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Turbulence in a heat-exchanger inlet. 

CFD, PDEs, and HPC 
A Thirty Year Perspective 
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Industrial Example 
n  12 hour turnaround for result on the left: 

–  6 hours to mesh, 6 hours to run on 16K cores 
n  3 Days for result on the right (mostly meshing…) 
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Outline 

n Turbulence 

n PDE discretization and solve strategies 

n HPC 
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Incompressible Navier-Stokes Equations 

n  Key algorithmic / architectural issues: 

–  Unsteady evolution implies many timesteps, significant reuse of 
preconditioners, data partitioning, etc. 

–  div u = 0 implies long-range global coupling at each timestep   
 à iterative solvers 

   communication intensive 
    

–  Small dissipation à large number of scales à large number of 
gridpoints for high Reynolds number Re 
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Navier-Stokes Time Advancement 

 

n  Nonlinear term:  explicit   
–  k th-order backward difference formula / extrapolation   ( k =2 or 3 ) 
–  k th-order characteristics   (Pironneau ’82, MPR ‘90) 

n  Linear Stokes problem: pressure/viscous decoupling: 
–  3 Helmholtz solves for velocity               (“easy” w/ Jacobi-precond.CG) 
–  Poisson equation for pressure           (computationally dominant) 
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Fluid Dynamics and Computing:  Scale Complexity 

n  Fluid dynamics governs a broad range of physical phenomena governing 
our daily lives:  vascular flow, transportation, energy production and 
consumption, weather (atmosphere and ocean), astrophysics, … 

n  The majority of fluid flow is turbulent 
–  A broad range of scales of motion with nonlinear interaction. 
–  Sensitive to initial conditions (and other forcing) – Lorenz ’63 

• Nonrepeatable ! 

n  However, in the mean, many flows are repeatable and predictable. 
–  Reynolds-Averaged Navier-Stokes (RANS) equations are excellent 

models for computing the predictable cases – 105 x cheaper than LES 

n  The trick is to know which cases are repeatable and which are not. 
–  Unfortunately, there is no theory to say which cases are amenable to 

RANS approaches, and which are not. 
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Example of Sensitivity: 
 ANL MAX Experimental Validation Study 

n  Argonne has constructed a highly instrumented experiment (MAX) to 
provide detailed velocity and temperature data for code validation. 
–  1 x 1 x 1.68 m3 mock-up of mixing in outlet plenum (SFR or VHTR) 
–  PIV for velocity measurements 
–  Fast thermal video imaging for temperature measurements  

LES of thermal 
mixing 
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 ANL MAX Experiment:  LES / RANS Comparisons1  
n  Time-averaged Nek5000 LES vs. Star-CD RANS velocity profiles at 

(x,y,z) = (x,0,z), with  z=0.5 m and z=0.95 m 

n  RANS about 105 x cheaper. 

LES & 
RANS: 

V @ z=0.5 
V @ z=.95 

exhaust           incoming  
                jet pair  

1 Merzari et al., On the numerical simulation of thermal striping in the upper plenum of a fast reactor, ICAPP 
(2010) 



Argonne National 
Laboratory 9 

Major Difference in Behavior for Minor Design Change 

MAX1 

MAX2 

Simulation  Results:  

–  Small perturbation 
yields O(1) change in 
jet behavior 

–  Unstable jet, with low-
frequency (20 – 30 s) 
oscillations 

–  Visualization shows 
change due to jet / 
cross-flow interaction 

–  MAX2 results NOT 
predicted by RANS 

Red case 104x 
cheaper than   
blue case 
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Fluid Dynamics and Computing: Scale Complexity (2) 

n  Fortunately, Large Eddy Simulation (LES) and Direct Numerical Simulation 
(DNS) rely on very little modeling (none, in the case of DNS) and are 
therefore able to capture many features of turbulent flow. 

n  These approaches require simulation of a broad range of scales and their 
success is largely tied to that of parallel computing. 

n  Prior to the 80s, the majority of fluid flow simulations were 2D  
–  Definitely not turbulent! 

n  A brief taxonomy gives some insight to the fluid dynamics computational 
landscape 
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Incompressible Navier-Stokes Equations 

n  Physics:		Low	Mach-number	flow:	

–  Interes(ng	speed	u	<<	sound	speed,	a		(1000x)	

n Mul7scale	Math:	
–  Replace	fast	7me-scale	with	an	infinitely	fast	one	and	use	op7mal	

solvers	to	solve	resul7ng	ellip7c	problem:	s2	p = f  
–  Architectural	Influence:		global	coupling	

n  Highly	nonlinear	&	singularly	perturbed	–	a	huge	range	of	scales	
12 
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      Some Turbulence Examples 

 Film Cooling 
Duggleby et al., 
TAMU 

Heat Transfer: Exp. and Num. 

Reynolds Number (1000-200,000) 
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 Optimizing Heat Transfer with 
Wire-Coil Inserts  J. Collins, ANL 

Pipe Flow: 

Reτ = 550 

Reτ = 1000 
G. El Khoury, KTH 
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DNS Separation in an Asymmetric Diffuser 

n  Flow separation and recovery 
n  DNS at Re=10,000:  E=127750, N=11, 100 convective time units 
n  Comparison w/ exptl results of Cherry et al. 

u=.4U 

SEM             expt. 

Axial Velocity  

Pressure Recovery 

. . . .  Expt 

               SEM 

Ohlsson, Schlatter, F., and Henningson, JFM (2010)  
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DNS of Flow around a NACA4412 Wing Profile  

n  Rec = 400,000 with 5◦ angle of attack.  
n  3.2 billion gridpoints 
n  Locally structured data  

–  (within each high-order element) 
n  Globally unstructured mesh 

Hosseini, S. M., Vinuesa, R., Schlatter, P., Hanifi, A. and Henningson, D. S.:  Direct numerical simulation of the flow 
around a wing section at moderate Reynolds numbers. In 15th European Turbulence Conference, 25-28 August,2015, 
Delft, The Netherlands.  

 

Armin Hosseini et al. (KTH) 
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DNS For I.C. Engine Analysis    M. Schmitt, ETH Zurich, 2014 

n  h 

16 
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 Compression: Significant Increase in Range of Scales at TDC 
                  – M. Schmitt, ETHZ 2014 

17 

Impacts thermal boundary layer, initial conditions for ignition. 
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DNS of Turbulence in the TCC Model 
Starting with an .stl file, 
mesh is made with 
CUBIT. 
 
The lower panel shows 
the mesh motion. 
 
Lower-right shows a very 
fine mesh used for the 
intake port. 
 
  



Argonne National 
Laboratory 

Vortex Breakdown at ReD = 15,000 

n  These are extremely well resolved calculations performed on Mira. 
n  Note the highly-resolved filamental horseshoe vortices around the base 

of the valve stem that ultimately break down into a hairpin vortex chain.   
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Influence of Reynolds Number 

n  The Reynolds number has a 
significant impact on the scales 
of motion. 

n  The Reynolds number in the 
intake port of the TCC engine 
peaks at around Re=45000 at 
670 RPM. 

n  The Reynolds number in the 
combustion chamber is about 
Re=15000.  

ReD=30,000 

ReD=45,000 
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Progression in CA  G. Giannakopoulos, ETHZ 

Heat Transfer Enhancement

P. F. Fischer ⇤

June 23, 2016
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USA.
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n   ¸2 criterion (Jeong & Hussein ‘95) involves velocity gradients. 

n  Places stringent demands on resolution since velocity is only C0 
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Progression in CA  G. Giannakopoulos, ETHZ 
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Direct Numerical Simulation Costs 

n  Several meshes, but largest is 3.9 million 
elements of order N=6: 

–  216 x 3.9 million = 840 million points 

–  0-180 CAD at 400 RPM 

–  100 hours on 131072 cores (~ 1/6 Mira) 

n  Can we run faster? 
–  Better algorithms? 

•  Lower n (via high-order discretizations) 
• Faster solvers (lower iteration counts) 

–  More parallelism? 

G. Giannakopoulos, ETHZ 
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Some Relatively Deep Considerations 

n  High-Order:  
–  reduction in problem size and, hopefully, costs. 

n  Fast multilevel solvers:   
–  coarse-grid solve is a big challenge in parallel 

n More parallelism 
–  How much more? 

24 
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Influence of Scaling on Discretization 

 Large problem sizes enabled by peta- and exascale computers allow propagation of 
small features (size λ)  over distances L >> l.     If speed ~ 1, then tfinal ~ L/ λ. 

–  Dispersion errors accumulate linearly with time:  
  

~|correct speed – numerical speed| * t                         (for each wavenumber) 

" errort_final ~ ( L / λ ) * | numerical dispersion error | 

–  For fixed final error εf, require:  numerical dispersion error ~ (λ / L)εf  << 1. 

 

High-order methods can efficiently deliver small dispersion errors.            
                                                    (Kreiss & Oliger 72,  Gottlieb et al. 2007) 
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2D basis function, N=10 

High-Order Spatial Discretizations 
Example: Spectral element method (Patera 84, Maday & Patera 89) 

–  Variational method, similar to FEM, using GL quadrature. 

–  Domain partitioned into E high-order hexahedral elements 

–  Trial and test functions represented as N th-order tensor-product 
polynomials within each element.  (N ~ 4 -- 15, typ.) 

•  n ~ EN 3 gridpoints in 3D 

• Fast operator evaluation:  O(n) storage, O(nN) work 

–  Converges exponentially fast with N for smooth solutions.  
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Spectral Element Convergence: Exponential with  N 

Exact Navier-Stokes Solution  (Kovazsnay ‘48) 
❑  4 orders-of-magnitude 

error reduction when 
doubling the resolution in 
each direction 

❑  For a given error, 
❑  Reduced number of gridpoints  

❑  Reduced memory footprint. 

❑  Reduced data movement. 
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Excellent transport properties, even for non-smooth solutions 

Convection of non-smooth data on a 32x32 grid.   
(K1 x K1 spectral elements of order N). (cf. Gottlieb & Orszag 77) 
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Nonlinear Example:   NREL Channel Flow Study 

n  Accuracy:   Comparison to several metrics in turbulent DNS, Reτ = 180     (MKM’99) 

n  7th-order SEM needs an order-of-magnitude fewer points than 2nd-order FV. 

Sprague et al., 2010 

SEM 
 

FV 

ny: # of points in wall-normal direction  

 Accuracy 
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Nonlinear Example:   NREL Channel Flow Study 

n  Test case:  DNS Ret = 180   (MKM’99) 

n  Results:      — Properly implemented SEM and FV have the same cost per gridpoint 

Sprague et al., 2010 

P:  # of processors 

 Performance 

 Benefits in linear 
problems carry over to 
nonlinear case. 

SEM 

Ideal 
FV 
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Some Relatively Deep Considerations 

n  High-Order:  
–  reduction in problem size and, hopefully, costs. 

n  Fast multilevel solvers:   
–  coarse-grid solve is a big challenge in parallel 

n More parallelism 
–  How much more? 

31 
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Fast Multilevel Solvers 
Multigrid with Additive Schwarz-Based Smoothing  

d 

Local Overlapping Smoother: FEM-based 
Poisson problems with homogeneous  
Dirichlet boundary conditions, Ae .  
Use fast diagonalization. 

Coarse Grid Solve: Poisson problem 
using linear finite elements on entire 

spectral element mesh, A0 (GLOBAL). 

(Dryja & Widlund 87, Pahl 93, Lottes & F 05) 
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Fast Solvers for p-Multigrid 

n  Schwarz Smoothers:  fast diagonalization method  (Rice et al. 64, Couzy 95, F.02)  

–  Exploit local tensor-product structure: 
  

–  Complexity <  A p 

n  p-multigrid schedule: 
 Nf  = N 
 N1 = 3 
 N0 = 1  (coarse-grid solve) 

 

n  Coarse-grid solve:  Direct, XXT (F. & Tufo 01)       – P~100,000 or less 
             Custom AMG: (Lottes 08/11) – P~105…109  

 
Communication intensive! 
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Putting At All Together:  Subassembly with 217 Wire-Wrapped Pins 
–  3 million 7th-order spectral elements (n=1.01 billion) 
–  16384–131072 processors of IBM BG/P 
–  15 iterations per timestep;  1 sec/step @ P=131072 
–  Coarse grid solve < 10% run time at P=131072 

η=0.8 @  

P=131072 

Strong Scaling 

7300 pts/ 

processor 
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More Parallelism? 

35 
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More Parallelism? 

n  Current simulation has 3.9 million elements. 
–  Therefore, max value of P is 3.9 M. 
–  à n/P ~ 216 points per processor.   
–  Too Low. 

n Why? 
–  Back of the envelope analysis suggests a minimum of n/P ~ 2000 

points per MPI rank on Mira  to realize 50% parallel efficiency     
– for any finite difference/volume/element code.             
(Based on communication cost overhead, rate of local work, etc.) 

n  Current simulations are at  n/p ~ 8.4M/262144 ~ 3200. 

36 



Argonne National 
Laboratory 

217	Pin	Problem,	N=9,	E=3e6:	
	

–	2	billion	points	
	

–		BGQ	–	524288	cores	
•  1	or	2	ranks	per	core	

–  A	mixture	of	CG	/	mulIgrid	

–  60%	parallel	efficiency	at		
 1 million	ranks	

–  2000	points/rank	at		
 1 million	ranks	

Scaling to Beyond 1 Million Processes 
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Scaling Questions 

n  Will this scaling continue? 
n  Is this the best we can do?    

n  What, exactly, is better, or even good? 

–  Good node performance   
–  Strong scaling to large processor counts. 

n  Strong scaling is ultimately limited by costs that do not go to 
zero as n/P"0:   

  t ~ c1 n/P  +  c2  + c3  log P 
 

–  c2   ~ communication overhead 
      ~ other overhead (memory latency on GPU) 
      ~ Amdahl 

–  c3   ~ can be mitigated by communication hardware 

n  We are interested in understanding what is setting the limits on strong 
scaling applications, because that sets the limits on speed. 
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Last Part of Talk 

n  Performance Analysis 

–  How can we judge if we’re getting any speed up? 
• Obvious answer is to fix the problem size, and then run on 

ever larger numbers of processors (or fewer, until you can’t fit 
into memory. 

–  Second part is to ask yourself, why I am not seeing more speed-
up for the given problem size, n, and number of processors, P ? 

39 
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Two Run-Time Scenarios 

n  Fully Populated Cluster:  job on every node. 

40 
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n  Supercomputing Center: 
–  Job not using all nodes. 

n Our question: 
–  Why stop at P nodes, 

instead of 2P ?? 

n  Study model Poisson 
problem to get insight. 

     ( PDE + HPC ) 
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Model Problem:  Poisson with finite differences 

n  Consider complexity estimates for 3D 
Poisson with several iterative solvers. 

n  n/P points on each processor 

uij 

n1/3 

processor p data from neighbor 
allows stencil update  
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Metric for Scalability 
n  P-processor solution time for n points: 

–  T(P,n) = TA(P,n) + TC(P,n),    or       nonoverlapping comm. 

–  T(P,n) = max (TA(P,n) , TC(P,n))      overlapping comm.  
 

n  Seek conditions where communication is subdominant,  TA > TC :  
 

–  TA(P,n)  =  T(1,n) / P  the parallel work 

–  TC(P,n)  the total communication cost = sum tc(m) 
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Linear Communication Model 
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Linear communication model : 

     tc (m) =  α* + β* m,    

           m =  number of 64-bit words 

 

Nondimensionalize by ta   [c = a*b] :  
  

 tc (m) =  (α + β m ) ta 
   

 α = α* / ta ,  β = β* / ta 

 

 
 

¯* = slope 

®* 

Blue Waters Ping-Pong Test 
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Linear Communication Model 

n  Simple (simplistic?) and general:  
–  Determined by two asymptotes (®,¯) 
–  Does not capture contention effects.   

• Are these important?  Probably, on rich nodes. 
–  Our approach: model ideal performance and investigate departures 

from ideal. 

n More complex models depend on 
–  P 
–  Runtime topology – rarely known   (except on Bluegene) 
–  Other jobs in system    (except on Bluegene) 
–  Node architecture         

•  (e.g., Gropp, Olson, Samfass 2016:  Modeling MPI Communication Performance on 
SMP Nodes: Is it Time to Retire the Ping Pong Test?) 

44 
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Scaling Limits for PDE-Based Simulation

Paul F. Fischer⇤‡ Katherine Heisey† Misun Min‡

We analyze algorithm/architecture performance characteristics that have a direct im-

pact on the scalability of present-day and future turbulent flow simulations on large-scale

parallel computers.

I. Introduction

Parallel computing is founded on the principle that, given enough work for a given problem, one can
subdivide the computation across P processors and realize an e↵ective P -fold reduction in time to solution.
On today’s architectures, any PDE-based or particle-based simulation that uses a billion gridpoints or
particles can easily be distributed across two compute nodes and run in half the time—for essentially the
same power—compared with running on just a single node. This computational scenario, running a problem
of fixed size in half the time on two processors or nearly one-P th the time on P processors, is termed strong

scaling and is the focus of this paper. Specifically, we explore the basic question of how far one can scale
a given problem, defined by its computational resolution n (e.g., the number of gridpoints), when using P
processors.

The relevance of the strong scaling question is expressed succinctly in the equation

SP = ⌘ P S
1

, (1)

which relates the speed (i.e., the inverse time-to-solution) for solving a given problem to the number of
processors, P . Here, SP is the speed (in Mflops, say) when using P processors and ⌘ = ⌘(P, n) is the
parallel e�ciency. Although (1) is e↵ectively nothing more than the definition of ⌘, it in fact expresses
a deep point, namely, that parallel computing can deliver a multiplicative increase in performance
when using P processors. This statement holds whether the processors are traditional cores, multicore-
nodes, or accelerators. In the current post-frequency-scaling era where clock rates are no longer increasing,
the multiplicative e↵ect of the distributed parallel computing model is the only mechanism we have for
increasing the speed of calculations by factors of 1000s. Thus, it is vital that future architectures and
algorithms continue to support this pathway to high-performance computing (HPC).

We illustrate the multiplicative e↵ect by considering the strong-scale performance of the incompressible
flow solver Nek5000 applied to a thermal-hydraulics flow problem in the domain depicted in the top panel of
Fig. 1. This is a complex domain with hundreds of rods separated by helically wrapped spacer wires. The
spatial discretization is based on the spectral-element method.1,2 The mesh comprises 3 million spectral
elements of order N=9, for a total of n = 2 billion gridpoints. Navier-Stokes timestepping is based on
semi-implicit timesteppers that use multilevel-preconditioned GMRES for the pressure solve and Jacobi-
preconditioned iteration for the viscous update. The lower panel of Fig. 1 shows the wall-clock time per step
and parallel e�ciency on Mira, the IBM Blue Gene/Q at the Argonne Leadership Computing Facility. The
timing curves reflect the use of either one or two MPI ranks per core, with two ranks per core outperforming
a single rank because of BG/Q’s hardware support for threads. The parallel e�ciency graph, plotted for the
two-ranks-per-core case, shows that e�ciency is unity out to P=262,144 MPI ranks (131,072 cores), drops
to 0.8 for P=524,288, and is 0.6 for P=1,048,576.

Before proceeding with parallel performance analysis, we make several comments about the simulation
results of Fig. 1. First, the discretization is based on an e�cient spectral element method (SEM) that
requires only O(n) storage and O(nN) work for Nth-order spatial approximations.1,3 (Here, N=9.) For

⇤CS and MechSE Depts., Univ. of Illinois, Urbana-Champaign
†Dept. of Neurosience, Washington University of St. Louis
‡Mathematics and Computer Science Div., Argonne National Laboratory

1 of 10

American Institute of Aeronautics and Astronautics

AIAA 2015 
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Linear Communication Model 

n  Simple (simplistic?) and general:  
–  Determined by two asymptotes (®,¯) 
–  Does not capture contention effects.   

• Are these important?  Probably, on rich nodes. 
–  Our approach: model ideal performance and investigate departures 

from ideal. 

n More complex models depend on 
–  P 
–  Runtime topology – rarely known   (except on Bluegene) 
–  Other jobs in system    (except on Bluegene) 
–  Node architecture         

•  (e.g., Gropp, Olson, Samfass 2016:  Modeling MPI Communication Performance on 
SMP Nodes: Is it Time to Retire the Ping Pong Test?) 

47 
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Linear Communication Model – P dependence 

n  Switch to 3-trip messaging: 
–  Source: “n bytes coming, ready?” 
–  Target: “ready” 
–  Source: n bytes à target 

P=1024 



Argonne National 
Laboratory 

Linear Communication Model – P dependence 
n  The switch point is important in the strong-scale limit n/Pà0 

–  Communication costs are significant (surface/volume large) 
–  Messages are short: 

•  m < mswitch :    Cost ~  ® 

•  m > mswitch :    Cost ~ 3 ® 

n  Switch point is reduced when P increases 
–  Need to reserve P buffers of size b: local memory demand scales as (P x b) 
–  Inveighs against strong scaling. 

n  For PDEs, we don’t need a lot of large buffers. 
–  Rare is the 3D application where ranks talk actively to more than 100 other 

ranks. 
–  We should boost buffer sizes on most active rank-to-rank exchanges. 
–  Reduce (eliminate) unused set-aside buffers. 
–  Maybe already in place?  (A question to MPI experts in the audience..) 

49 
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Linear Communication Model – P dependence 

n  Switch to 3-trip messaging: 
–  Source: “n bytes coming, ready?” 
–  Target: “ready” 
–  Source: n bytes à target 

n  Larger P à smaller buffers 
–  “Short messages” are shorter 

P=1024 P=32768 



Argonne National 
Laboratory 

Linear Communication Model – P dependence 

P=1024 

n  Going from P=1024 to P=32768 on BW 
–  Switchpoint between short and 

long messages moves from 250 
words to 25 words. 

n  If you have  103 = 1000 points/rank, 
need switchpoint to be ~ 100 = 102 
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Linear Communication Model – P dependence 

n  Another argument for (or against) the simple linear communication 
model… 

n  System noise is difficult to quantify 

52 
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Linear Communication Model over Several Decades 
Nondimensionalized! 

1991 

 

      

  1996 

  

2012 

           words  (64-bit)                               

tim
e 

 (s
ec

) 

Linear communication model : 

     tc (m) =  α* + β* m,   m: 64-bit words 

 

Nondimensionalize by ta   [c = a*b] :  
  

 tc (m) =  (α + β m ) ta 
   

 α = α* / ta ,  β = β* / ta 
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30 Years of Nondimensional Machine Parameters 

 
n  m2  :=  α / β  ~  message size ! twice cost of single-word message 

n  ta based on noncached matrix-matrix products of order 10—13    
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Scalability Estimates: Jacobi Iteration 

Point Jacobi iteration (7-point stencil): 
   

     — Work:         TaJ  ~  14 n/P ta  

  — Communication:    TcJ  ~  ( 6 +  (n/P) 2/3 (1/ m2 )   ) α ta  
   

  — For fixed n/P,  Jacobi complexity is P-independent  

   .assuming P independent message costs; no contention. 
 

  — However, algorithmic scaling  is poor (iteration count scales as n2/3) 

       – a more communication intensive approach is required 

          – conjugate gradient iteration, multigrid, etc. 

 
       – Jacobi is nonetheless a reasonable surrogate for explicit 

         timesteppers 
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Complexity Models for Iterative Solvers 
–  Point Jacobi iteration (7-point stencil, 3D): 

  — Work:          TaJ ~  14 n/P ta  

  — Communication:   TcJ ~  ( 6 +  (n/P) 2/3 (1/ m2 )   ) α ta  

–  Conjugate gradient iteration (7-point stencil):       (alt: Chebyshev iteration) 

  — Work:          TaCG ~  27 n/P ta  

  — Communication:   TcCG ~ TcJ  + 4 log2 P α ta 

–  Geometric Multigrid: 
  — Work:        TaMG ~  50 n/P ta  

  — Communication:   TcMG ~ ( 8 log2 n/P + 30/m2 (n/P)2/3 + 8 log2 P ) α ta 
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Scaling Estimates:  Jacobi 

n Q:  How large must n/P be for Ta ~ Tc ? 
 

❑  Jacobi scaling is independent of P. 
❑  Of course, need occasional all_reduce to check convergence… 
❑  Also, not a scalable algorithm (but, similar to explicit timestepper) 

 

BG/P parameters    (BG/Q is similar) 
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Scaling Estimates:  Conjugate Gradients   

❑  The inner-products in CG, which give it its optimality, drive up the 
minimal effective granularity because of the log P scaling of 
all_reduce. 

 

 z = D -1 r 
 r = r t z 
 p = z + β p 
 w = A p 
 σ = w t p 
 x = x + α p 
 r = r – α p 
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Scaling Estimates:  Conjugate Gradients   

❑  The inner-products in CG, which give it its optimality, drive up the 
minimal effective granularity because of the log P scaling of 
all_reduce. 

❑  On BG/L, /P, /Q, however, all_reduce is effectively P-independent. 
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Eliminating log P term in CG 
n On BG/L, /P, /Q, all_reduce is nearly P-independent. 
n  For P=524288, all_reduce(1) is only 4α !	
 

all_reduce 

½ ping-pong 

      BG/Q hardware all_reduce 

all_reduce 

P=16 - 524288 

½ ping-pong 

      BG/Q software all_reduce 

Message size m (64-bit words)                                  Message size m (64-bit words) 
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Eliminating log P term in CG 

❑  On BG/L, /P, /Q, CG is effectively P-independent because 
of hardware supported all_reduce. 

❑  In this (admittedly simple) exascale model, net result is a 
10x improvement in granularity  (n/P=1200 vs. 12,000). 

à 10x faster run, but no reduction in power consumption. 

2 x 4 
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Nek/BGP Communication Cost Distribution vs Rank 

n  Billion-point 217-pin bundle simulation on P=65536 

MPI rank 

tim
e 

(s
ec

) 

• Coarse solve time 
• Neighbor exchange 

• mpi_all_reduce 

n  Neighbor vs. all_reduce:  50α vs 4α   (4α, not 16 x 4α)	
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Scaling Estimates:  Multigrid   

q  Replacing 8 α log2 P  with 16α  yields  n / P ~ 9000, which is > 2x 
gain in scalability. 

 

 Such gains could be realized through hardware support in the 
 network interface card (NIC) for scan / reduce operation 

q  Some vendors have indicated a move in this direction. (yay!) 

q  Further savings might be possible by reducing the first term.  
(Algortihmic issues addressed by Bell, Dalton, Olson, 2013.)  

     This is an excellent co-design opportunity.   
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Measured and Modeled Multigrid Performance 

TA = TC 
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217	Pin	Problem,	N=9,	E=3e6:	
	

–	2	billion	points	
	

–		BGQ	–	524288	cores	
•  1	or	2	ranks	per	core	

–  A	mixture	of	CG	/	mulIgrid	

–  60%	parallel	efficiency	at		
 1 million	processes	

–  2000	points/process	

Returning to Original Scaling Question 
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What about GPUs or more Complex Nodes? 
n  A major concern here is the “n1/2” 

–  n1/2 :=  the value of n (or,  n/P) where the node performance 
reaches ½ its peak for your application. 

n  In addition to communication overhead, n1/2  sets the strong scale limit 
on complex nodes. 

n  This is an old vector-architecture concern that is of critical importance 
for strong scaling on today and tomorrow’s architectures. 

66 



Argonne National 
Laboratory 

Example of a High n1/2  

n Electromagnetics code on GPUs of OLCF’s Titan. 
n Even with P=1, n/P is limited to be > 125,000 to get saturated 

performance per node (for CFD, this number is higher). 
 



Argonne National 
Laboratory 

n1/2  Requirements for a Candidate Node to Yield Speedup 

68 

• Requirements on n 1
2
for a candidate node to yield speed-up:

SP = ⌘ · S1 · P (speed, in mflops)

S1 = observed saturated speed, in flops, n � 1

• Let n be total problem size (gridpoints, say), and n 1
2
be the

local problem size such that

S1(n 1
2
) =

1

2

S1(n
sat

)

• Let W := w · n be the total number of flops and

w be the number of flops per gridpoint.

• Choose P = n/n 1
2

(50% e�ciency)

• Time to solution: TP =

w · n
SP

=

w · n
⌘S1P

=

w · n
⌘S1(n/n 1

2
)

=

w · n 1
2

1
2S1

= 2w

✓
n 1

2

S1

◆

1
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Summary:   Getting Good Performance for 
CFD, PDEs, HPC 

n  Know your model & physics (if possible): 
–  RANS vs LES – 104 – 105 savings 

n  PDEs: 
–  Discretizations can yield 10x savings 
–  Fast solvers 10-100x  

n  HPC: 
–  Understand your single-node performance, over a range of n! 
–  Examine your communication costs. 
–  All of this involves modeling and measuring. 

n  The HPC part can be almost (!) as much fun as the fluids part!   
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Thank You! 
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