
Community-Building in
Open Source

Scientific Software
Nathan Goldbaum

@njgoldbaum

ATPESC
August 9, 2016

A little about myself
• PhD in Astronomy & Astrophysics from UCSC, 2015, mostly

on simulations of idealized isolated Milky Way analogues

• Currently postdoc at NCSA in the Data Exploration Lab
(dxl.ncsa.illinois.edu)

• Core developer of yt (yt-project.org) - an analysis and
visualization framework for simulatiuon data

• Contributor to Enzo (enzo-project.org) - an open source
AMR cosmological hydrodynamics code

• Small contributions to many other projects (sphinx,
matplotlib, IPython, mercurial, homebrew)

http://dxl.ncsa.illinois.edu
http://yt-project.org
http://enzo-project.org

Outline

• Choosing a license

• Hosting and releasing code

• Making code friendly to newcomers

• Reaching out: building a community of practice

Why do you need to license
your code?

“Generally speaking, the absence of a license means
that default copyright laws apply.”

“This means that you retain all rights to your source
code and that nobody else may reproduce,

distribute, or create derivative works from your work.”

http://choosealicense.com/no-license/

The license is the social
contract between a code’s

developers and users

Sadly, most people don’t choose a license

https://github.com/blog/1964-open-source-license-usage-on-github-com

Percentage of Github Repositories with Licenses

https://github.com/blog/1964-open-source-license-usage-on-github-com

How to license software?

• Easy! Create a LICENSE or COPYING file and
drop it into the root of the source distribution

• https://github.com/BoxLib-Codes/Castro

• https://bitbucket.org/enzo/enzo-dev/src

• https://github.com/pencil-code/pencil-code

https://github.com/BoxLib-Codes/Castro
https://bitbucket.org/enzo/enzo-dev/src
https://github.com/pencil-code/pencil-code

What not to do?
• Make up your own license

• Use a license that has not been certified as a
free software license

• Make up terms to add to an existing license

Free software != Open Source

Free as in beer Free as in freedom

Free software != Open Source
• The freedom to run the program as you wish, for any

purpose.

• The freedom to study how the program works, and
change it so it does your computing as you wish.

• The freedom to redistribute copies so you can help your
neighbor.

• The freedom to distribute copies of your modified versions
to others. By doing this you can give the whole community
a chance to benefit from your changes.

https://www.gnu.org/philosophy/free-sw.en.html

https://www.gnu.org/philosophy/free-sw.en.html

Two types of free software
licenses

Permissive Copyleft

Two types of free software
licenses

Permissive Copyleft

Add reference to original
license for reused code

If you release something
that uses copyleft code,

your code must be publicly
available and must be

licensed under a copyleft
licenseNo further restrictions

on reuse
GPL: If your code links

against a GPL library, it must
be released under the GPL

The holy war

Licenses used by open
source projects

Permissive Copyleft

Building a community is
more than choosing a

license

A Cautionary Tale

“The second public version (GADGET-2, released in May
2005), contains most of these improvements, except the

numerous physics modules developed for the code that
go beyond gravity and ordinary gas-dynamics.”

A Cautionary Tale

Where Gadget Went Wrong
• Extremely Popular (2800 citations!)

• Many variants, some public, most private

• Overworked maintainer / single point of failure

• Further improvements (Gadget3, Arepo) do not get
released for general use

• Private physics routines preclude reproducibility
despite the bulk of the code being public

• Little interoperability between versions used by
different research groups, each developed
separately

Best Practices for
Hosting and Releasing Code

Use version control
• Use distributed version control in a public repository.

• git or hg, *not* centralized version control (SVN, CVS)
or a folder somewhere (‘my-code.v2.v3.08-2016/’)

• Distributed version control makes it possible for a
newcomer to perform full development workflow
without your explicit permission (or knowledge!)

• Having history available makes it much easier to track
down and bisect bugs, see how code evolved

Social Coding

https://bitbucket.org/enzo/enzo-dev/pull-requests

Social Coding

Fork the repository, write code, commit it, run tests
contribute back to original repository, repeat

No special permissions! Anyone can follow this workflow!

Code Review
• One or more people should look over each contribution in

detail and signal approval or offer comments for further
revision. This is an iterative process.

• Encourage smaller, more easily reviewable contributions.
Major development efforts should happen over many pull
requests.

• Advanced: for major development efforts, consider
rewriting history to ease code review. Each commit should
change only one thing. This is *much* easier to review.

• CONTRIBUTING file spells out style, code review
expectations.

Continuous Integration
• Tests are only useful if

they’re being run

• Every pull request should
pass all the tests

• Contributions and bugfixes
should add new tests to
prevent regressions

Do regular releases
• Make regular stable releases including both sources and

binaries (if applicable)

• Compiling code can be a big barrier to entry

• Stable releases are a quantum of accomplishment you
can point to

• Accounce via e-mail, facebook, twitter, whichever other
comminication mechanism you prefer.

• Getting contributors to announce releases is a good
way to build community, recognize contributions

conda-forge.github.io

Make your code friendly for
newcomers

• Documentation.

• API Docs (automatically generated from
docstrings)

• Narrative docs

• Worked examples

• Cookbook / Gallery

Building and hosting your
documentation

• Build examples in docs
as part of your test
suite

• Store docs in the same
repository as the code,
so docs changes come
in as part of the same
pull request as code
changes

Traditional Software
Communities

Developers Users

Communities of Practice

Devusers

The code should not be a black box!

http://arxiv.org/abs/1301.7064
“Scaling a Code in the Human Direction”, Turk (2013)

Code of Conduct

http://contributor-covenant.org/

https://www.python.org/psf/codeofconduct/

• Community agrees to participate under binding code of
conduct.

• Treat each other with respect, profesional demeanor,
and give others the benefit of the doubt.

• Abuse and violations may lead to time-outs, community
bans, or other sanctions.

Recognize, Praise, and
Promote your Community

http://yt-project.org/gallery.html
http://yt-project.org/community.html
http://yt-project.org/members.html

