cities vs 1 city (Dongarra, Langou et al)
- Cloud $\mathbf{- 1 . 6 x}$ slower than just accessing data twice (Gleich and Benson)
- Sequential
- "Infinite speedup" for out-of-core on PowerPC laptop
- As little as $2 x$ slowdown vs (predicted) infinite DRAM
- LAPACK with virtual memory never finished
- SVD costs about the same
- Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others

TSQR Performance Results

- Parallel
- Intel Clovertown
- Up to 8x speedup (8 core, dual socket, 10M x 10)
- Pentium III cluster, Dolphin Interconnect, MPICH
- Up to 6.7x speedup (16 procs, 100K x 200)
- BlueGene/L
- Up to $4 x$ speedup (32 procs, $1 \mathrm{M} \times 50$)
- Tesla C 2050 / Fermi
- Up to $13 x(110,592 \times 100)$
- Grid - 4x on 4 cities vs 1 city (Dongarra, Langou et al)
- Cloud $\mathbf{- 1 . 6 x}$ slower than just accessing data twice (Gleich and Benson)
- Sequential
- "Infinite speedup" for out-of-core on PowerPC laptop
- As little as $2 x$ slowdown vs (predicted) infinite DRAM
- LAPACK with virtual memory never finished

SIAG on Supercomputing Best Paper Prize, 2016

Outline

- Survey state of the art of CA (Comm-Avoiding) algorithms
- Review previous Matmul algorithms
- CA O(n³) 2.5D Matmul
- TSQR: Tall-Skinny QR
- CA O(n³) 2.5D LU
- CA Strassen Matmul
- Beyond linear algebra
- Extending lower bounds to any algorithm with arrays
- Communication-optimal N-body algorithm
- CA-Krylov methods

Back to LU: Using similar idea for TSLU as TSQR: Use reduction tree, to do "Tournament Pivoting"

$$
\begin{aligned}
& \left(\frac{W_{1}}{W_{2}}\right) \quad\left(\frac{P_{1} \cdot L_{1} \cdot U_{1}}{P_{2} \cdot L_{2} \cdot U_{2}}\right) \quad \text { Choose } b \text { pivot rows of } W_{1} \text {, call them } W_{1}, \\
& \text { Choose b pivot rows of } W_{2} \text {, call them } W_{2} \text {, } \\
& \text { Choose b pivot rows of } W_{3} \text {, call them } W_{3} \text {, } \\
& \text { Choose b pivot rows of } W_{4} \text {, call them } W_{4} \text {, } \\
& \begin{array}{l}
\left(\begin{array}{l}
W_{1}^{\prime} \\
W_{2}^{\prime} \\
W_{3}^{\prime} \\
W_{4}^{\prime}
\end{array}\right)=\left(\frac{P_{12} \cdot L_{12} \cdot U_{12}}{P_{34} \cdot L_{34} \cdot U_{34}}\right) \quad \begin{array}{l}
\text { Choose b pivot rows, } \\
\text { Choose b pivot rows, }
\end{array} \\
\binom{W_{12}^{\prime},}{W_{34}}=P_{1234} \cdot L_{1234} \cdot U_{1234} \text { Choose } b \text { pivot rows }
\end{array}
\end{aligned}
$$

- Go back to W and use these b pivot rows
- Move them to top, do LU without pivoting
- Extra work, but lower order term
- Thm: As numerically stable as Partial Pivoting on a larger matrix

Exascale Machine Parameters Source: DOE Exascale Workshop

- 2^20 \approx 1,000,000 nodes
- 1024 cores/node (a billion cores!)
- 100 GB /sec interconnect bandwidth
- 400 GB/sec DRAM bandwidth
- 1 microsec interconnect latency
- 50 nanosec memory latency
- 32 Petabytes of memory
- $1 / 2$ GB total L1 on a node

Exascale predicted speedups for Gaussian Elimination: 2D CA-LU vs ScaLAPACK-LU

Ongoing Work

- Lots more work on
- Algorithms:
- BLAS, LDL ${ }^{\top}$, QR with pivoting, other pivoting schemes, eigenproblems, ...
- Sparse matrices, structured matrices
- All-pairs-shortest-path, ...
- Both 2D (c=1) and 2.5D (c>1)
- But only bandwidth may decrease with c>1, not latency (eg LU)
- Platforms:
- Multicore, cluster, GPU, cloud, heterogeneous, low-energy, ...
- Software:
- Integration into Sca/LAPACK, PLASMA, MAGMA,...
- Integration into applications
- CTF (with ANL): symmetric tensor contractions

Outline

- Survey state of the art of CA (Comm-Avoiding) algorithms
- Review previous Matmul algorithms
- CA O(n³) 2.5D Matmul and LU
- TSQR: Tall-Skinny QR
- CA Strassen Matmul
- Beyond linear algebra
- Extending lower bounds to any algorithm with arrays
- Communication-optimal N -body algorithm
- CA-Krylov methods
- Related Topics

Communication Lower Bounds for Strassen-like matmul algorithms

Classical $\mathrm{O}\left(\mathrm{n}^{3}\right)$ matmul:
\#words_moved = $\Omega\left(M\left(n / M^{1 / 2}\right)^{3} / P\right)$

\#words_moved =
$\Omega\left(M\left(n / M^{1 / 2}\right)^{\lg 7} / P\right)$

> Strassen-like $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$ matmul: \#words_moved = $\Omega\left(M\left(n / M^{1 / 2}\right)^{\omega} / P\right)$

- Proof: graph expansion (different from classical matmul)
- Strassen-like: DAG must be "regular" [and connected]
- Extends up to $\mathrm{M}=\mathrm{n}^{2} / \mathrm{p}^{2 / \omega}$
- Best Paper Prize (SPAÁ11), Ballard, D., Holtz, Schwartz, also in JACM
- Is the lower bound attainable?

Communication Avoiding Parallel Strassen (CAPS)

Runs all 7 multiplies in parallel Each on $\mathrm{P} / 7$ processors
Needs 7/4 as much memory
vs.

Runs all 7 multiplies sequentially Each on all P processors
Needs $1 / 4$ as much memory

CAPS

If EnoughMemory and $P \geq 7$ then BFS step
else DFS step
end if

Best way to interleave BFS and DFS is a tuning parameter

Performance Benchmarking, Strong Scaling Plot Franklin (Cray XT4) n = 94080

Outline

- Survey state of the art of CA (Comm-Avoiding) algorithms
- Review previous Matmul algorithms
- CA O(n ${ }^{3}$) 2.5D Matmul and LU
- TSQR: Tall-Skinny QR
- CA Strassen Matmul
- Beyond linear algebra
- Extending lower bounds to any algorithm with arrays
- Communication-optimal N -body algorithm
- CA-Krylov methods
- Related Topics

Recall optimal sequential Matmul

- Naïve code for $i=1: n$, for $j=1: n$, for $k=1: n, C(i, j)+=A(i, k) * B(k, j)$
- "Blocked" code
for $\mathrm{i} 1=1: b: n$, for $\mathrm{j} 1=1: b: n$, for $k 1=1: b: n$

$$
\begin{aligned}
& \text { for } i 2=0: b-1, \text { for } j 2=0: b-1, \text { for } k 2=0: b-1 \\
& i=i 1+i 2, j=j 1+j 2, k=k 1+k 2 \\
& C(i, j)+=A(i, k) * B(k, j)
\end{aligned}
$$

- Thm: Picking $b=M^{1 / 2}$ attains lower bound: \#words_moved $=\Omega\left(\mathrm{n}^{3} / \mathrm{M}^{1 / 2}\right)$
- Where does $1 / 2$ come from?

New Thm applied to Matmul

- for $\mathrm{i}=1$:n, for $\mathrm{j}=1: \mathrm{n}$, for $\mathrm{k}=1: \mathrm{n}, \mathrm{C}(\mathrm{i}, \mathrm{j})+=\mathrm{A}(\mathrm{i}, \mathrm{k})^{*} \mathrm{~B}(\mathrm{k}, \mathrm{j})$
- Record array indices in matrix Δ

$$
\Delta=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) \begin{aligned}
& \mathrm{A} \\
& \mathrm{~B} \\
& \mathrm{C}
\end{aligned}
$$

- Solve LP for $x=[x i, x j, x k]^{\top}: \max 1^{\top} x$ s.t. $\Delta x \leq 1$ - Result: $x=[1 / 2,1 / 2,1 / 2]^{\top}, 1^{\top} x=3 / 2=s_{\text {HBL }}$
- Thm: \#words_moved $=\Omega\left(n^{3} / M^{S_{\text {HBL }}-1}\right)=\Omega\left(n^{3} / M^{1 / 2}\right)$ Attained by block sizes $\mathrm{M}^{\mathrm{xi}}, \mathrm{M}^{\mathrm{xj}}, \mathrm{M}^{\mathrm{xk}}=\mathrm{M}^{1 / 2}, \mathrm{M}^{1 / 2}, \mathrm{M}^{1 / 2}$

New Thm applied to Direct N-Body

- for $i=1: n$, for $j=1: n, F(i)+=$ force $(P(i), P(j))$
- Record array indices in matrix Δ

$$
\Delta=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) \begin{gathered}
F \\
P(i) \\
P(j)
\end{gathered}
$$

- Solve LP for $\mathrm{x}=[\mathrm{xi}, \mathrm{xj}]^{\top}: \max 1^{\top} \mathrm{x}$ s.t. $\Delta \mathrm{x} \leq 1$
- Result: $x=[1,1], \mathbf{1}^{\top} x=2=s_{\text {HBL }}$
- Thm: \#words_moved $=\Omega\left(n^{2} / M^{\text {SHBL-1 }}\right)=\Omega\left(n^{2} / M^{1}\right)$

Attained by block sizes $\mathrm{M}^{\mathrm{xi}}, \mathrm{M}^{\mathrm{xj}}=\mathrm{M}^{1}, \mathrm{M}^{1}$

New Thm applied to Random Code

- for $i 1=1: n$, for $\mathrm{i} 2=1: n$, ... , for $\mathrm{i} 6=1: n$

A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))
A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6))

- Record array indices in matrix Δ
$\Delta=\left[\begin{array}{ccccc}i 1 & i 2 & i 3 & i 4 & i 5 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\]^{\top}: m a x & 1^{\top} \times & S . t . \Delta x \leq 1\end{array}\right.$
- Result: $x=[2 / 7,3 / 7,1 / 7,2 / 7,3 / 7,4 / 7], 1^{\top} x=15 / 7=s_{\text {HBL }}$
- Thm: \#words_moved $=\Omega\left(n^{6} / M^{\text {SHBL-1 }}\right)=\Omega\left(n^{6} / M^{8 / 7}\right)$ Attained by block sizes $\mathrm{M}^{2 / 7}, \mathrm{M}^{3 / 7}, \mathrm{M}^{1 / 7}, \mathrm{M}^{2 / 7}, \mathrm{M}^{3 / 7}, \mathrm{M}^{4 / 7}$

Where do lower and matching upper bounds on communication come from? ($1 / 3$)

- Originally for C = A*B by Irony/Tiskin/Toledo (2004)
- Proof idea
- Suppose we can bound \#useful_operations $\leq \mathrm{G}$ doable with data in fast memory of size M
- So to do F = \#total_operations, need to fill fast memory F/G times, and so \#words_moved \geq MF/G
- Hard part: finding G
- Attaining lower bound
- Need to "block" all operations to perform ~G operations on every chunk of M words of data

Proof of communication lower bound (2/3)

- If we have at most M " A squares", M " B squares", and M " C squares", how many cubes G can we have?60

Proof of communication lower bound (3/3)

G = \# cubes in black box with side lengths x, y and z
$=$ Volume of black box
$=x \cdot y \cdot z$
$=(x z \cdot z y \cdot y x)^{1 / 2}$
$=(\# A \square s \cdot \# B \square s \cdot \# C \square s)^{1 / 2}$
$\leq M^{3 / 2}$
(i, k) is in "A shadow" if ($i, j, k)$ in 3D set (j, k) is in " B shadow" if $(\mathrm{i}, \mathrm{j}, \mathrm{k})$ in 3D set (i, j) is in "C shadow" if $(\mathrm{i}, \mathrm{j}, \mathrm{k})$ in 3D set

Thm (Loomis \& Whitney, 1949)
G = \# cubes in 3D set = Volume of 3D set
\leq (area(A shadow) • area(B shadow) area(C shadow)) ${ }^{1 / 2}$
$\leq M^{3 / 2}$

Approach to generalizing lower bounds

- Matmul
for $i=1: n$, for $j=1: n$, for $k=1: n$,

$$
C(i, j)+=A(i, k) * B(k, j)
$$

\Rightarrow for (i, j, k) in $S=$ subset of Z^{3}
Access locations indexed by (i,j), (i,k), (k,j)

- General case
for $\mathrm{i} 1=1: n$, for $\mathrm{i} 2=\mathrm{i} 1: m, \ldots$ for $\mathrm{ik}=\mathrm{i} 3: \mathrm{i} 4$
$C(i 1+2 * i 3-i 7)=$ func $(A(i 2+3 * i 4, i 1, i 2, i 1+i 2, \ldots), B(\operatorname{pnt}(3 * i 4)), \ldots)$
$D($ something else $)=$ func(something else), ...
\Rightarrow for ($\mathrm{i} 1, \mathrm{i} 2, \ldots, \mathrm{ik}$) in $\mathrm{S}=$ subset of Z^{k}
Access locations indexed by group homomorphisms, eg

$$
\begin{aligned}
& \phi_{C}(i 1, i 2, \ldots, i k)=(i 1+2 * i 3-i 7) \\
& \phi_{A}(i 1, i 2, \ldots, i k)=(i 2+3 * i 4, i 1, i 2, i 1+i 2, \ldots), \ldots
\end{aligned}
$$

- Goal: Communication lower bounds, optimal algorithms for any program that looks like this

Approach to generalizing lower bounds

- Matmul
for $i=1: n$, for $j=1: n$, for $k=1: n$,

$$
C(i, j)+=A(i, k) * B(k, j)
$$

\Rightarrow for (i, j, k) in $S=$ subset of Z^{3}
Access locations indexed by (i,j), (i,k), (k,j)

- General case
for $\mathrm{i} 1=1: \mathrm{n}$, for $\mathrm{i} 2=\mathrm{i} 1: m, \ldots$ for $\mathrm{ik}=\mathrm{i} 3: \mathrm{i} 4$
$C(i 1+2 * i 3-i 7)=$ func $(A(i 2+3 * i 4, i 1, i 2, i 1+i 2, \ldots), B(\operatorname{pnt}(3 * i 4)), \ldots)$
$D($ something else $)=$ func(something else), ...
\Rightarrow for ($\mathrm{i} 1, \mathrm{i} 2, \ldots, \mathrm{ik}$) in $\mathrm{S}=$ subset of Z^{k}
Access locations indexed by group homomorphisms, eg

$$
\begin{aligned}
& \phi_{\mathrm{C}}(\mathrm{i} 1, \mathrm{i} 2, \ldots, i k)=(i 1+2 * i 3-\mathrm{i} 7) \\
& \phi_{\mathrm{A}}(\mathrm{i} 1, \mathrm{i} 2, \ldots, \mathrm{ik})=(\mathrm{i} 2+3 * \mathrm{i} 4, \mathrm{i} 1, \mathrm{i} 2, \mathrm{i} 1+\mathrm{i} 2, \ldots), \ldots
\end{aligned}
$$

- Can we bound \#loop_iterations (=|S|)
given bounds on \#points in its images, i.e. bounds on $\left|\phi_{C}(S)\right|,\left|\phi_{A}(S)\right|, \ldots$?

General Communication Bound

- Given subset of loop iterations, how much data do we need?
- Given S subset of Z^{k}, group homomorphisms $\phi_{1}, \phi_{2}, \ldots$, bound $|S|$ in terms of $\left|\phi_{1}(S)\right|,\left|\phi_{2}(S)\right|, \ldots,\left|\phi_{m}(S)\right|$
- Def: Hölder-Brascamp-Lieb LP (HBL-LP) for $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}$: for all subgroups $H<Z^{k}, \quad \operatorname{rank}(H) \leq \Sigma_{j} s_{j}{ }^{*} \operatorname{rank}\left(\phi_{j}(H)\right)$
- Thm (Christ/Tao/Carbery/Bennett): Given $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}$

$$
|S| \leq \Pi_{j}\left|\phi_{j}(S)\right|^{S_{j}}
$$

- Thm: Given a program with array refs given by ϕ_{j}, choose s_{j} to minimize $\mathrm{s}_{\mathrm{HBL}}=\Sigma_{\mathrm{j}} \mathrm{s}_{\mathrm{j}}$ subject to HBL-LP. Then
\#words_moved $=\Omega$ (\#iterations/M ${ }^{\text {SHel-1 }}$)

General Communication Bound

- Given S subset of Z^{k}, group homomorphisms $\phi_{1}, \phi_{2}, \ldots$, bound $|S|$ in terms of $\left|\phi_{1}(\mathrm{~S})\right|,\left|\phi_{2}(\mathrm{~S})\right|, \ldots,\left|\phi_{m}(\mathrm{~S})\right|$
- Def: Hölder-Brascamp-Lieb LP (HBL-LP) for $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}$: for all subgroups $H<Z^{k}, \quad \operatorname{rank}(H) \leq \Sigma_{j} s_{j}^{*} \operatorname{rank}\left(\phi_{j}(H)\right)$
- Thm (Christ/Tao/Carbery/Bennett): Given $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}$

$$
|S| \leq \Pi_{j}\left|\phi_{j}(S)\right|^{S_{j}}
$$

- Thm: Given a program with array refs given by ϕ_{j}, choose s_{j} to minimize $\mathrm{s}_{\mathrm{HBL}}=\Sigma_{\mathrm{j}} \mathrm{s}_{\mathrm{j}}$ subject to HBL-LP. Then \#words_moved $=\Omega$ (\#iterations/M ${ }^{\text {sнвв }}$ -)

Is this bound attainable?

- But first: Can we write it down?
- Thm: (bad news) HBL-LP reduces to Hilbert's $10^{\text {th }}$ problem over Q (conjectured to be undecidable)
- Thm: (good news) Another LP with same solution is decidable
- Depends on loop dependencies
- Best case: none, or reductions (like matmul)
- Thm: In many cases, solution x of Dual HBL-LP gives optimal tiling
- Ex: For Matmul, $x=[1 / 2,1 / 2,1 / 2]$ so optimal tiling is $M^{1 / 2} \times M^{1 / 2} \times M^{1 / 2}$

New Thm applied to Direct N-Body

- for $i=1: n$, for $j=1: n, F(i)+=$ force $(P(i), P(j))$
- Record array indices in matrix Δ

$$
\Delta=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) \begin{gathered}
F \\
P(i) \\
P(j)
\end{gathered}
$$

- Solve LP for $\mathrm{x}=[\mathrm{xi}, \mathrm{xj}]^{\top}: \max 1^{\top} \mathrm{x}$ s.t. $\Delta \mathrm{x} \leq 1$
- Result: $x=[1,1], \mathbf{1}^{\top} x=2=s_{\text {HBL }}$
- Thm: \#words_moved $=\Omega\left(n^{2} / M^{\text {SHBL-1 }}\right)=\Omega\left(n^{2} / M^{1}\right)$

Attained by block sizes $\mathrm{M}^{\mathrm{xi}}, \mathrm{M}^{\mathrm{xj}}=\mathrm{M}^{1}, \mathrm{M}^{1}$

N-Body Speedups on IBM-BG/P (Intrepid) 8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor

Variable Loop Bounds are More Complicated

- Redundancy in n -body calculation $\mathrm{f}(\mathrm{i}, \mathrm{j}), \mathrm{f}(\mathrm{j}, \mathrm{i})$
- k-way n-body problems ("k-body") has even more

- Can achieve both communication and computation (symmetry exploiting) optimal

Some Applications

- Gravity, Turbulence, Molecular Dynamics, Plasma Simulation, ...
- Electron-Beam Lithography Device Simulation
- Hair ...
- www.fxguide.com/featured/brave-new-hair/
- graphics.pixar.com/library/CurlyHairA/paper.pdf

Is this bound attainable (1/2)?

- But first: Can we write it down?
- Thm: (bad news) HBL-LP reduces to Hilbert's $10^{\text {th }}$ problem over Q (conjectured to be undecidable)
- Thm: (good news) Another LP with same solution is decidable (but expensive, so far)
- Thm: (better news) Easy to write down LP explicitly in many cases of interest (eg all $\phi_{\mathrm{j}}=\{$ subset of indices $\}$)
- Thm: (good news) Easy to approximate, i.e. get upper or lower bounds on $\mathrm{s}_{\mathrm{HBL}}$

Is this bound attainable (2/2)?

- Depends on loop dependencies
- Best case: none, or reductions (matmul)
- Thm: When all $\phi_{\mathrm{j}}=\{$ subset of indices\}, dual of HBL-LP gives optimal tile sizes:

HBL-LP: minimize $1^{\top *}$ s s.t. $s^{\top *} \Delta \geq 1^{\top}$
Dual-HBL-LP: maximize $1^{\top *} x$ s.t. $\Delta^{*} x \leq 1$ Then for sequential algorithm, tile i_{j} by $\mathrm{M}^{\mathrm{x}_{\mathrm{j}}}$

- Ex: Matmul: $s=[1 / 2,1 / 2,1 / 2]^{\top}=x$
- Extends to unimodular transforms of indices

Ongoing Work

- Implement/improve algorithms to generate for lower bounds, optimal algorithms
- Have yet to find a case where we cannot attain lower bound - can we prove this?
- Extend "perfect scaling" results for time and energy by using extra memory
- "n.5D algorithms"
- Incorporate into compilers

Ongoing Work

- Accelerate decision procedure for lower bounds - Ex: At most 3 arrays, or 4 loop nests
- Have yet to find a case where we cannot attain lower bound - can we prove this?
- Extend "perfect scaling" results for time and energy by using extra memory
- "n.5D algorithms"
- Incorporate into compilers

Outline

- Survey state of the art of CA (Comm-Avoiding) algorithms
- Review previous Matmul algorithms
- CA O(n³) 2.5D Matmul and LU
- TSQR: Tall-Skinny QR
- CA Strassen Matmul
- Beyond linear algebra
- Extending lower bounds to any algorithm with arrays
- Communication-optimal N-body algorithm
- CA-Krylov methods
- Related Topics

Avoiding Communication in Iterative Linear Algebra

- k-steps of iterative solver for sparse $A x=b$ or $A x=\lambda x$
- Does k SpMVs with A and starting vector
- Many such "Krylov Subspace Methods"
- Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, ...
- Goal: minimize communication
- Assume matrix "well-partitioned"
- Serial implementation
- Conventional: O(k) moves of data from slow to fast memory
- New: O(1) moves of data - optimal
- Parallel implementation on p processors
- Conventional: O(k $\log p$) messages (k SMV calls, dot prods)
- New: O(log p) messages - optimal
- Lots of speed up possible (modeled and measured)
- Price: some redundant computation
- Challenges: Poor partitioning, Preconditioning, Num. Stability

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [$\left.A x, A^{2} x, \ldots, A^{k} x\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$

```
    x \bullet \bullet \bullet \bullet \bullet \bullet \bullet 0
        1 2 3 % ..
```


$A \cdot x \bullet \bullet$
... 32

- Example: A tridiagonal, n=32, k=3
- Works for any "well-partitioned" A

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [$\left.\mathrm{Ax}, \mathrm{A}^{2} \mathrm{x}, \ldots, \mathrm{A}^{k} \mathrm{x}\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$

$$
\begin{align*}
& A \cdot x \bullet \\
& x \quad 0 \cdot \\
& 1234 \ldots
\end{align*}
$$

- Example: A tridiagonal, n=32, k=3

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [$\left.\mathrm{Ax}, \mathrm{A}^{2} \mathrm{x}, \ldots, \mathrm{A}^{k} \mathrm{x}\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$

$$
\begin{align*}
& A \cdot x \bullet \\
& x \quad \bullet \bullet \bullet \bullet \bullet \bullet \quad \bullet \\
& 1234 \ldots
\end{align*}
$$

- Example: A tridiagonal, n=32, k=3

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [$\left.\mathrm{Ax}, \mathrm{A}^{2} \mathrm{x}, \ldots, \mathrm{A}^{k} \mathrm{x}\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$

$$
\begin{align*}
& A \cdot x \bullet \\
& x \quad \bullet \bullet \bullet \bullet \bullet \bullet \quad \bullet \\
& 1234 \ldots
\end{align*}
$$

- Example: A tridiagonal, n=32, k=3

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [$\left.\mathrm{Ax}, \mathrm{A}^{2} \mathrm{x}, \ldots, \mathrm{A}^{k} \mathrm{x}\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$

$$
\begin{align*}
& A \cdot x \bullet \\
& x \quad \bullet \\
& 1234 \ldots
\end{align*}
$$

- Example: A tridiagonal, n=32, k=3

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [Ax, $\left.\mathrm{A}^{2} \mathrm{x}, \ldots, \mathrm{A}^{k} \mathrm{x}\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$

- Example: A tridiagonal, n=32, k=3

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [Ax, $\left.\mathrm{A}^{2} \mathrm{x}, \ldots, \mathrm{A}^{k} \mathrm{x}\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$
- Sequential Algorithm

$$
1234 \ldots
$$

- Example: A tridiagonal, $\mathrm{n}=32, \mathrm{k}=3$

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [$\left.A x, A^{2} x, \ldots, A^{k} x\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$
- Sequential Algorithm

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [Ax, $\left.\mathrm{A}^{2} \mathrm{x}, \ldots, \mathrm{A}^{k} \mathrm{x}\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$
- Sequential Algorithm

- Example: A tridiagonal, $\mathrm{n}=32, \mathrm{k}=3$

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [Ax, $\left.\mathrm{A}^{2} \mathrm{x}, \ldots, \mathrm{A}^{k} \mathrm{x}\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$
- Sequential Algorithm

$$
1234 \ldots
$$

- Example: A tridiagonal, n=32, k=3

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [$\left.A x, A^{2} x, \ldots, A^{k} x\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$
- Parallel Algorithm

- Example: A tridiagonal, $\mathrm{n}=32, \mathrm{k}=3$
- Each processor communicates once with neighbors

Communication Avoiding Kernels:

 The Matrix Powers Kernel : [$\left.A x, A^{2} x, \ldots, A^{k} x\right]$- Replace k iterations of $y=A \cdot x$ with $\left[A x, A^{2} x, \ldots, A^{k} x\right]$
- Parallel Algorithm

$$
1234 \ldots
$$

- Example: A tridiagonal, $\mathrm{n}=32, \mathrm{k}=3$
- Each processor works on (overlapping) trapezoid

The Matrix Powers Kernel : $\left[A x, A^{2} x, \ldots, A^{k} x\right]$ on a general matrix (nearest k neighbors on a graph)

Simple block-row partitioning \rightarrow (hyper)graph partitioning

Top-to-bottom processing \rightarrow
Traveling Salesman Problem
Same idea for general sparse matrices: k-wide neighboring region

Minimizing Communication of GMRES to solve $A x=b$

- GMRES: find x in span\{b,Ab,..., $\left.A^{k} b\right\}$ minimizing || $A x-b| |_{2}$

Standard GMRES
for $i=1$ to k
$$
w=A \cdot v(i-1) \quad \ldots \text { SpMv }
$$
$$
\operatorname{MGS}(w, v(0), \ldots, v(i-1))
$$
update $\mathrm{v}(\mathrm{i}), \mathrm{H}$
endfor
solve LSQ problem with H

Communication-avoiding GMRES

$$
W=\left[v, A v, A^{2} v, \ldots, A^{k} v\right]
$$

$$
[\mathrm{Q}, \mathrm{R}]=\operatorname{TSQR}(\mathrm{W})
$$

... "Tall Skinny QR"
build H from R
solve LSQ problem with H

Sequential case: \#words moved decreases by a factor of k Parallel case: \#messages decreases by a factor of k

Matrix Powers Kernel + TSQR in GMRES

Speed ups of GMRES on 8-core Intel Clovertown Requires Co-tuning Kernels

[MHDY09]
Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices, using 8 threads and restart length 60

CA-BiCGStab

$$
\text { For } \ell=0 \text { to } s-2 j+1, \text { Do }
$$

$$
\text { For } \ell=0 \text { to } s-2 j, \text { Do }
$$

$$
\text { For } \ell=0 \text { to } s-2 j \text {, Do }
$$

EndDo
For $j=0$ to $\left\lfloor\frac{s}{2}\right\rfloor-1$, Do

$$
\alpha_{s k+j}=\frac{<g, d_{s k+j}^{0}>}{<g, b_{s k+j}^{1}>}
$$

$$
q_{s k+j}=r_{s k+j}-\alpha_{s k+j}[P, Q, R] b_{s k+j}^{1}
$$

$$
c_{s k+j}^{\ell}=d_{s k+j}^{\ell}-\alpha_{s k+j} b_{s k+j-1}^{\ell+1}
$$

$$
/ / \text { such that }[P, Q, R] c_{s k+j}^{\ell}=A^{\ell} q_{s k+j}
$$

$$
\omega_{s k+j}=\frac{<c_{s k+j+1}^{1}, G c_{s k+j+1}^{0}>}{\left\langle c_{s k+j+1}^{1}, G c_{s k+j+1}^{1}\right\rangle}
$$

$$
x_{s k+j+1}=x_{s k+j}+\alpha_{s k+j} p_{s k+j}+\omega_{s k+j} q_{s k+j}
$$

$$
r_{s k+j+1}=q_{s k+j}-\omega_{s k+j}[P, Q, R] c_{s k+j+1}^{1}
$$

$$
d_{s k+j+1}^{\ell}=c_{s k+j+1}^{\ell}-\omega_{s k+j} c_{s k+j+1}^{\ell+1}
$$

$$
/ / \text { such that }[P, Q, R] d_{s k+j+1}^{\ell}=A^{\ell} r_{s k+j+1}
$$

$$
\beta_{s k+j}=\frac{\left\langle g, d_{s k+j+1}^{0}\right\rangle}{\left\langle g, d_{s k+j}^{0}\right\rangle} \times \frac{\alpha}{\omega}
$$

$$
p_{s k+j+1}=r_{s k+j+1}+\beta_{s k+j} p_{s k+j}-\beta_{s k+j} \omega_{s k+j}[P, Q, R] b_{s k+j}^{1}
$$

$$
b_{s k+j+1}^{\ell}=d_{s k+j+1}^{\ell}+\beta_{s k+j} b_{s k+j}^{\ell}-\beta_{s k+j} \omega_{s k+j} b_{s k+j}^{\ell+1}
$$

$$
/ / \text { such that }[P, Q, R] b_{s k+j+1}^{\ell}=A^{\ell} p_{s k+j+1}
$$

EndDo
10. $p_{j+1}:=r_{j+1}+\beta_{j}\left(p_{j}-\omega_{j} A p_{j}\right)$
11. EndDo

Speedups for GMG w/CA-KSM Bottom Solve

- Compared BICGSTAB vs. CA-BICGSTAB with $\mathrm{s}=4$ (monomial basis)
- Hopper at NERSC (Cray XE6), weak scaling: Up to 4096 MPI processes (1 per chip, 24,576 cores total)

- Speedups for miniGMG benchmark (HPGMG benchmark predecessor) -4.2x in bottom solve, $2.5 x$ overall GMG solve
- Implemented as a solver option in BoxLib and CHOMBO AMR frameworks
- Speedups for two BoxLib applications:
-3D LMC (a low-mach number combustion code)
- 2.5x in bottom solve, 1.5x overall GMG solve
-3D Nyx (an N-body and gas dynamics code)
- $2 x$ in bottom solve, 1.15x overall GMG solve

Communication-Avoiding Machine Learning

- CA-technique extends to other iterative ML methods
- Coordinate descent of the minimization problem:

$$
\underset{\alpha \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2 n}\|\alpha+y\|_{2}^{2}+\frac{\lambda}{2}\left\|\frac{1}{\lambda n} X \alpha\right\|_{2}^{2}
$$

CD algorithm
Until convergence do:

1. Randomly select a data point, x_{i}
2. Solve minimization problem for x_{i}
3. Update solution vector

$$
\begin{gathered}
\text { Flops }=O\left(\frac{H d}{P}\right), \\
\text { Messages }=O(H \log P), \\
\text { Words }=0(\mathrm{H})
\end{gathered}
$$

Dot products and axpys

Communication-Avoiding Coordinate Descent

CA-CD algorithm
Until convergence do:

1. Randomly select s data points
2. Compute Gram matrix
3. Solve minimization problem for all data points
4. Update solution vector

GEMM, dot products, and axpys

- We expect $1^{\text {st }}$ flops term to dominate
- MPI: choose s that balances cost
- Spark: choose large s to minimize rounds
- Parallel implementations in progress

$$
\begin{gathered}
\text { Flops }=O\left(\frac{H s d}{P}+H s\right), \\
\text { Messages }=O\left(\frac{H}{S} \log P\right), \\
\text { Words }=0(\mathrm{Hs})
\end{gathered}
$$

Numerically stable for (very) large s

Summary of Iterative Linear Algebra

- New lower bounds, optimal algorithms, big speedups in theory and practice
- Lots of other progress, open problems
- Many different algorithms reorganized
- More underway, more to be done
- Need to recognize stable variants more easily
- Preconditioning
- Hierarchically Semiseparable Matrices
- Autotuning and synthesis
- Different kinds of "sparse matrices"

Outline

- Survey state of the art of CA (Comm-Avoiding) algorithms
- Review previous Matmul algorithms
- CA O(n³) 2.5D Matmul and LU
- TSQR: Tall-Skinny QR
- CA Strassen Matmul
- Beyond linear algebra
- Extending lower bounds to any algorithm with arrays
- Communication-optimal N -body algorithm
- CA-Krylov methods
- Related Topics
- Write-Avoiding Algorithms
- Reproducilibity

Write-Avoiding Algorithms

- What if writes are more expensive than reads?
- Nonvolatile Memory (Flash, PCM, ...)
- Saving intermediates to disk in cloud (eg Spark)
- Extra coherency traffic in shared memory
- Can we design "write-avoiding (WA)" algorithms?
- Goal: find and attain better lower bound for writes
- Thm: For classical matmul, possible to do asymptotically fewer writes than reads to given layer of memory hierarchy
- Thm: Cache-oblivious algorithms cannot be write-avoiding
- Thm: Strassen and FFT cannot be write-avoiding

Measured L3-DRAM traffic on Intel Nehalem Xeon-7560

Optimal \#DRAM reads $=\mathrm{O}\left(\mathrm{n}^{3} / \mathrm{M}^{1 / 2}\right)$ Optimal \#DRAM writes $=n^{2}$

Cache-Oblivious Matmul \#DRAM reads close to optimal \#DRAM writes much larger

Write-Avoiding Matmul
Total L3 misses close to optimal
Total DRAM writes much larger

Measured L3-DRAM traffic on Intel Nehalem Xeon-7560

Optimal \#DRAM reads $=O\left(n^{3} / M^{1 / 2}\right)$ Optimal \#DRAM writes $=\mathrm{n}^{2}$

Intel MKL Matmul \#DRAM reads $>2 x$ optimal \#DRAM writes much larger

Write-Avoiding Matmul
Total L3 misses close to optimal
Total DRAM writes much larger

Reproducibility

- Want bit-wise identical results from different runs of the same program on the same machine, possibly with different available resources
- Needed for testing, debugging, correctness.
- Requested by users (e.g. FEM, climate modeling, ...)
- Hard just for summation, since floating point arithmetic is not associative because of roundoff

$$
-(1 \mathrm{e}-16+1)-1 \neq 1 \mathrm{e}-16+(1-1)
$$

Reproducible Floating Point Computation

- Get bit-wise identical answer when you type a.out again
- NA-Digest submission on 8 Sep 2010
- From Kai Diethelm, at GNS-MBH
- Sought reproducible parallel sparse linear equation solver, demanded by customers (construction engineers), otherwise they don't believe results
- Willing to sacrifice 40\%-50\% of performance for it
- Email to ~110 Berkeley CSE faculty, asking about it
- Most: "What?! How will I debug without reproducibility?"
- Few: "I know better, and do careful error analysis"
- S. Govindjee: needs it for fracture simulations
- S. Russell: needs it for nuclear blast detection

Intel MKL non-reproducibility

Vector size: 1e6. Data aligned to 16-byte boundaries. For each input vector:

- Dot products are computed using 1, 2, 3 or 4 threads
- Absolute error = maximum - minimum
- Relative error = Absolute error / maximum absolute value

Absolute Error for Random Vectors

- Intel MKL 11.2 with CBWR: reproducible only for fixed number of threads and using the same instruction set (SSE2/AVX)

Goals/Approaches for Reproducible Sum

- Goals

1. Same answer, independent of layout, \#processors, order of summands
2. Good performance (scales well)
3. Portable (assume IEEE 754 only)
4. User can choose accuracy

- Approaches
- Guarantee fixed reduction tree (not 2. or 3.)
- Use (very) high precision to get exact answer (not 2.)
- Our approach (Nguyen, Ahrens, D.)
- Oversimplified:

1. Compute $\mathrm{A}=$ maximum absolute value (reproducible)
2. Round all summands to one ulp in A
3. Compute sum; rounding causes them to act like fixed point numbers

- Possible with one pass over data, one reduction operation, using just a 6 word "reproducible accumulator"

Performance results on 1024 proc Cray XC30 $1.2 x$ to $3.2 x$ slowdown vs fastest code, for $n=1 M$

Reproducible Software and Hardware

- Software for Reproducible BLAS 1 available at bebop.cs.berkeley.edu/reproblas
- BLAS2, 3 under development
- Used Chisel (hardware design language) to design one new instruction that would make reproducible summation as fast (and more accurate) than standard summation
- Industrial interest

Reproducible Software and Hardware

- Software for Reproducible BLAS available at bebop.cs.berkeley.edu/reproblas
- IEEE 754 Floating Point Standards Committee considering adding new instruction that would accelerate this
- BLAS Standard Committee also considering adding these
- Industrial interest

For more details

- Bebop.cs.berkeley.edu
- 155 page survey in Acta Numerica
- CS267 - Berkeley's Parallel Computing Course
- Live broadcast in Spring 2016
- www.cs.berkeley.edu/~demmel
- All slides, video available
- Available as SPOC from XSEDE
- www.xsede.org
- Free supercomputer accounts to do homework
- Free autograding of homework

Collaborators and Supporters

- James Demmel, Kathy Yelick, Michael Anderson, Grey Ballard, Erin Carson, Aditya Devarakonda, Michael Driscoll, David Eliahu, Andrew Gearhart, Evangelos Georganas, Nicholas Knight, Penporn Koanantakool, Ben Lipshitz, Oded Schwartz, Edgar Solomonik, Omer Spillinger
- Austin Benson, Maryam Dehnavi, Mark Hoemmen, Shoaib Kamil, Marghoob Mohiyuddin
- Abhinav Bhatele, Aydin Buluc, Michael Christ, Ioana Dumitriu, Armando Fox, David Gleich, Ming Gu, Jeff Hammond, Mike Heroux, Olga Holtz, Kurt Keutzer, Julien Langou, Devin Matthews, Tom Scanlon, Michelle Strout, Sam Williams, Hua Xiang
- Jack Dongarra, Dulceneia Becker, Ichitaro Yamazaki
- Sivan Toledo, Alex Druinsky, Inon Peled
- Laura Grigori, Sebastien Cayrols, Simplice Donfack, Mathias Jacquelin, Amal Khabou, Sophie Moufawad, Mikolaj Szydlarski
- Members of FASTMath, ParLab, ASPIRE, BEBOP, CACHE, EASI, MAGMA, PLASMA
- Thanks to DOE, NSF, UC Discovery, INRIA, Intel, Microsoft, Mathworks, National Instruments, NEC, Nokia, NVIDIA, Samsung, Oracle
- bebop.cs.berkeley.edu

Summary

Time to redesign all linear algebra, n-body, ... algorithms and software (and compilers)

Don't Communic...

