
Suggested line of text (optional):

WE START WITH YES.

WHAT COMMUNITY
CODES DO: CASE
STUDIES

drhgfdjhngngfmhgmghmghjmghfmf

ANSHU DUBEY
Mathematics and Computer
Science Division
Argonne National Laboratory

August 9, 2016
ATPESC
St Charles, IL

SOFTWARE ENGINEERING AND COMMUNITY CODES

OUTLINE

q  Motivation & Logistics

q  Community Development

q  Best Practices

2

MOTIVATION & LOGISTICS

4

q  Scientists can focus on developing for their algorithmic
needs instead of getting bogged down by the
infrastructural development

q  Graduate students do not start developing codes from
scratch
q  Look at the available public codes and converge on

the ones that most meet their needs
q  Look at the effort of customization for their

purposes
q  Select the public code, and build upon it as they need

WHY COMMUNITY CODES ?

Important to remember that they still need to understand the components
developed by others that they are using, they just don’t have to actually develop

everything themselves. And this is particularly true of pesky detailed
infrastructure/solvers that are too well understood to have any research

component, but are time consuming to implement right

5

q  Researchers can build upon work of others and get
further faster, instead of reinventing the wheel
q  Code component re-use
q  No need to become an expert in every numerical

technique
q  More reliable results because of more stress tested

code
q  Enough eyes looking at the code will find any

errors faster
q  New implementations take several years to iron

out the bugs and deficiencies
q  Different users use the code in different ways and

stress it in different ways
q  Open-source science results in more reproducible

results
q  Generally good for the credibility

MODELS: “CATHEDRAL AND THE BAZAAR”,
ERIC S. RAYMOND
q  The Cathedral model

q  Code is available with each software release
q  Development between releases is restricted to an exclusive group of

software developers.
q GNU Emacs and GCC are presented as examples.

q  Central control models

q  The Bazaar model
q  Code is developed over the Internet in view of the public.
q  Raymond credits Linus Torvalds, leader of the Linux kernel project, as the

inventor of this process.
q  Distributed control models

SCIENTIFIC CODES

q  Mostly follow the cathedral model
q  Many reasons are given, some valid, others spring from bias
q  The valid ones

q  The code quality becomes hard to maintain
q  Hard to find financial support for gate keeping and general maintenance
q  Typical user communities are too small to effectively support the bazaar

model
q  The reward structure for majority of potential contributors is incompatible

q  The not so valid ones
q  Codes are far too complex
q  Competitive advantage from owning the code

The real reason many times is simply the history of the development of the code
and the pride of ownership

THE BENEFITS OF THE BAZAAR MODEL

q  Given a large enough beta-tester and co-developer base, almost every
problem will be characterized quickly and the fix will be obvious to
someone
q More varied test cases that demonstrate bugs
q Debugging can be effectively parallelized.
q The infrastructure limitations are quickly exposed

q  Capability addition is rapid, codes can do more
q A corollary to that is a good extensible design
q Users always want something more and/or something different from

what is available
q Greater knowledge pool operating together, more possibility of

innovation

THE PITFALLS OF THE BAZAAR MODEL

q  Many of the benefitting reasons can equally easily go the other way
q  Bigger knowledge pool can also mean more conflicting opinions
q  Prioritizations can become extremely challenging

q  Gatekeeping can become a huge challenge for maintaining software quality
q  Scientific codes have their own peculiarities for verification and validation

that can be extremely challenging
q  The orchestration of capability combination is harder when there is physics

involved because many times it just won’t play well together

SCIENTIFIC COMMUNITY CODES CAN FOLLOW
SEVERAL DIFFERENT PATHS :

q  The most common path
q  Someone wrote a very useful piece of code that several people in the

group started using
q  Collaborations happened
q  People moved and took the code with them
q  Critical mass of users achieved, code becomes popular

q  No focused effort to build the code
q  Usually very little software process involved
q  For the whole code, limited shelf life

A MORE SUSTAINED PATH

q  Sometimes enough like minded people take it a step further
q  Some long term planning resulting in better engineered code
q  Thought given to extensibility and for future code growth
q  As the code grows so does its community supported model

q  This model is still relatively rare.
q  The occurrences are increasing

A DESIRABLE PATH

q  Explicit funding to build a code for a target community
q  Implied support for the design phase
q  The outcome is expected to be long lasting and well engineered
q  The occurrences are even rarer
q  And it is getting increasingly harder
q  When it works outcome is more capable and longer lasting codes

COMMUNITY DEVELOPMENT

14

WHAT COMMUNITIES ?
q Community/open-source approach more common in

areas which need multi-physics and/or multi-scale
q A visionary sees the benefit of software re-use and

releases the code
q Sophistication in modeling advances more rapidly in

such communities
q Others keep their software close for perceived

competitive advantage
q Repeated re-invention of wheel
q General advancement of model fidelity slower

Let us examine what does it take to build a community
code

15

COMMUNITY BUILDING
q  Popularizing the code alone does not build a community
q  Neither does customizability – different users want different capabilities

So what does it take ?
q  Enabling contributions from users and providing support for them
q  Including policy provisions for balancing the IP protection with open source

needs
q  Relaxed distribution policies – giving collective ownership to groups of users

so they can modify the code and share among themselves as long as they
have the license

More inclusivity => greater success in community building
An investment in robust and extensible infrastructure, and a strong
culture of user support is a pre-requisite

16

CONTRIBUTION POLICIES
q  Balancing contributors and code distribution needs

q Contributor may want some IP protection
q  Maintainable code requirements

q  The minimum set needed from the contributor
q Source code, build scripts, tests, documentation

q  Agreement on user support
q  Contributor or the distributor

q  Add-ons: components not included with the distribution, but work with the
code

SURVEY OF IDEAS USE-CASES
IDEAS scientific software productivity project: www.ideas-productivity.org

q  Five application codes and four numerical libraries
q  All use version control, and all but one use distributed version control
q  Builds are evenly divided between GNU make and CMake
q  All provide documentation with some form of user’s guide, many use automated

documentation generation tools
q  All have testing in some form, a couple do manual regression testing, the rest are

automated
q  Roughly half make use of unit testing explicitly
q  Majority are publicly available

17

SUMMARY FROM COMMUNITY CODES
WORKSHOP (2012)

http://flash.uchicago.edu/cc2012/

q  Codes – FLASH, Cactus, Enzo, ESMF, Lattice QCD code-suite, AMBER,

Chombo, and yt
q  Software architecture is almost always in the form of composable components

q  Need for extensibility
q  All codes have rigorous auditing processes in place
q  Gatekeeping for contributions, though models are different
q  All codes have wide user communities, and the communities benefit from a

common highly exercised code base

18

COMMUNITIES HEADED TOWARDS COMMUNITY
CODES

q  Climate modeling
q  DOE effort – ACME

q Started in 2014
q Community Model – many groups
q Many practices in place

q  Accelerator
q  People thinking about it

q Whitepapers
q Objective – avoid duplication, get some convergence,

q Also more believable results

19

COMMON THREADS

q  Open source with a governance structure in place
q  Trust building among teams
q  Commitment to transparent communications
q  Strong commitment to user support
q  Either an interdisciplinary team, or a group of people comfortable with science

and code development
q  Attention to software engineering and documentation
q  Understanding the benefit of sharing as opposed to being secretive about the

code

BEST PRACTICES

22

SOFTWARE PROCESS
Baseline
q  Invest in extensible code design
q  Use version control and automated testing
q  Institute a rigorous verification and validation regime
q  Define coding and testing standards
q  Clear and well defined policies for

q  Auditing and maintenance
q  Distribution and contribution
q  Documentation

Desirable
q  Provenance and reproducibility
q  Lifecycle management
q  Open development and frequent releases

Many of these
practices have been

covered in earlier
lectures

A USEFUL RESOURCE
https://ideas-productivity.org/resources/howtos/

q  ‘What Is’ docs: 2-page characterizations of important topics for SW projects in

computational science & engineering (CSE)
q  ‘How To’ docs: brief sketch of best practices

q  Emphasis on ``bite-sized'' topics enables CSE software teams to consider
improvements at a small but impactful scale

q  We welcome feedback from the community to help make these documents more
useful

23

OTHER RESOURCES
http://www.software.ac.uk/

http://software-carpentry.org/

http://flash.uchicago.edu/cc2012/

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255

http://www.orau.gov/swproductivity2014/
SoftwareProductivityWorkshopReport2014.pdf

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147

24

25

A partnership model that works

q  Science users treat the code as a research instrument that needs
its own research

q  Developers and computer scientists interested in a product and
the science being done with the code
q Helps to have people with multidisciplinary training

q  Comparable resources and autonomy for the developers
q And recognition of their intellectual contribution to scientific

discovery
q  Careful balance between long term and short term objectives

INTERDISCIPLINARY INTERACTIONS

26

COMMUNITY CODES: SUMMARY

q  Open source with a governance structure in place
q  Trust building among teams
q  Commitment to transparent communications
q  Strong commitment to user support
q  Either an interdisciplinary team, or a group of people comfortable

with science and code development
q  Attention to software engineering and documentation
q  Understanding the benefit of sharing as opposed to being secretive

about the code

www.anl.gov

Suggested closing statement (optional):

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

IT IS EXTREMELY IMPORTANT TO
RECOGNIZE THAT SCIENCE THROUGH
COMPUTING IS ONLY AS GOOD AS THE
SOFTWARE THAT PRODUCES IT

