SOFTWARE ENGINEERING AND COMMUNITY CODES Argon ne °

NATIONAL LABORATORY

SOFTWARE

REFACTORING

ANSHU DUBEY
Mathematics and Computer
Science Division

Argonne National Laboratory

August 8, 2016
ATPESC
St. Charles IL



ABOUT THIS PRESENTATION

= What this lecture is ---
— Methodology for planning the refactoring process
» Considerations before and during refactoring
« Developing a workable process and schedule
» Possible pitfalls and workarounds
— Examples from codes that underwent refactoring
* And their lessons learned

» What this lecture is not ---
— Instructions on detailed process of refactoring
* |t is a difficult process
« Each project has its own quirks and challenges
* No one methodology will apply everywhere
— Tutorial on tools for refactoring
* There really aren’t that many

2 Argonne &




BEFORE STARTING




CONSIDERATIONS

= Know why you are refactoring
— Is it necessary
— Where should the code be after refactoring

» Know the scope of refactoring
— How deep a change
— How much code will be affected

= Estimate the cost
— Expected developer time
— Extent of disruption in production schedules

» Get a buy-in from the stakeholders
— That includes the users
— For both development time and disruption

4 Argonne &




REASONS FOR REFACTORING

The big one these days is the change in platforms

= Once before
— Vector to risc processors (cpu)
— Flat memory model to hierarchical memory model

» To heterogeneous
— Few CPU’s sufficient memory per cpu
— Several co-existing memory models

» The driving reason for these transitions is performance
— Performance may drive refactoring even without change in platforms

Argonne &



REASONS FOR REFACTORING

There can be other reasons

= Transition of code from research prototype to production

» I[mposing architecture and maintainability on an old code
— Significant change in the code base
« Change in model or discretization
« Changes in numerical algorithms
— Significant change in intended use for the code
 From a small team to a large team
* Releasing to wider user base

= Enabling extensibility or configurability
— Partial common functionality among different usage modes

— Model refinement
— Incorporating new insights

Argonne &




SCOPE OF REFACTORING

Know where you want the end product to be

= For performance
— Know the target improvement

» Very easy to go down the rabbit hole of squeezing the last little bit
* Almost never worth the effort for obtaining scientific results

» For maintainability
— Know the boundaries for imposing structure
» Rewriting the entire code is generally avoidable
» Kernels for implementing formulae can be left alone ?
* In general it possible to stop at higher levels than that

= For extensibility
— Similar to maintainability
— Greater emphasis on interfaces and encapsulation

Argonne &



REASONS FOR REFACTORING

The big one these days is change in platforms

Transition from vector to risc machines

vector

- op2 ‘ op3 - op4

For vector processors

» Data structures needed to be long vectors
— Longer => better

= Spatial or temporal locality had no importance
— Memory access was flat
* Interleaving banks for better performance

8

Argonne &



REASONS FOR REFACTORING

The big one these days is change in platforms

Transition from vector to risc machines

small chunk that could fit
In the cache

For risc processors

= Memory has hierarchy
— Closer and smaller => faster access
— Small working sets that can persist in the closest memory preferable
— Makes spatial and temporal locality important

» Data structures that enable formation of small working sets on which multiple
operations can be performed are better

9 Argonne &




HOW WOULD THE CODE CHANGE ?

Example of FFT calculation

Xo Yo

X4 Y1

e
S§

i
S

S
=

)

—_— 1%
Yo = Xp + WX,
— 1%
Y1 = Xg— WXy

2

N
d

—_

0 Argonne



VECTOR OPERATIONS

wo To=w0*x, To=x,*+T,
0*
Ti-w™xq : after some
: : permutations
Qn2-1 - ) - o)
' : and
: computations
— 0%
Tn-2_w Xn-1

T =-w0*X -
n-1 n-1 Tn-1_xn-1+Tn-1

11

— \O*

To‘w1 Xn/2
— *

T1=W0" X041

—N/2-1%
Thp4=W X

— , \O%
Thp=-W7" X

—_(\N/2-1%
T,.1=-W X

n-1

n-1

—, \O*%

To‘“% X4
*

_T1'w X4

—, 0%
Tn-Z_w X1

— ;0%
Tn-1 =W X1

Argonne &



RISC CALCULATION

_________________________________________

Assume cache accommodates working

>< \\ / set for k butterflies at a time
><><\\\/ / = Blocking of input vector

| — first log,k+1 stages computed in one
= N NIXX/ block

| ——— By ><>< — then shuffle so that next log,k+1 stages
can be computed

= Order of operations changes — Repeat until done

= Loops need rearranging

» Extra nesting in |00ps may be Note that vector algorithm would still have
required worked but would have been slow

12 Argonne &



PLANNING AND IMPLEMENTATION




COST ESTIMATION
The biggest potential pitfall

= Can be costly itself if the project is large

» Most projects do a terrible job of estimation
— Insufficient understanding of code complexity
— Insufficient provisioning for verification and obstacles
— Refactoring often overruns in both time and budget

= Factors that can help
— Knowing the scope and sticking to it
« If there is change in scope estimate again
— Plan for all stages of the process with contingency factors built-in
— Make provision for developing tests and other forms of verification
« Can be nearly as much or more work than the code change
* Insufficient verification incurs technical debt

14

Argonne &



COST ESTIMATION

When development and production co-exist

» Potential for branch divergence

» Policies for code modification
— Estimate the cost of synchronization
— Plan synchronization schedule and account for overheads

= Anticipate production disruption
— From code freeze due to merges
— Account for resources for quick resolution of merge issues

This is where buy-in from the stake-holders is critical

15

Argonne &



ON RAMP PLAN

Proportionate to the scope

>

All at once

[E—"

All at once

16

May
be OK

Bad
idea

Argonne &



ON RAMP PLAN

So how should it be done

= Incrementally if at all possible = Alternatively migrate

= Small components, verified fthem into new
individually infrastructure

» Migrated back

17 Argonne &




VERIFICATION

Critical component of refactoring

» Understand the verification needs during transition
= Map from here to there

= Know your error bounds
— Bitwise reproduction of results unlikely after transition

» Check for coverage provided by existing tests
= Develop new tests where there are gaps

= Make sure tests exist at different granularities
— There should definitely be demanding integration and system
level tests

18 Argonne &




IMPLEMENTATION

Procedures and policies

» Developers (hopefully) know what the end code should be
— They will do the code implementation

Process and policies are important

» Managing co-existence of production and development
= Managing branch divergence

= Any code pruning

» Schedule of testing

» Schedule of integration and release
— Release may be external or just to the internal users

19

Argonne &



EXPERIENCE - FLASH VERSIONS 14




TRANSITION FROM VERSION 1-2

Version 1

» The Good
— Desire to use the same code for many different applications necessitated
some thought to infrastructure and architecture
— Concept of alternative implementations, with a script for some plug and play
— Inheriting directory structure to emulate object oriented approach

= The Bad
— F77 style of programming; Common blocks for data sharing

— Inconsistent data structures, divergent coding practices and no coding
standards

= And the ugly

— Two camps with divergent views
* The science centric view won out

« Capabilities got added while the worst of 77 remained

21 Argonne &



VERSION 2 : DATA INVENTORIED

» Objective was to make the code modular and extensible
» [nventory the data,
= Eliminate common blocks, classify variables
» |ntroduce automated testing
» Objectives partially met
» Centralized database was built
» [t met the data objectives
= But got in the way of modularization
= No data scoping, partial encapsulation
» Database query overheads

22

Argonne &



VERSION 3 : THE CURRENT ARCHITECTURE

= Kept inheriting directory structure, configuration and customization
mechanisms from earlier versions

» Defined naming conventions
— Differentiate between namespace and organizational directories
— Differentiate between APl and non-API functions in a unit
— Prefixes indicating the source and scope of data items

» Formalized the unit architecture
— Defined API for each unit with null implementation at the top level

» Resolved data ownership and scope
» Resolved lateral dependencies for encapsulation
» |ntroduced subunits and built-in unit test framework

23 Argonne &




VERSION 4

Capability building exercise

= Did not need any change in the architecture

» Few infrastructure changes
— Mesh replication was easily introduced for multigroup radiation
— Laser drive
— Interface with linear algebra libraries

= No or minimal changes to existing code

24 Argonne &




VERSION TRANSITIONS

1-2: objectives partially met

» The bias at the time — keep the scientists in control

= Keep the development and production branches synchronized
— Enforce backward compatibility in the interfaces

Reasons for only partial success

* Too much synchronization between branches
— Precluded needed deep changes
— Hugely increased developer effort
— High barrier to entry for a new developer

= Not enough buy-in from users
— Did not get adopted for production in the center for more than two years
« Development continued in FLASH1.6, and so had to be brought
simultaneously into FLASH2 too

25 Argonne &




VERSION TRANSITIONS
From 2-3

= Build the framework in isolation from the production code base
— Used the second model in the ramp-on slide

= Ramp on was planned, scope of change was determined ahead of time,
scientists were on-board with the plan

* The ramp on plan
— Infrastructure units first implemented with a homegrown Uniform Grid.
— Unit tests for infrastructure built before any physics was brought over
— Test-suite started on multiple platforms
— Migrate mature solvers (few likely changes) and freeze them in version 2
— Migrate the remaining solvers one application dependencies at a time
— Scientists in the loop for verification and in prioritizing physics migration

There was no well defined transition from version 3 to 4 because it was
mostly adding code

26 Argonne &



TO HAVE GOOD OUTCOME FROM REFACTORING
KNOW WHY

KNOW HOW MUCH

KNOW THE COST

PLAN

HAVE STRONG TESTING AND VERIFICATION
GET BUY-IN FROM STAKEHOLDERS

www.anl.gov



