
8/4/16 1

Adaptive Linear Solvers and Eigensolvers

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

July 31 – August 12, 2016

Dense Linear Algebra
¨ Common Operations

¨ A major source of large dense linear systems is problems
involving the solution of boundary integral equations.
Ø The price one pays for replacing three dimensions with two

is that what started as a sparse problem in O(n3) variables
is replaced by a dense problem in O(n2).

¨ Dense systems of linear equations are found in numerous
other applications, including:
Ø airplane wing design;
Ø radar cross-section studies;
Ø flow around ships and other off-shore constructions;
Ø diffusion of solid bodies in a liquid;
Ø noise reduction; and
Ø diffusion of light through small particles.

2

Ax = b; min
x

|| Ax − b ||; Ax = λx

8/4/16

Existing Math Software - Dense LA

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

¨LINPACK, EISPACK, LAPACK, ScaLAPACK
ØPLASMA, MAGMA 38/4/16

DLA Solvers

• We are interested in developing
Dense Linear Algebra Solvers

• Retool LAPACK and ScaLAPACK for
multicore and hybrid architectures

8/4/16
4

40 Years Evolving SW and Alg
Tracking Hardware Developments

Software/Algorithms follow hardware evolution in time

EISPACK (70’s)
(Translation of Algol)

Rely on
- Fortran, but row oriented

LINPACK (80’s)
(Vector operations)

Rely on
- Level-1 BLAS operations
- Column oriented

LAPACK (90’s)
(Blocking, cache friendly)

Rely on
- Level-3 BLAS operations

ScaLAPACK (00’s)
(Distributed Memory)

Rely on
- PBLAS Mess Passing

PLASMA (10’s)
New Algorithms
(many-core friendly)

Rely on
- DAG/scheduler
- block data layout
- some extra kernels

6

What do you mean by performance?
◆ What is a flop/s?

Ø flop/s is a rate of execution, some number of floating point
operations per second.

» Whenever this term is used it will refer to 64 bit floating point operations
and the operations will be either addition or multiplication.

◆ What is the theoretical peak performance?
Ø The theoretical peak is based not on an actual performance

from a benchmark run, but on a paper computation to
determine the theoretical peak rate of execution of floating
point operations for the machine.

Ø The theoretical peak performance is determined by counting
the number of floating-point additions and multiplications (in
full precision) that can be completed during a period of
time, usually the cycle time of the machine.

Ø For example, an Intel Xeon Haswell dual core at 2.3 GHz
can complete 16 floating point operations per cycle or a
theoretical peak performance of 36.8 GFlop/s per core or
73.6 Gflop/s for the socket.

8/4/16

Peak Performance - Per Core

Floating point operations per cycle per core
Ê Most of the recent computers have FMA (Fused multiple add): (i.e.

x ←x + y*z in one cycle)
Ê Intel Xeon earlier models and AMD Opteron have SSE2

Ê 2 flops/cycle DP & 4 flops/cycle SP

Ê Intel Xeon Nehalem (’09) & Westmere (’10) have SSE4
Ê 4 flops/cycle DP & 8 flops/cycle SP

Ê Intel Xeon Sandy Bridge(’11) & Ivy Bridge (’12) have AVX
Ê 8 flops/cycle DP & 16 flops/cycle SP

Ê Intel Xeon Haswell (’13) & (Broadwell (’14)) AVX2
Ê 16 flops/cycle DP & 32 flops/cycle SP

Ê Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP

Ê Intel Xeon Skylake (server) AVX 512
Ê 32 flops/cycle DP & 64 flops/cycle SP

Ê Knight’s Landing

We
are
here

CPU Access Latencies in Clock Cycles

In 167 cycles can do 2672 DP Flops

Cycles

Cycles

Memory	transfer
• One	level	of	memory	model	on	my	laptop:

25.6	GB/sec

Cache
(6	MB)

CPU

Main	memory
(16	GB)

The	model	IS	simplified	(see	next	slide)	but	it	provides	an	upper	bound	on	
performance	as	well.	I.e.,	we	will	never	go	faster	than	what	the	model	predicts.	(
And,	of	course,	we	can	go	slower	…)

(Omitting	 latency	here.)

56	GFLOP/sec/core	x	2	cores
Intel	iCore7	4850HQ

Haswell
Cycle	time	 =	2.3	GHz
Turbo	Boost	=	3.5	GHz
3.5	GHz*16	flops/cycle	=	

56	Gflop/s	per	core	

8/4/16 9

FMA:	fused	multiply-add
α +	AXPY:

y x y

DOT:
y xT yα

for (j	=	0;	j	<	n;	j++)
y[i]	+=	a	*	x[i];

(without increment)

alpha =	0e+00;
for (j	=	0;	j	<	n;	j++)

alpha +=	x[i]	*	y[i];

(without increment)

n	MUL
n	ADD
2n	FLOP
n FMA

n	MUL
n	ADD
2n	FLOP
n FMA

Note:	 It	is	reasonable	 to	expect	the	one	loop	codes	shown	here	to	perform	as	well	as	
their	Level	1	BLAS	counterpart	(on	multicore	with	an	OpenMP pragma	for	example).	

The	true	gain	these	 days	with	using	the	BLAS	is	 (1)	Level	3	BLAS,	and	(2)	portability.

• Take	two	double	precision	vectors	x	and	y	of	size	
n=375,000.

• Data	size:	
– (375,000	double)	*	(8	Bytes	/	double)	=	3	MBytes
per	vector

(Two	vectors	fit	in	cache	(6	MBytes).	OK.)	

• Time	to	move	the	vectors	from	memory	to	cache:
– (6	MBytes)	/	(25.6	GBytes/sec)	=	0.23	ms

• Time	to	perform	computation	of	DOT:
– (2n	flop)	/	(56	Gflop/sec)	=	0.01	ms

DOT:
y xT yα

Vector	Operations	

total_time ≥ max	(time_comm ,	time_comp)
=	max	(0.23ms	,	0.01ms)	=	0.23ms

Performance	 =	(2	x	375,000	flops)/.23ms	=	3.2	Gflop/s

Performance	for	DOT	≤	3.2	Gflop/s
Peak	is	56	Gflop/s

We	say	that	the	operation	is	communication	
bounded.	No	reuse	of	data.

Level	1,	2	and	3	BLAS

Level	2	BLAS		Matrix-Vector	operations

Level	1	BLAS		Matrix-Vector	operations

Level	3	BLAS		Matrix-Matrix	operations

C A C
B

α +	β

α +	AXPY:
y x y

DOT:
y xT yα

α +	GEMV:
y x y

A

GEMM:

2n	FLOP
2n	memory reference
AXPY:	2n	READ,	n	WRITE
DOT:			2n	READ

RATIO:	1

2n2 FLOP
n2 memory references

RATIO:	2

2n3 FLOP
3n2 memory references
3n2	READ,	n2	WRITE

RATIO:	2/3	n

• Double	precision	matrix	A	and	vectors	x	and	y	of	
size	n=860.

• Data	size:	
– (8602 +	2*860	double)	*	(8	Bytes	/	double)	~	6	
MBytes

Matrix	and	two	vectors	fit	in	cache	(6	MBytes).

• Time	to	move	the	data	from	memory	to	cache:
– (6	MBytes)	/	(25.6	GBytes/sec)	=	0.23	ms

• Time	to	perform	computation	of	DOT:
– (2n2 flop)	/	(56	Gflop/sec)	=	0.26	ms

α" +""GEMV:"
y" x" y"

A"

Matrix	- Vector	Operations	

total_time ≥ max	(time_comm ,	time_comp)
=	max	(0.23ms	,	0.26ms)	=	0.26ms

Performance	 =	(2	x	8602 flops)/.26ms	 =	5.7	Gflop/s

Performance	for	GEMV	≤	5.7	Gflop/s

Peak	is	56	Gflop/s

We	say	that	the	operation	is	communication	
bounded.	Very	little	reuse	of	data.

Performance for DOT ≤ 3.2 Gflop/s

• Take	two	double	precision	vectors	x	and	y	of	size	
n=500.

• Data	size:	
– (5002 double)	*	(8	Bytes	/	double)	=	2	MBytes per	
matrix

(Three	matrices	fit	in	cache	(6	MBytes).	OK.)	

• Time	to	move	the	matrices	in	cache:
– (6	MBytes)	/	(25.6	GBytes/sec)	=	0.23	ms

• Time	to	perform	computation	in	GEMM:
– (2n3	flop)	/	(56	Gflop/sec)	=	4.46	ms

C CBA
α +	βGEMM:

Matrix	Matrix	Operations
total_time ≥ max	(time_comm ,	time_comp)

=	max(0.23ms	,	4.46ms)	=	4.46ms
For	this	example,	communication	 time	is	less	than	6%	of	the	computation	time.	

Performance	 =	(2	x	500	3 flops)/4.69ms	=	53.3	Gflop/s
There	 is	a	lots	of	data	reuse	 in	a	GEMM;	2/3n	per	data	element.	Has	good	
temporal	locality.

If	we	assume	total_time ≈	time_comm +time_comp,	we	get	
Performance	 for	GEMM	≈	53.3	Gflop/sec

Performance	 for	DOT	≤	3.2	Gflop/s
Performance	 for	GEMV	≤	5.7	Gflop/s

(Out	of	56	Gflop/sec	possible,	 so	that	would	be	95%	peak	performance	 efficiency.)

18

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pe
rf
or
m
an
ce
	G
FL
O
P/
s

Matrix	(Vector)	Size	N	

dgemm	Level-3	BLAS
dgemv	Level-2	BLAS
daxpy	Level-1	BLAS

Level 1, 2 and 3 BLAS
1 core Intel Haswell i7-4850HQ, 2.3 GHz (Turbo Boost at 3.5 GHz);

Peak = 56 Gflop/s

1 core Intel Haswell i7-4850HQ, 2.3 GHz, Memory: DDR3L-1600MHz
6 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
The theoretical peak per core double precision is 56 Gflop/s per core.
Compiled with gcc and using Veclib

1.6 Gflop/s
3.4 Gflop/s

54 Gflop/s

Issues	

• Reuse	based	on	matrices	that	fit	into	cache.
• What	if	you	have	matrices	bigger	than	cache?

• Break	matrices	into	blocks	or	tiles	that	will	fit.

8/4/16 19

Issues	

• Reuse	based	on	matrices	that	fit	into	cache.
• What	if	you	have	matrices	bigger	than	cache?

• Break	matrices	into	blocks	or	tiles	that	will	fit.

8/4/16 20

By	the	way
Performance	for	your	laptop

• If	you	are	interested	in	running	the	
Linpack Benchmark	on	your	system	
see:https://software.intel.com/en-
us/node/157667?wapkw=mkl+linpa
ck

• Also	Intel	has	a	power	meter,	see:
https://software.intel.com/en-
us/articles/intel-power-gadget-20

8/4/16 21

The Standard LU Factorization LINPACK
1970’s HPC of the Day: Vector Architecture

Factor column
with Level 1
BLAS

Divide by
Pivot
row

Schur
complement
update
(Rank 1 update)

Main points
• Factorization column (zero) mostly sequential due to memory bottleneck
• Level 1 BLAS
• Divide pivot row has little parallelism
• Rank -1 Schur complement update is the only easy parallelize task
• Partial pivoting complicates things even further
• Bulk synchronous parallelism (fork-join)

• Load imbalance
• Non-trivial Amdahl fraction in the panel
• Potential workaround (look-ahead) has complicated implementation

Next Step

8/4/16 22

The Standard LU Factorization LAPACK
1980’s HPC of the Day: Cache Based SMP

Factor panel
with Level 1,2
BLAS

Triangular
update

Schur
complement
update

Main points
• Panel factorization mostly sequential due to memory bottleneck
• Triangular solve has little parallelism
• Schur complement update is the only easy parallelize task
• Partial pivoting complicates things even further
• Bulk synchronous parallelism (fork-join)

• Load imbalance
• Non-trivial Amdahl fraction in the panel
• Potential workaround (look-ahead) has complicated implementation

Next Step

8/4/16 23

Last Generations of DLA Software

MAGMA
Hybrid Algorithms
(heterogeneity friendly)

Rely on
- hybrid scheduler
- hybrid kernels

Software/Algorithms follow hardware evolution in time
LINPACK (70’s)
(Vector operations)

Rely on
- Level-1 BLAS

operations

LAPACK (80’s)
(Blocking, cache
friendly)

Rely on
- Level-3 BLAS

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
- PBLAS Mess Passing

PLASMA
New Algorithms
(many-core friendly)

Rely on
- a DAG/scheduler
- block data layout
- some extra kernels

8/4/16
24

Parallelization of LU and QR.
Parallelize the update:

• Easy and done in any reasonable software.
• This is the 2/3n3 term in the FLOPs count.
• Can be done efficiently with LAPACK+multithreaded BLAS

-
dgemm

-

lu()

dgetf2

dtrsm	(+	dswp)

dgemm

\

L

U

A(1)

A(2)
L

U

Fork - Join parallelism
Bulk Sync Processing

8/4/16
25

C
or

es

Time

Synchronization (in LAPACK LU)

•  Fork-join, bulk synchronous processing 27

�
�	��� �
�	��� �
�	��� �
�	��� ������

23

���	�������������

���	����
�������

�������
�������

������������������

����������������

Ø fork join
Ø bulk synchronous processing

268/4/16

PLASMA LU Factorization
Dataflow Driven

xTRSM

xGEMM

xGEMM

xGETF2

xTRSM

xTRSM

xTRSM

xGEMM
xGEMM

xGEMM

xGEMM xGEMM
xGEMM

xGEMM

xGEMM xGEMM

Numerical program generates tasks and
run time system executes tasks respecting
data dependences.

8/4/16
27

Data Layout is Critical

¨Tile data layout where each data
tile is contiguous in memory

¨Decomposed into several fine-
grained tasks, which better fit the
memory of the small core caches288/4/16

OpenMP tasking

• Added with OpenMP 3.0 (2009)
• Allows parallelization of irregular problems
• OpenMP 4.0 (2013) - Tasks can have

dependencies
• DAGs

29

Tiled Cholesky Decomposition

30

Öbjectives
Ø High utilization of each core
Ø Scaling to large number of cores
Ø Synchronization reducing algorithms

M̈ethodology
Ø Dynamic DAG scheduling
Ø Explicit parallelism
Ø Implicit communication
Ø Fine granularity / block data layout

Ärbitrary DAG with dynamic scheduling

31

Fork-join parallelism
Notice the synchronization
penalty in the presence of
heterogeneity.

Dataflow Based Design

DAG scheduled
parallelismC

or
es

Time

PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very
fast
• So windows of active

tasks are used; this
means no global critical
path

• Matrix of NBxNB tiles;
NB3 operation

• NB=100 gives 1 million
tasks

32

PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very
fast
• So windows of active

tasks are used; this
means no global critical
path

• Matrix of NBxNB tiles;
NB3 operation

• NB=100 gives 1 million
tasks

33

PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very
fast
• So windows of active

tasks are used; this
means no global critical
path

• Matrix of NBxNB tiles;
NB3 operation

• NB=100 gives 1 million
tasks

34

PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very
fast
• So windows of active

tasks are used; this
means no global critical
path

• Matrix of NBxNB tiles;
NB3 operation

• NB=100 gives 1 million
tasks

35

Example: QR Factorization

GEQRT

TSQRT

UNMQR

TSMQR

FOR k = 0 .. SIZE - 1

 A[k][k], T[k][k] <- GEQRT(A[k][k])

 FOR m = k+1 .. SIZE - 1

 A[k][k]|Up, A[m][k], T[m][k] <-
 TSQRT(A[k][k]|Up, A[m][k], T[m][k])

 FOR n = k+1 .. SIZE - 1

 A[k][n] <- UNMQR(A[k][k]|Low, T[k][k], A[k][n])

 FOR m = k+1 .. SIZE - 1

 A[k][n], A[m][n] <-
 TSMQR(A[m][k], T[m][k], A[k][n], A[m][n])

36

Input Format – Quark (PLASMA)
for (k = 0; k < A.mt; k++) {
Insert_Task(zgeqrt, A[k][k], INOUT,

T[k][k], OUTPUT);
for (m = k+1; m < A.mt; m++) {

Insert_Task(ztsqrt, A[k][k], INOUT | REGION_D|REGION_U,
A[m][k], INOUT | LOCALITY,
T[m][k], OUTPUT);

}
for (n = k+1; n < A.nt; n++) {

Insert_Task(zunmqr, A[k][k], INPUT | REGION_L,
T[k][k], INPUT,
A[k][m], INOUT);

for (m = k+1; m < A.mt; m++) {
Insert_Task(ztsmqr, A[k][n], INOUT,

A[m][n], INOUT | LOCALITY,
A[m][k], INPUT,
T[m][k], INPUT);

}
}

}

• Sequential C code
• Annotated through

QUARK-specific syntax
• Insert_Task
• INOUT, OUTPUT, INPUT
• REGION_L, REGION_U, REGION_D,

…
• LOCALITY

• Executes thru the QUARK RT to
run on multicore SMPs

37

PLASMA_[scdz]potrf[_Tile][_Async]()

l Algorithm
l equivalent to LAPACK

l Numerics

l same as LAPACK

l Performance

l comparable to vendor on few cores

l much better than vendor on many cores

Algorithms
Cholesky

0 2000 4000 6000 8000 10000 12000

0

50

100

150

200

250

Cholesky Performance (double prec.)

AMD Istanbul, 2.8 GHz, 8 sockets (48 cores)

Size

G
fl
o
p
/s

PLASMA

MKL

LAPACK

8/4/16 38

PLASMA_[scdz]getrf[_Tile][_Async]()

l Algorithm
l equivalent to LAPACK

l same pivot vector

l same L and U factors

l same forward substitution procedure

l Numerics

l same as LAPACK

l Performance

l comparable to vendor on few cores

l much better than vendor on many cores

Algorithms
LU

16 Sandy Bridge cores

8/4/16 39

PLASMA_[scdz]geqrt[_Tile][_Async]()

l Algorithm
l the same R factor as LAPACK (absolute values)

l different set of Householder reflectors

l different Q matrix

l different Q generation / application procedure

l Numerics

l same as LAPACK

l Performance

l comparable to vendor on few cores

l much better than vendor on many cores

Algorithms
incremental QR Factorization

8/4/16 40

Algorithms
incremental QR Factorization (Communication Avoiding)

PLASMA_[scdz]geqrt[_Tile][_Async]()

PLASMA_Set(
PLASMA_HOUSEHOLDER_MODE,
PLASMA_TREE_HOUSEHOLDER);

l Algorithm
l the same R factor as LAPACK (absolute values)

l different set of Householder reflectors

l different Q matrix

l different Q generation / application procedure

l Numerics

l same as LAPACK

l Performance

l absolutely superior for tall matrices

8/4/16 41

Communication Avoiding QR
Example

Quad-socket, quad-core machine Intel Xeon
EMT64 E7340 at 2.39 GHz.
Theoretical peak is 153.2 Gflop/s with 16
cores.
Matrix size 51200 by 3200

8/4/16 42

PLASMA_[scdz]syev[_Tile][_Async]()

l Algorithm
l two-stage tridiagonal reduction + QR Algorithm

l fast eigenvalues, slower eigenvectors

(possibility to calculate a subset)

l Numerics

l same as LAPACK

l Performance

l comparable to MKL for very small problems

l absolutely superior for larger problems

Algorithms
three-stage symmetric EVP

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
0

1

2

3

4

5

6

7

8

9

10
PLASMA symmetric Eigenvalue problem

Matrix size

Sp
ee

du
p:

 T
im

e(
M

K
L)

/T
im

e(
PL

A
SM

A
)

DSYTRD
DSYEVD noVec
DSYEVR 20% V
DSYEVD all V
MKL

16 cores of Intel Sandy Bridge

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1016
0 20 40 60

0

10

20

30

40

50

60

nz = 3600

first

stage

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1016
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 178

second

stage

8/4/16 43

PLASMA_[scdz]gesvd[_Tile][_Async]()

l Algorithm
l two-stage bidiagonal reduction + QR iteration

l fast singular values, slower singular vectors

(possibility of calculating a subset)

l Numerics

l same as LAPACK

l Performance

l comparable with MKL for very small problems

l absolutely superior for larger problems

Algorithms
three-stage SVD

DGESDD on 48 AMD cores DGESDD on 16 Sandy Bridge cores

8/4/16 44

Pipelining: Cholesky Inversion
3 Steps: Factor, Invert L, Multiply L’s

45

POTRF+TRTRI+LAUUM: 25 (7t-3)
Cholesky Factorization alone: 3t-2

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

Pipelined: 18 (3t+6)

Random Butterfly Pivoting (RBP)

• To solve Ax = b :
§ Compute Ar = UTAV, with U and V random matrices
§ Factorize Ar without pivoting (GENP)
§ Solve Ar y = UT b and then Solve x = Vy

• U and V are Recursive Butterfly Matrices
§ Randomization is cheap (O(n2) operations)
§ GENP is fast (“Cholesky” speed, take advantage of

the GPU)
§ Accuracy is in practice similar to GEPP (with iterative

refinement), but…

46

Think of this as a preconditioner step.

Goal: Transform A into a matrix that would be sufficiently
“random” so that, with a probability close to 1, pivoting is
not needed.

PLASMA RBT execution trace

Partial randomization (i.e. gray) is inexpensive.
Factorization without pivoting is scalable without synchronizations.

This image cannot currently be displayed.

- with n=2000, nb=250 on 12-core AMD Opteron -

8/4/16 47

Mixed Precision Methods

• Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome
§ Improves runtime, reduce power

consumption, lower data movement
§ Reformulate to find correction to

solution, rather than solution; Δx rather
than x.

48
48

49

Idea Goes Something Like This…
• Exploit 32 bit floating point as much as

possible.
§ Especially for the bulk of the computation

• Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

• Intuitively:
§ Compute a 32 bit result,
§ Calculate a correction to 32 bit result using

selected higher precision and,
§ Perform the update of the 32 bit results with the

correction using high precision.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

Mixed-Precision Iterative Refinement
• Iterative refinement for dense systems, Ax = b, can work this

way.

§ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

50

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

Mixed-Precision Iterative Refinement
• Iterative refinement for dense systems, Ax = b, can work this

way.

§ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

§ It can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision
• O(n2) work is done in high precision
• Problems if the matrix is ill-conditioned in sp; O(108) 51

0

200

400

600

800

1000

1200

1400

1600

SP Solve

DP Solve

Matrix size

GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

Solving general dense linear systems using mixed precision iterative refinement

Mixed precision iterative refinement

52

0

200

400

600

800

1000

1200

1400

1600
SP Solve

DP Solve (MP
Iter.Ref.)

DP Solve

Matrix size

GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

Solving general dense linear systems using mixed precision iterative refinement

Mixed precision iterative refinement

53

Critical Issues at Peta & Exascale for
Algorithm and Software Design
• Synchronization-reducing algorithms

§ Break Fork-Join model

• Communication-reducing algorithms
§ Use methods which have lower bound on communication

• Mixed precision methods
§ 2x speed of ops and 2x speed for data movement

• Autotuning
§ Today’s machines are too complicated, build “smarts” into

software to adapt to the hardware

• Fault resilient algorithms
§ Implement algorithms that can recover from failures/bit flips

• Reproducibility of results
§ Today we can’t guarantee this. We understand the issues,

but some of our “colleagues” have a hard time with this. 54

Collaborators / Software / Support

u PLASMA
http://icl.cs.utk.edu/plasma/

u MAGMA
http://icl.cs.utk.edu/magma/

u Quark (RT for Shared Memory)
• http://icl.cs.utk.edu/quark/

u PaRSEC(Parallel Runtime Scheduling
and Execution Control)

• http://icl.cs.utk.edu/parsec/

55

u Collaborating partners
University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

MAGMA PLASMA

