CFD, PDEs, and HPC

A Thirty Year Perspective

Paul Fischer
University of lllinois, CS & MechSE
Argonne National Laboratory, MCS

Katherine Heisey
Stefan Kerkemeier
James Lofttes

Oana Marin

Elia Merzari

Misun Min

Aleks Obabko

Philipp Schlatter
Martin Schmitt
Ananias Tomboulides
Active users group (> 250)

4

: q

Turbulence in a heat-exchanger inlet.



Industrial Example

B 12 hour turnaround for result on the left:
— 6 hours to mesh, 6 hours to run on 16K cores
m 3 Days for result on the right (mostly meshing...)
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Incompressible Navier-Stokes Equations

811 1 2
Z4tu-v _Vp + =V
ot Tu-vu P Re "

V-u =0

B Key algorithmic / architectural issues:

— Unsteady evolution implies many timesteps, significant reuse of
preconditioners, data partitioning, etc.

— div u = 0 implies long-range global coupling at each timestep
—> iterative solvers

communication intensive

— Small dissipation = large number of scales - large number of
gridpoints for high Reynolds number Re



Navier-Stokes Time Advancement
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B Nonlinear term: explicit
— k th-order backward difference formula / extrapolation (k=2 or 3)
— k th-order characteristics (Pironneau 82, MPR ‘90)

M Linear Stokes problem: pressure/viscous decoupling:
— 3 Helmholtz solves for velocity (“easy” w/ Jacobi-precond.CG)
— Poisson equation for pressure (computationally dominant)



Fluid Dynamics and Computing: Scale Complexity

B Fluid dynamics governs a broad range of physical phenomena governing
our daily lives: vascular flow, transportation, energy production and
consumption, weather (atmosphere and ocean), astrophysics, ...

B The majority of fluid flow is turbulent
— A broad range of scales of motion with nonlinear interaction.
— Sensitive to initial conditions (and other forcing) — Lorenz '63
» Nonrepeatable &

B However, in the mean, many flows are repeatable and predictable.

— Reynolds-Averaged Navier-Stokes (RANS) equations are excellent
models for computing the predictable cases — 10° x cheaper than LES

M The trick is to know which cases are repeatable and which are not.

— Unfortunately, there is no theory to say which cases are amenable to
RANS approaches, and which are not.



Example of Sensitivity:
ANL MAX Experimental Validation Study

B Argonne has constructed a highly instrumented experiment (MAX) to
provide detailed velocity and temperature data for code validation.

— 1 x 1 x 1.68 m3 mock-up of mixing in outlet plenum (SFR or VHTR)
— PIV for velocity measurements
— Fast thermal video imaging for temperature measurements

LES of thermal
mixing
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Figure 1. Apparatus for gas mixing experiments: Nd:YLF laser (left), infrared camera (top), PIV
camera (right), and hexagonal flow channels (below).



ANL MAX Experiment: LES / RANS Comparisons’

B Time-averaged Nek5000 LES vs. Star-CD RANS velocity profiles at
(x,v,z) = (x,0,z), with z=0.5 m and z=0.95 m

B RANS about 10° x cheaper.

Average velocity agnitude, z=.5 fAverage velocity agnitude, 2=,95
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1 Merzari et al., On the numerical simulation of thermal striping in the upper plenum of a fast reactor, ICAPP
(2010)



Major Difference in Behavior for Minor Design Change

Simulation Results:

............

— Small perturbation
yields O(1) change in
Jet behavior

[ T\ 838 Red case 10%x
= |cheaper than
blue case

change due to jet /
cross-flow interaction

MAX2 —

I | 3 Ae
2 | | . — MAX2 results NOT
‘ predicted by RANS




Tangential Velocity
(symmetry plane)

hows clear wave
pattern

10% drag '} ¢ Short pipe (2D)
B DNS results are being used reduction! O Long pipe
to calibrate new RANS 1951
models in commercial = | oy Experiment
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Fluid Dynamics and Computing: Scale Complexity (2)

M Fortunately, Large Eddy Simulation (LES) and Direct Numerical Simulation
(DNS) rely on very little modeling (none, in the case of DNS) and are
therefore able to capture many features of turbulent flow.

B These approaches require simulation of a broad range of scales and their
success is largely tied to that of parallel computing.

B Prior to the 80s, the majority of fluid flow simulations were 2D
— Definitely not turbulent!

B A brief taxonomy gives some insight to the fluid dynamics computational
landscape



Incompressible Navier-Stokes Equations
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M Physics: Low Mach-number flow:

— Interesting speed u << sound speed, a (1000x)

B Multiscale Math:
— Replace fast time-scale with an infinitely fast one and use optimal

solvers to solve resulting elliptic problem: V2 p = f

— Architectural Influence: global coupling
M Highly nonlinear & singularly perturbed — a huge range of scales



Some Turbulence Examples

Optimizing Heat Transfer with Film Cooling

Wire-Coil Inserts J. Collins, ANL Duggleby et al.,
TAMU

Pipe Flow:
Re_= 550

Re_ = 1000
Reynolds Number (1000-200,000) G. El Khoury, KTH

2/D=0.2507 eip=0.0840
e/D=0.2507 e/p=0.1253
&/D=0.2507 e/p=0.1880
e/D=0.2507 e/p=0.2507
e/D=0.2507 e/p=0.3760 |}
e/D=0.2507 e/p=0.4273
efD=02507 efp=04700
e/D=0.2507 e/p=05629
Flain Tube
Dittus-Boelter Relation
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Nusselt Number (5-5000)




DNS Separation in an Asymmetric Diffuser

B Flow separation and recovery
B DNS at Re=10,000: E=127750, N=11, 100 convective time units

B Comparison w/ exptl results of Cherry et al.

Axial Velocity
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Ohlsson, Schlatter, F., and Henningson, JFM (2010)



DNS of Flow around a NACA4412 Wing Profile

Armin Hosseini et al. (KTH)

Re. = 400,000 with 5° angle of attack.
3.2 billion gridpoints
Locally structured data

— (within each high-order element)
Globally unstructured mesh

Ho a, R., Schilatter, P., Hanifi, A. and Henningson, D. S.: Direct numerical simulation of the flow
arou ection at moderate Reynolds numbers. In 15th European Turbulence Conference, 25-28 August,2015,
Delft. The Netherlands.




DNS For I.C. Engine Analysis M. Schmitt, ETH Zurich, 2014

Goals: - cycle-to-cycle var. .
4 4 Streamlines: 90°CA Axial Mean Vel.  Axial RMS Vel.

- thermal anaIySiS _Experiment _ Simulation

"‘

Vel. mag. [m/s]

Very good agreement for all
available experimental data!

0.2 04 0.6 0.
normalized radius




Compression: Significant Increase in Range of Scales at TDC
— M. Schmitt, ETHZ 2014

Impacts thermal boundary layer, initial conditions for ignition.

180°CA - BDC 225°CA 270°CA 306°CA

7S50l M 850
(T), [K]

600 = W 675
270°CA Heat flux [W/mZ] 346°CA Heat flux [W/m2]
(cylinder head) (cylinder head)

535 W 585

500l & W575

1.0e4 N 35¢4 1.3e4 N 4.7 €5



DNS of Turbulence in the TCC Model

Starting with an .stl file,
mesh is made with
CUBIT.

The lower panel shows
the mesh motion.

Lower-right shows a very
fine mesh used for the
intake port.



Vortex Breakdown at Rep = 15,000

B These are extremely well resolved calculations performed on Mira.

B Note the highly-resolved filamental horseshoe vortices around the base
of the valve stem that ultimately break down into a hairpin vortex chain.




Influence of Reynolds Number

\ ]
B The Reynolds number has a 7 * N Re.=30.000
significant impact on the scales i D™
of motion.

B The Reynolds number in the
intake port of the TCC engine
peaks at around Re=45000,at ,
670 RPM.

c

B The Reynolds number in the
combustion chamber is about
Re=15000.
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P I’ Ogr eSS i On i n CA G. Giannakopoulos, ETHZ
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B ), criterion (Jeong & Hussein ‘95) involves velocity gradients.

1
M(ST Q%) <0, 8= o Vu+ (Vo' Q=

B Places stringent demands on resolution since velocity is only C?






Direct Numerical Simulation Costs

G. Giannakopoulos, ETHZ

B Several meshes, but largest is 3.9 million
elements of order N=6:

— 216 x 3.9 million = 840 million points

— 0-180 CAD at 400 RPM

— 100 hours on 131072 cores (~ 1/6 Mira)

B Can we run faster?
— Better algorithms?
e Lower n (via high-order discretizations)
 Faster solvers (lower iteration counts)
— More parallelism?



Some Relatively Deep Considerations

B High-Order:
— reduction in problem size and, hopefully, costs.

B Fast multilevel solvers:
— coarse-grid solve is a big challenge in parallel

B More parallelism
— How much more?



Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of
small features (size \) over distances L >>1|. If speed ~ 1, thent; , ~ L/ A

— Dispersion errors accumulate linearly with time:

~|correct speed — numerical speed| * t (for each wavenumber)

>errofy 5., ~ (L/A) ™| numerical dispersion error |

— For fixed final error &, require: numerical dispersion error ~ (A /L)&; << 1.

High-order methods can efficiently deliver small dispersion errors.
(Kreiss & Oliger 72, Gottlieb et al. 2007)



High-Order Spatial Discretizations

Example: Spectral element method (Patera 84, Maday & Patera 89)

— Variational method, similar to FEM, using GL quadrature.

— Domain partitioned into E high-order hexahedral elements

— Trial and test functions represented as Nth-order tensor-product
polynomials within each element. (N~ 4 -- 15, typ.)

e n ~ EN’ gridpoints in 3D
e Fast operator evaluation: O(n) storage, O(nN) work

— Converges exponentially fast with N for smooth solutions.

2D basis function, N=10




Spectral Element Convergence: Exponential with N

Exact Navier-Stokes Solution (Kovazsnay ‘48)

J 4 orders-of-magnitude

error reduction when @t

doubling the resolution in
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Excellent transport properties, even for non-smooth solutions
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Initial Condition K, =16, N=2

Convection of non-smooth data on a 32x32 grid.

cf. Gottlieb & Orszag 77
(K, x K, spectral elements of order N). ( 977)



Nonlinear Example: NREL Channel Flow Study

Sprague et al., 2010

B Accuracy: Comparison to several metrics in turbulent DNS, Re_ =180  (MKM’ 99)

Accuracy
| | I |
g — . — . ]
=) .
Q
i
X
) . A MKM (1999)
~ 58 / -
B / o—oSEM
56k o b——b FV -
g | | | |
%3 30 7 00 15

ny: # of points in wall-normal direction

150

B 7t-order SEM needs an order-of-magnitude fewer points than 2"d-order FV.



Nonlinear Example: NREL Channel Flow Study

Sprague et al., 2010

Benefits in linear
problems carry over to L ek
nonlinear case. = Iz

B Test case: DNS Re, =180 (MKM’99)

Performance

10000: T T IIIII| T T IIIIII|
- 312K gridpoints per core

1000k

100k

wall-clock time (min)

1 111 I 1 1 1 1 1 1 11 I
10 100 1000
P: # of processors

B Results: — Properly implemented SEM and FV have the same cost per gridpoint



Some Relatively Deep Considerations

B High-Order:
— reduction in problem size and, hopefully, costs.

B Fast multilevel solvers:
— coarse-grid solve is a big challenge in parallel

B More parallelism
— How much more?



g

Fast Multilevel Solvers
Multigrid with Additive Schwarz-Based Smoothing

E

Mr= S RIAZ'Rer + RYAGIRyr

e=1

—>

-

o—

Local Overlapping Smoother: FEM-based
Poisson problems with homogeneous

Dirichlet boundary conditions, A, .

Use fast diagonalization.

* 4ol

Coarse Grid Solve: Poisson problem
using linear finite elements on entire

spectral element mesh, A, (GLOBAL).

(Dryja & Widlund 87, Pahl 93, Lottes & F 05)



Fast Solvers for p-Multigrid

B Schwarz Smoothers: fast diagonalization method (Rice et al. 64, Couzy 95, F.02)

— Exploit local tensor-product structure:
A7l =SSN +Ny 1) 1 (S®S)T

— Complexity < A p

W p-multigrid schedule:
N: =N
N,=3
N, =1 (coarse-grid solve)

Communication intensive!



Putting At All Together: Subassembly with 217 Wire-Wrapped Pins

— 3 million 7t-order spectral elements (n=1.01 billion)
— 16384-131072 processors of IBM BG/P

— 15 iterations per timestep; 1 sec/step @ P=131072
— Coarse grid solve < 10% run time at P=131072

Strong Scaling

time: n=988M ——
ideal ——

1000

7300 pts/

| processor
n=0.8 @ ‘
P=131072

I L
16384 32768 65536 131072




More Parallelism?



More Parallelism?

Lamibda2=-60,000 \ 088 CAD

[Ul
25.00
-

18.75

B Current simulation has 3.9 million elements. N o
— Therefore, max value of P is 3.9 M. i
— 2> n/P ~ 216 points per processor.
— Too Low.

m Why?

— Back of the envelope analysis suggests a minimum of n/P ~ 2000
points per MPI rank on Mira to realize 50% parallel efficiency
— for any finite difference/volume/element code.
(Based on communication cost overhead, rate of local work, etc.)

B Current simulations are at n/p ~ 8.4M/262144 ~ 3200.



Scaling to Beyond 1 Million Processes

217 Pin Problem, N=9, E=3e6:
— 2 billion points
— BGQ —-524288 cores

1 or 2 ranks per core

— A mixture of CG / multigrid

— 60% parallel efficiency at
1 million ranks

— 2000 points/rank at
1 million ranks

Time-per-step {secs)

32 <

Mira, 217-Pin Bundle: n=2 Billion

0.5 -

efficiency -

time - IOCESS/CONE =——t— T

1p
time - 2 process/core ——s—
2p

FOCESS/COrE —t—

16334

L] T L] T T
32763 65536 131072 262144 524283

Parallel Efficiency



Scaling Questions

® Will this scaling continue?
B |s this the best we can do?

B What, exactly, is better, or even good?

— Good node performance
— Strong scaling to large processor counts.

B Strong scaling is ultimately limited by costs that do not go to
zero as n/P->0:

t~c,n/P + ¢, +c; log P

— €, ~communication overhead
~ other overhead (memory latency on GPU)

~ Amdahl
— ¢4 ~ can be mitigated by communication hardware

B \We are interested in understanding what is setting the limits on strong
scaling applications, because that sets the limits on speed.



Last Part of Talk

B Performance Analysis

— How can we judge if we're getting any speed up?

e Obvious answer is to fix the problem size, and then run on
ever larger numbers of processors (or fewer, until you can't fit
infto memory.

— Second part is to ask yourself, why | am not seeing more speed-
up for the given problem size, n, and number of processors, P ?



Two Run-Time Scenarios

O/@ @/@ @/@ @/@
ojjolfolfo

LA A A

B Fully Populated Cluster: job on every node.

B Supercomputing Center:

— Job not using all nodes. O/@ /@,}/@ /@ /Q /Q /Q /Q,}/Q,J/Q

B Our question: C/GD /@Q/@ /@ /Q /Q \/Q /Q \/Q /Q
— Why stop at P nodes,

instead of 2P ?7? /Q /Q /C> /Q /Q /Q /Q /Q /Q /Q

B Study model Poisson C/Q /Q/Q /Q/Q /Q/Q /Q /QQ/Q

problem to get insight.
( PDE + HPC)



Model Problem: Poissonwith finite differences

B Consider complexity estimates for 3D
Poisson with several iterative solvers.

M n/P points on each processor

processor p data from neighbor
allows stencil update



Metric for Scalability

B P-processor solution time for n points:
— T(P,n) = TA(P,n) + TC(P,n), or nonoverlapping comm.
— T(P,n) =max (TA(P,n), TC(P,n)) overlapping comm.

B Seek conditions where communication is subdominant, T, > T :
— TA(P,n) = T(1,n)/ P the parallel work

— T¢(P,n) the total communication cost = sum t (m)
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Linear Communication Model

o000 B1UE Waters Ping-Pong Test
' "pg 001" u B1E ——
'pg.002" u 516 ——
'po, 003" u BB —#—
:pg,md: u SEE —8—
'Eg:ggg' ﬂgg R /8 — Slope
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00001000 F'pg,064" w516 —&—  TH
'pg, 128" u 516 —a—
'pg.256" u 56 ——
'pg. 512" u 56 —w—
Linear communication model :
0,0000100 E tc (m) = o+ B* m
m = number of 64-bit words
0,0000010 b -
o) ] Nondimensionalize by t, [c = a*b]:
0,0000000 L— o1 NP T T R R
1 10 100 1000 10000 100000 tc (m) = (OL +pfm ) ta

words (64-bit)
a=a /t,, p=p/t,



Linear Communication Model

B Simple (simplistic?) and general:
— Determined by two asymptotes («,3)
— Does not capture contention effects.
» Are these important? Probably, on rich nodes.

— Our approach: model ideal performance and investigate departures
from ideal.

B More complex models depend on

- P
— Runtime topology — rarely known (except on Bluegene)
— Other jobs in system (except on Bluegene)

— Node architecture

e (e.g., Gropp, Olson, Samfass 2016: Modeling MPI Communication Performance on
SMP Nodes: Is it Time to Retire the Ping Pong Test?)



Modeling MPlI Communication Performance on SMP
Nodes: Is it Time to Retire the Ping Pong Test?

William Gropp Luke N. Olson Philipp Samfass
Department of Computer Department of Computer Department of Computer
Science Science Science
University of lllinois at University of lllinois at University of lllinois at
Urbana-Champaign Urbana-Champaign Urbana-Champaign

wgropp@illinois.edu

ABSTRACT

The “postal” model of communication [3, 8] T' = a + fn,
for sending n bytes of data between two processes with la-
tency a and bandwidth 1/4, is perhaps the most commonly
used communication performance model in parallel comput-
ing. This performance model is often used in developing and
evaluating parallel algorithms in high-performance comput-
ing, and was an effective model when it was first proposed.
Consequently, numerous tests of “ping pong” communica-
tion have been developed in order to measure these param-
eters in the model. However, with the advent of multicore
nodes connected to a single (or a few) network interfaces,

+ha mndal hac harnma a nanr matrh +tn madoarn hardurara

lukeo@illinois.edu

samfass2@illinois.edu

understand performance issues in applications. One of the
earliest, sometimes called the postal model [3, 8]2, represents
the communication time to send n bytes as

T =a+ Bn, (1)

where the term « denotes the total latency and S the in-
verse of the asymptotic bandwidth (for arbitrarily large n,
measured in seconds per byte). While numerous other per-
formance models have been proposed [16] and have found
some use, the postal model remains the most common per-
formance model used to analyze message-passing programs.

Consequently, many benchmarks measure « and 8 by send-

inoe a moaccaca +n annthoar nrarace fallauwrad hyr candine tha

< advertisement >



Scaling Limits for PDE-Based Simulation

Paul F. Fischer*? Katherine Heisey'! Misun Min*

We analyze algorithm/architecture performance characteristics that have a direct im-
pact on the scalability of present-day and future turbulent flow simulations on large-scale
parallel computers.

I. Introduction

Parallel computing is founded on the principle that, given enough work for a given problem, one can
subdivide the computation across P processors and realize an effective P-fold reduction in time to solution.
On today’s architectures, any PDE-based or particle-based simulation that uses a billion gridpoints or
particles can easily be distributed across two compute nodes and run in half the time—for essentially the
same power—compared with running on just a single node. This computational scenario, running a problem
of fized size in half the time on two processors or nearly one- Pth the time on P processors, is termed strong
scaling and is the focus of this paper. Specifically, we explore the basic question of how far one can scale
a given problem, defined by its computational resolution n (e.g., the number of gridpoints), when using P
processors.

The relevance of the strong scaling question is expressed succinctly in the equation

SP = TIPSI7 (1)

< advertisement 2>
AIAA 2015



Linear Communication Model

B Simple (simplistic?) and general:
— Determined by two asymptotes («,3)
— Does not capture contention effects.
» Are these important? Probably, on rich nodes.

— Our approach: model ideal performance and investigate departures
from ideal.

B More complex models depend on

- P
— Runtime topology — rarely known (except on Bluegene)
— Other jobs in system (except on Bluegene)

— Node architecture

e (e.g., Gropp, Olson, Samfass 2016: Modeling MPI Communication Performance on
SMP Nodes: Is it Time to Retire the Ping Pong Test?)
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Linear Communication Model — P dependence

Bluewaters Ping-Pong: Rank 0-—->1.2.4,,.,.512, P=1024
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B Switch to 3-trip messaging:
— Source: “n bytes coming, ready?”
— Target: “ready”
— Source: n bytes - target



Linear Communication Model — P dependence

B The switch point is important in the strong-scale limit n/P->0
— Communication costs are significant (surface/volume large)
— Messages are short:

em<m Cost~

switch .

em>m Cost~3

switch .
B Switch point is reduced when P increases
— Need to reserve P buffers of size b: local memory demand scales as (P x b)
— Inveighs against strong scaling.

B For PDEs, we don’t need a lot of large buffers.

— Rare is the 3D application where ranks talk actively to more than 100 other
ranks.

— We should boost buffer sizes on most active rank-to-rank exchanges.
— Reduce (eliminate) unused set-aside buffers.
— Maybe already in place? (A question to MPI experts in the audience..)



1/2 Round-Trip Time {seconds)

Linear Communication Model — P dependence

0, 0010000

0,0001000 ¢

0,0000100

0, 0000010

0, 0000001

Bluewaters Ping-Pong: Rank 0-->1.2.4,..,.512, P=1024

o

_’—

1

10 100 1000 10000 100000

Message Size, B (B4-bit words)

B Switch to 3-trip messaging:
— Source: “n bytes coming, ready?”
— Target: “ready”
— Source: n bytes - target

1/2 Round-Trip Time {seconds)
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B Larger P - smaller buffers
— “Short messages” are shorter
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Linear Communication Model — P dependence
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.30592905E-06

247
251

261

23

.95962816E-06
.53762031E-06

wwwkrkF-

wwwkrRF-

time/wd

.38323391E-08
.38527105E-08
.19823003E-08
.40144235E-08
.43544600E-08
.34636616E-08

.44557945E-07
.40025268E-07
.34417154E-07
.39826481E-07
.24974089E-07
.11923076E-07

Pg
pPg
pPg
pPg
pPg
pPg

pPg
pPg
pPg
pPg
pPg
pPg

B Going from P=1024 to P=32768 on BW
— Switchpoint between short and

long messages moves from 250
words to 25 words.

B /f you have 103 = 1000 points/rank,
need switchpoint to be ~ 100 = 10?



Linear Communication Model — P dependence

B Another argument for (or against) the simple linear communication
model...

B System noise is difficult to quantify

Ping-Pong Test: rank 0 to rank=k,...,511

Cray XK7: Titan
BG/Q: Veste
BG/P: Intrepid

1/2 ping-pong time (seconds)

T
————

message size (64 bit words)



Linear Communication Model over Several Decades
Nondimensionalized!

100000 —

'deltla' ul3
'sp2'u 1:3
'paragon’'u 1:3
'asci_red'u 1:3
'bgp'u 1:3
'bgq'u 1:3

Linear communication model :

t. (m)= o*+p*m, m: 64-bit words

Nondimensionalize by t, [c =a*b]:
10000 |

time (sec)

t.(m)= (a+pm)t,

a=a/t,, p=p/t,

1000 F ) .

1 10 100 1000 10000

words (64-bit)



30 Years of Nondimensional Machine Parameters

Year tq (us) ate (us) Bta (us/wd) e B mo machine
1986 50 5960 64 119.2  1.28 | 93  Intel iPSC-1 (286)
1987  0.333 5960 64 17898 192 | 93  Intel iPSC-1/VX
1988 10 938 2.8 93.8 028 | 335 Intel iPSC-2 (386)
1989  0.25 938 2.8 3752 11.2 | 335 Intel iPSC-2/VX
1990 0.1 80 2.8 800 28 | 29 Intel iPSC-i860
1991 0.1 60 0.8 600 8 75  Intel Delta
1992  0.066 50 0.15 760 2.3 333  Intel Paragon
1995  0.02 60 0.27 3000 13.5 | 222 IBM SP2 (BU9)
1996  0.016 30 0.02 1875 1.25 | 1500 ASCI Red 333
1998  0.006 14 0.06 2333 10 | 233  SGI Origin 2000
1999  0.005 20 0.04 4000 8 | 500 Cray T3E/450
2005  0.002 4 0.026 2000 13 | 154 BGL/ANL
2008  0.0017 3.5 0.022 2060 13 | 160 BGP/ANL
2011 0.0007 2.5 0.002 3570 2.87 | 1250 Cray Xe6 (KTH)
2012 0.0007 3.8 0.0045 5430 6.43 | 845 BGQ/ANL
2015  0.0004 2.2 0.0015 5500 3.75 | 1467 Cray XK7

B m, := a/f ~ message size - twice cost of single-word message

B t, based on noncached matrix-matrix products of order 10—13



Scalability Estimates: Jacobi Iteration
. o . . 1
Point Jacobi iteration (7-point stencil): u = —(f; — Z a;;u; )
i jFi
— Work: T, ~ 14n/Pt,

— Communication: T, ~ (6+ (n/P) 3 (I/m,) ) at,

— For fixed n/P, Jacobi complexity is P-independent

.assuming P independent message costs; no contention.

— However, algorithmic scaling is poor (iteration count scales as n?3)
— a more communication intensive approach is required

— conjugate gradient iteration, multigrid, etc.

— Jacobi is nonetheless a reasonable surrogate for explicit
timesteppers



Complexity Models for Iterative Solvers

— Point Jacobi iteration (7-point stencil, 3D):

— Work: T,,~ 14n/Pt,
— Communication: T,,~ (6+ (n/P)??(1/m,) ) at,
— Conjugate gradient iteration (7-point stencil): (alt: Chebyshev iteration)
— Work: T, ..~ 27n/Pt,
— Communication: T..c~T,, +4log, P at,

— Geometric Multigrid:

— Work: T,,c~ 50n/Pt,
— Communication: T.,/;~ (8log, n/P+ 30/m,(n/P)?? + 8 log, P) at,



Scaling Estimates: Jacobi

B Q: How large must n/P be for T, ~ T, ?

T, _ 6(1 4 a(/PP)a
Tq - 14n/P o
a = 2300 )
B8 = 12.6 » BG/P parameters
mo = 185 )

(n/P) = 2000

1 Jacobi scaling is independent of P.
 Of course, need occasional all_reduce to check convergence...
 Also, not a scalable algorithm (but, similar to explicit timestepper)



Scaling Estimates: Conjugate Gradients
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J The inner-products in CG, which give it its optimality, drive up the
minimal effective granularity because of the log P scaling of
all_reduce.



Scaling Estimates: Conjugate Gradients

T. 6 (1 + mLQ(n/P)Q/g’ + 41095 P) « <

To 27n/P -

P = 10°, log, P = 20, (n/P) =~ 8500
P = 10° log, P = 30, (n/P) ~ 12000

J The inner-products in CG, which give it its optimality, drive up the
minimal effective granularity because of the log P scaling of
all_reduce.

d On BGI/L, /P, /Q, however, all_reduce is effectively P-independent.



all_reduce time [seconds)

Eliminating log P term in CG

® On BGI/L, /P, /Q, all_reduce is nearly P-independent.
B For P=524288, all_reduce(1) is only 4¢x !

BQ/Q hardware all_reduce

0,01

BG/Q software all_reduce

0,01

0,001 F

0,001 F

all_reduce

0,0001 00001 F

all_reduce time (seconds)

le-05 | 1e-05 F

Y2 ping-pong Y2 ping-pong

. ; : : 1e-06 : . . :
. 1 10 00 [N 1000 100000
8 size m (64-bit'wordsy” Message size m-(64-bit words)

le-06

Messag



Eliminating log P term in CG

2x4
6(1 + L (n/P)2/3 + 41dg- P
Te + 55 (n/P)*/° 4+ 41g9o P) 1
T 27 n/P -
n/P ~ 1200

d On BG/L, /P, /Q, CG is effectively P-independent because
of hardware supported all _reduce.

d In this (admittedly simple) exascale model, net result is a
10x improvement in granularity (n/P=1200 vs. 12,000).

- 10x faster run, but no reduction in power consumption.



Nek/BGP Communication Cost Distribution vs Rank

B Billion-point 217-pin bundle simulation on P=65536

WSS . Coarse solve time
B & Neighbor exchange

time (sec)

5

TR mpi_all_reduce

0 10000 20000 30000 40000 50000 60000

MPI rank

B Neighbor vs. all reduce: 50a vs 4o (4a, not 16 x 4a)



Scaling Estimates: Multigrid

T. (8|092n/P + %—2("1/13)2/3 + 8|092P)Oé <
To 50n/P =

n/P (P =103) =~ 13,000
n/P (P =10%) ~ 17,000
n/P (P = 10°) =~ 22,000
d Replacing 8 a log, P with 16a yields n /P ~ 9000, which is > 2x
gain in scalability.

Such gains could be realized through hardware support in the
network interface card (NIC) for scan / reduce operation

d Some vendors have indicated a move in this direction. (yay!)

O Further savings might be possible by reducing the first term.
(Algortinmic issues addressed by Bell, Dalton, Olson, 2013.)

This is an excellent co-design opportunity.



Measured and Modeled Multigrid Performance

Measured BG/P Multigrid Performance Modeled BG/P Multigrid Performance

10000 v T T T ~r 10000 v v v v v

P=4  + Model: P=4-32768 ——
8 EFF=0,5

16 = EFfF=1,0 —
2 o
64

128
» 512

" 1024 =

o\ 2048
N 4096 «
'\ 8192

100 b o 16384 4

o 32768 ——

EFF=0,5

* A\ Eff=1,0

(Ta* Tc)/ Ty
/

10} .

A A A A A 0. 1 A A A A A
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000

0.1

n/P n/P

e 1.1: Left: Measured scalability for 3D geometric multigrid, (T4 + T¢)/T4 as a function of (7
rying processor counts, P. Right: Modeled scalability for 3D geometric multigrid using 1.1.



Returning to Original Scaling Question

217 Pin Problem, N=9, E=3e6:

Mira, 217-Pin Bundle: n=2 Billion

32 <

— 2 billion points |

16 -

— BGQ —-524288 cores \
- 1 or 2 ranks per core e
— A mixture of CG / multigrid ¥ *]

— 60% parallel efficiency at
1 million processes

— 2000 points/process tine - 1 process/core ——
time - 2 process/core ——s—
efficiency - 2 process/core —i—

0.5 -

Parallel Efficiency

L] T L] T
16334 32763 65536 131072 262144



What about GPUs or more Complex Nodes?

B A major concern here is the “n,,”

— ny, = the value of n (or, n/P) where the node performance
reaches Yz its peak for your application.

B |n addition to communication overhead, n,,, sets the strong scale limit
on complex nodes.

M This is an old vector-architecture concern that is of critical importance
for strong scaling on today and tomorrow’s architectures.

200 r ————————————————————
1/K=R A.R.
10 p————— e e e m o s e a a——e
80 |- N - 1 Table 6 Values for N,/; (FORTRAN SAXPY)
T S/N+ K
FORTRAN
Computer M Peak Performance
CRAY-1 20 45
| CRAY X-MP 37 101
CRAY-2 30 55
N CYBER 205 238 170
/2 FUJ. VP-100 200 140
FUJ. VP-200 120 190
IBM 3090/VF M 53
NEC SX-1 30 240
NEC SX-2 80 575

Supercomputers and Their Performance in Computational Fluid Dynamics, Kozo Fujii, Springer 1993.



Example of a High n,,

B Electromagnetics code on GPUs of OLCF’s Titan.

B Even with P=1, n/P is limited to be > 125,000 to get saturated
performance per node (for CFD, this number is higher).

Timing Runs for titanGPU

«— GPU1
e GPU2
«— GPU4
10°} GPUS8

10°

Time (s)

101_

1003 T4 .5 6 AT
10 10 10 10 10
Number of Grid Points (N=14)



n,, Requirements for:? Candidate Node to Yield Speedup

Sp = n-S-P (speed, in mflops)
S1 = observed saturated speed, in flops, n > 1

e Let n be total problem size (gridpoints, say), and n 1 be the
local problem size such that

) = %Sl(nsat)

e Let W := w - n be the total number of flops and
w be the number of flops per gridpoint.

e Choose P =n/ni  (50% efficiency)

e Time to solution: Tp = w-no_own
Sp ﬁSlp
w-n w-ni




Summary: Getting Good Performance for
CFD, PDEs, HPC

B Know your model & physics (if possible):
— RANS vs LES — 104 — 10° savings

® PDEs:
— Discretizations can yield 10x savings
— Fast solvers 10-100x

m HPC:
— Understand your single-node performance, over a range of n!
— Examine your communication costs.
— All of this involves modeling and measuring.

B The HPC part can be almost (!) as much fun as the fluids part!



Thank You!




