
www.hdfgroup.org

The HDF Group

Parallel I/O with HDF5

 Gerd Heber

The HDF Group

1800 S. Oak St., Suite 203,

Champaign, IL 61820

help@hdfgroup.org

ATPESC 2016 1

mailto:help@hdfgroup.org

www.hdfgroup.org

Outline

• Problems and Goals

• Methodology

• Tools

• Parallel HDF5

• Diagnostics & Instrumentation

• Two Examples

• VPIC

• CGNS

• HDF5 from Python

The answers to most of your

I/O-related questions

Can be found here 

We’ve plundered re-used the best 

 parts in this presentation

ATPESC 2016 2

www.hdfgroup.org

PROBLEMS AND GOALS

ATPESC 2016 3

www.hdfgroup.org

Problems

“A supercomputer is a device for turning

compute-bound problems into I/O-bound

problems.” (Ken Batcher)

• My application spends too much time in I/O.

• It doesn’t scale because of I/O.

• I’m told my system is capable of X, but I’m

getting less than 1% of X.

• …

ATPESC 2016 4

www.hdfgroup.org

Common Causes of I/O Problems

1. Undersized I/O system for the compute

partition

2. Misconfigured system (for the application)

3. Interference with other running applications

4. The way your application reads and writes

data leads to poor I/O performance

While 1 - 3 are possibilities, 4 is the most likely

scenario. (… and it’s not always your fault!)

ATPESC 2016 5

www.hdfgroup.org

Towards Achievable Goals

• Rule out / quantify 1 - 3 through benchmarking

and repeated application runs

• Characterize application I/O through profiling

• Create a performance improvement plan

• “Spectrum of control”

• My I/O layer]  …  [Closed-source 3rd-party

lib.

• Know your system’s capabilities and your

resources (budget, skills, …)

• Be prepared to settle for a lot less (sometimes).

ATPESC 2016 6

www.hdfgroup.org

METHODOLOGY

Most of this is common sense, but deserves to be repeated.

ATPESC 2016 7

www.hdfgroup.org

Prepare a Baseline

• Full application vs. I/O kernel

• Performance model

• Back-of-the-envelope calculations

• Benchmarks

• Application runs with representative workloads

• Metrics (examples)

• I/O size in megabytes read and written

• I/O rate in MB/s

• Percentage of application time spent in I/O

• Distribution of write and read sizes

ATPESC 2016 8

www.hdfgroup.org

Define the Search Space

• Goal is to establish the “fundamentals” (or rule

out certain causes)

• Define lines (loops!) of investigation

• Walk the loop(s) and document setup and

results

• Low hanging fruit first (if there are any)

• Fewer variables are better than too many

• NEVER change more than one variable at a

time

• Depends on level of control and budget

ATPESC 2016 9

www.hdfgroup.org

Know When to Stop

You might have:

• Reached your goal (unlikely)

• Exhausted your budget (frequently)

• Gotten on a path of diminishing returns (most

likely)

• New problem in a different part of the

application (always)

ATPESC 2016 10

www.hdfgroup.org

TOOLS

ATPESC 2016 11

www.hdfgroup.org

Tools

• Parallel HDF5

• Diagnostics and Instrumentation

• Basic facts about your machine’s I/O stack

ATPESC 2016 12

www.hdfgroup.org

PARALLEL HDF5

Tools

ATPESC 2016 13

www.hdfgroup.org

HDF5 in 2 Slides and 2 Movies

1. Who’s behind all this?

The HDF Group, 1800 S. Oak St., Champaign, IL...

2. What is HDF5? What is it not?

A Smart data container, not a Big Data buzz word

3. Where is it being used?

Academia, enterprise, government, research, …

4. When should I consider using it? When not?

Always! Erm, actually not... => Ask the experts!

5. Why does my neighbor make jokes about HDF5?

Give us her address and we’ll take care of it...

6. How can I get up to speed – fast? => This talk + refs.

ATPESC 2016 14

www.hdfgroup.org

Showtime – Part 1

ATPESC 2016 15

www.hdfgroup.org

HDF5 Data Model

• Groups – provide structure among objects

• Datasets – where the primary data goes

• Data arrays

• Rich set of datatype options

• Flexible, efficient storage and I/O

• Attributes, for metadata

Everything else is built essentially from

these parts.

ATPESC 2016 16

www.hdfgroup.org

Showtime – Part 2

ATPESC 2016 17

www.hdfgroup.org

HDF5 Ecosystem

F
il

e
 F

o
rm

a
t

L
ib

ra
ry

D
a

ta
 M

o
d

e
l

D
o

c
u

m
e

n
ta

ti
o

n

…

Supporters

…

T
o

o
ls

ATPESC 2016 18

www.hdfgroup.org

Terminology

• DATA  problem-size data, e.g., large arrays

• METADATA – is an overloaded term

• In this presentation:

• Metadata “=“ HDF5 metadata

• For each piece of application metadata, there

are many associated pieces of HDF5 metadata

• There are also other sources of HDF5

metadata

ATPESC 2016 19

www.hdfgroup.org

Why Parallel HDF5?

• Take advantage of high-performance parallel

I/O while reducing complexity

• Add a well-defined layer to the I/O stack

• Keep the dream of a single or a few shared

files alive

• “Friends don’t let friends use one file per

process!”

• Make performance portable

ATPESC 2016 20

www.hdfgroup.org

What We’ll Cover Here

• Parallel vs. serial HDF5

• Implementation layers

• HDF5 files (= composites of data & metadata)

in a parallel file system

• PHDF5 I/O modes: collective vs. independent

• Data and metadata I/O

ATPESC 2016 21

www.hdfgroup.org

What We Won’t Cover

• Consistency semantics

• Metadata server

• Virtual Object Layer (VOL)

• Automatic tuning

• Single Writer Multiple-Reader (SWMR)

• Virtual Datasets (VDS)

• BigIO

• …

• Come see us during the break or after the

presentation!

ATPESC 2016 22

www.hdfgroup.org

(MPI-)Parallel vs. Serial HDF5

• PHDF5 allows multiple MPI processes in an MPI

communicator to perform I/O to a single HDF5 file

• Uses a standard parallel I/O interface (MPI-IO)

• Portable to different platforms

• PHDF5 files ARE HDF5 files conforming to the

HDF5 file format specification

• The PHDF5 API consists of:

• The standard HDF5 API

• A few extra knobs and calls

• A parallel “etiquette”

• Bottom line: PHDF5 is as user-friendly as HDF5.

ATPESC 2016 23

https://www.hdfgroup.org/HDF5/doc/H5.format.html

www.hdfgroup.org

Standard HDF5 “Skeleton”

H5Fcreate (H5Fopen) create (open) File

 H5Screate_simple/H5Screate create dataSpace

 H5Dcreate (H5Dopen) create (open) Dataset

 H5Dread, H5Dwrite access Dataset

 H5Dclose close Dataset

 H5Sclose close dataSpace

H5Fclose close File

ATPESC 2016 24

www.hdfgroup.org

PHDF5 Implementation Layers

HDF5 Application

Compute node Compute node Compute node

HDF5 Library

MPI Library

HDF5 file on Parallel File System

Switch network + I/O servers

Disk architecture and layout of data on disk

ATPESC 2016 25

www.hdfgroup.org

Example of a PHDF5 C Program

A parallel HDF5 program has a few extra calls

MPI_Init(&argc, &argv);

fapl_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(fapl_id, comm, info);

file_id = H5Fcreate(FNAME,…, fapl_id);

space_id = H5Screate_simple(…);

dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT,

 space_id,…);

xf_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id…);

MPI_Finalize();

ATPESC 2016 26

www.hdfgroup.org

PHDF5 Etiquette

• PHDF5 opens a shared file with an MPI communicator

• Returns a file handle

• All future access to the file via that file handle

• All processes must participate in collective PHDF5 APIs

• Different files can be opened via different communicators

• All HDF5 APIs that modify structural metadata are

collective! (file ops., object structure and life-cycle)

https://www.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

ATPESC 2016 27

https://www.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

www.hdfgroup.org

In a Parallel File System

File Dataset data

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple “disks” (Lustre OSTs)

depending on the stripe size and stripe count with

which the file was created.

And it gets worse before it gets better…

ATPESC 2016 28

www.hdfgroup.org

Contiguous Storage

• Metadata header separate from dataset data

• Data stored in one contiguous block in HDF5

file

 Application memory Metadata cache

Dataset header

………….

Datatype
Dataspace
………….

Attributes
…

File

Dataset data

Dataset data

ATPESC 2016 29

www.hdfgroup.org

Chunked Storage

• Dataset data is divided into equally sized blocks

(chunks).

• Each chunk is stored separately as a contiguous

block in HDF5 file.

Application memory

Metadata cache

Dataset header

………….

Datatype
Dataspace
………….

Attributes
…

File

Dataset data

A D C B header
Chunk
index

Chunk
index

A B C D

ATPESC 2016 30

www.hdfgroup.org

In a Parallel File System

File A D C B

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple OSTs depending on the

stripe size and stripe count with which the file was created.

header
Chunk
index

ATPESC 2016 31

www.hdfgroup.org

Collective vs. Independent I/O

• MPI definition of collective calls:

• All processes of the communicator must participate in

calls in the right order.

• Process1 Process2

• call A(); call B(); call A(); call B(); **right**

• call A(); call B(); call B(); call A(); **wrong**

• Independent means not collective 

• Collective is not necessarily synchronous, nor

must it require communication

• Neither mode is preferable a priori.

Collective I/O  attempt to combine multiple

smaller independent I/O ops into fewer larger ops.
ATPESC 2016 32

www.hdfgroup.org

Data and Metadata I/O

Data

• Problem-sized

• I/O can be independent

or collective

• Improvement targets:

• Avoid unnecessary I/O

• I/O frequency

• Layout on disk

• Different I/O strategies for

chunked layout

• Aggregation and balancing

• Alignment

Metadata

• Small

• Reads can be

independent or collective

• All modifying I/O must be

collective

• Improvement targets:

• Metadata design

• Use the latest library

version, if possible

• Metadata cache

• In desperate cases, take

control of evictions

ATPESC 2016 33

www.hdfgroup.org

Don’t Forget: It’s a Multi-layer Problem

ATPESC 2016 34

www.hdfgroup.org

DIAGNOSTICS AND

INSTRUMENTATION

Tools

ATPESC 2016 35

www.hdfgroup.org

A Textbook Example

User report:

• Independent data

transfer mode is

much slower than the

collective data

transfer mode

• Data array is tall and

thin: 230,000 rows by

6 columns

:

:

:

230,000 rows
:

:

:

ATPESC 2016 36

www.hdfgroup.org

Symptoms

Writing to one dataset

• 4 MPI processes  4 columns

• Datatype is 8-byte floats (doubles)

• 4 processes x 1000 rows x 8 bytes = 32,000 bytes

% mpirun -np 4 ./a.out 1000

Execution time: 1.783798 s.

% mpirun -np 4 ./a.out 2000

Execution time: 3.838858 s. (linear scaling)

• 2 sec. extra for 1000 more rows = 32,000 bytes.

Whopping speed of 16KB/sec  Way too slow!!!
ATPESC 2016 37

www.hdfgroup.org

“Poor Man’s Debugging”

• Build a version of PHDF5 with

• ./configure --enable-debug --enable-parallel …

• This allows the tracing of MPIO I/O calls in the

HDF5 library such as MPI_File_read_xx and

MPI_File_write_xx

• Don’t forget to % setenv H5FD_mpio_Debug “rw”

• You’ll get something like this…

ATPESC 2016 38

www.hdfgroup.org

Independent and Contiguous

% setenv H5FD_mpio_Debug ’rw’

% mpirun -np 4 ./a.out 1000 # Indep.; contiguous.

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=2056 size_i=8

in H5FD_mpio_write mpi_off=2048 size_i=8

in H5FD_mpio_write mpi_off=2072 size_i=8

in H5FD_mpio_write mpi_off=2064 size_i=8

in H5FD_mpio_write mpi_off=2088 size_i=8

in H5FD_mpio_write mpi_off=2080 size_i=8

…

• A total of 4000 of these 8 bytes writes == 32,000 bytes.

ATPESC 2016 39

www.hdfgroup.org

Plenty of Independent and Small Calls

Diagnosis:

• Each process writes

one element of one

row, skips to next row,

writes one element,

and so on.

• Each process issues

230,000 writes of 8

bytes each.

:

:

:

230,000 rows
:

:

:

ATPESC 2016 40

www.hdfgroup.org

Chunked by Column

% setenv H5FD_mpio_Debug ’rw’

% mpirun -np 4 ./a.out 1000 # Indep., Chunked by column.

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=0 size_i=96

in H5FD_mpio_write mpi_off=3688 size_i=8000

in H5FD_mpio_write mpi_off=11688 size_i=8000

in H5FD_mpio_write mpi_off=27688 size_i=8000

in H5FD_mpio_write mpi_off=19688 size_i=8000

in H5FD_mpio_write mpi_off=96 size_i=40

in H5FD_mpio_write mpi_off=136 size_i=544

in H5FD_mpio_write mpi_off=680 size_i=120

in H5FD_mpio_write mpi_off=800 size_i=272
…

• Execution time: 0.011599 s.

ATPESC 2016 41

www.hdfgroup.org

Use Collective Mode or Chunked Storage

Remedy:

• Collective I/O will

combine many small

independent calls

into few but bigger

calls

• Chunks of columns

speeds up too

:

:

:

230,000 rows
:

:

:

ATPESC 2016 42

www.hdfgroup.org

Collective vs. independent write

0

100

200

300

400

500

600

700

800

900

1000

0.25 0.5 1 1.88 2.29 2.75

S
e

c
o

n
d

s
 t

o
 w

ri
te

Data size in MBs

Independent write

Collective write

ATPESC 2016 43

www.hdfgroup.org

Back Into the Real World…

• Two kinds of tools:

• I/O benchmarks for measuring a system’s I/O

capabilities

• I/O profilers for characterizing applications’ I/O

behavior

• Two examples:

• h5perf (in the HDF5 source code distro)

• Darshan (from Argonne National Laboratory)

• Profilers have to compromise between

• A lot of detail  large trace files and overhead

• Aggregation  loss of detail, but low overhead
ATPESC 2016 44

http://www.mcs.anl.gov/research/projects/darshan/

www.hdfgroup.org

I/O Patterns

ATPESC 2016 45

www.hdfgroup.org

h5perf(_serial)

• Measures performance of a filesystem for

different I/O patterns and APIs

• Three File I/O APIs for the price of one!

• POSIX I/O (open/write/read/close…)

• MPI-I/O (MPI_File_{open,write,read,close})

• HDF5 (H5Fopen/H5Dwrite/H5Dread/H5Fclose)

• An indication of I/O speed ranges and HDF5

overheads

• Expectation management…

ATPESC 2016 46

www.hdfgroup.org

A Serial Run

Minimum

Average

Maximum
0

50

100

150

200

250

300

350

400

450

500

POSIX
HDF5

POSIX
HDF5

POSIX
HDF5

POSIX
HDF5

Write

Write Open-Close
Read

Read Open-Close

M
B

/s

h5perf_serial, 3 iterations, 1 GB dataset, 1 MB transfer buffer,
HDF5 dataset contiguous storage, HDF5 SVN trunk, NCSA BW

Minimum

Average

Maximum

ATPESC 2016 47

www.hdfgroup.org

A Parallel Run

Minimum

Average

Maximum

0

500

1000

1500

2000

2500

3000

3500

POSIX MPI-IO HDF5 POSIX MPI-IO HDF5 POSIX MPI-IO HDF5 POSIX
MPI-IO HDF5

Write

Write Open-Close
Read

Read Open-Close

M
B

/s

h5perf, 3 MPI processes, 3 iterations, 3 GB dataset (total),
1 GB per process, 1 GB transfer buffer,

HDF5 dataset contiguous storage, HDF5 SVN trunk, NCSA BW

Minimum

Average

Maximum

ATPESC 2016 48

www.hdfgroup.org

Darshan (ANL)

• Design goals:

• Transparent integration with user environment

• Negligible impact on application performance

• Provides aggregate figures for:

• Operation counts (POSIX, MPI-IO, HDF5, PnetCDF)

• Datatypes and hint usage

• Access patterns: alignments, sequentiality, access size

• Cumulative I/O time, intervals of I/O activity

• Does not provide I/O behavior over time

• Excellent starting point, maybe not your final stop

ATPESC 2016 49

www.hdfgroup.org

Darshan Sample Output

Source: NERSC

ATPESC 2016 50

http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/

www.hdfgroup.org

NCSA BW I/O SYSTEM

BASIC FACTS

Tools

ATPESC 2016 51

www.hdfgroup.org

NCSA BW I/O System 1

ATPESC 2016 52

www.hdfgroup.org

NCSA BW I/O System 2

ATPESC 2016 53

www.hdfgroup.org

NCSA BW I/O System Facts

• /scratch is your main workhorse

• 22 PB capacity, ~980 GB/s aggregate

bandwidth

• Lustre parallel file system

• Servers “=“ Object Storage Servers (OSS)

• Disks “=“ Object Storage Targets (OST)

• Files in Lustre are striped across a configurable

number of OSTs

• Default values: stripe count 2, stripe size1MB

• /scratch has 1,440 OSTs (160 max. for you)

Bottom Line: We can’t blame “the system” for poor I/O performance.

ATPESC 2016 54

www.hdfgroup.org

NCSA BW HDF5 Software Setup

• https://bluewaters.ncsa.illinois.edu/software-and-

packages

• HDF5 is installed on BW

• cray-hdf5 xor cray-hdf5-parallel

• Up to version 1.8.17

• Darshan is installed, but works only with the pre-

installed I/O libraries (Still a good start!)

• For adventurers:

• HDF5 feature branches

• HDF5 SVN trunk / Git master

ATPESC 2016 55

https://bluewaters.ncsa.illinois.edu/software-and-packages#IO Libraries
https://bluewaters.ncsa.illinois.edu/software-and-packages#IO Libraries
https://bluewaters.ncsa.illinois.edu/software-and-packages#IO Libraries
https://bluewaters.ncsa.illinois.edu/software-and-packages#IO Libraries
https://bluewaters.ncsa.illinois.edu/software-and-packages#IO Libraries

www.hdfgroup.org

EXAMPLES

ATPESC 2016 56

www.hdfgroup.org

Standard Questions

• What I/O layers are involved and how much

control do I have over them?

• Which ones do I tackle in which order?

• Are there any low-hanging fruit?

• What’s my baseline (for each layer) and what are

my metrics?

• Which tool(s) will give me the information I need?

• When do I stop?

• New information  New answers (maybe) : Need

to keep an open mind!

ATPESC 2016 57

www.hdfgroup.org

VPIC

Examples

Reference:

Trillion Particles, 120,000 cores, and 350 TBs:

Lessons Learned from a Hero I/O Run on Hopper,

By Suren Byna (LBNL) et al., 2015.

ATPESC 2016 58

https://www.nersc.gov/assets/Uploads/byna-nersc2.pdf
https://www.nersc.gov/assets/Uploads/byna-nersc2.pdf
https://www.nersc.gov/assets/Uploads/byna-nersc2.pdf
https://www.nersc.gov/assets/Uploads/byna-nersc2.pdf

www.hdfgroup.org

Layers

ATPESC 2016 59

www.hdfgroup.org

“Application I/O Structure”

• Total control over all layers

• Challenge: large output files

• Metric: write speed (throughput)

• Computationally intensive  Need an I/O kernel

• H5Part multiple dataset writes

• “Game plan”:

• MPI-IO / Lustre tuning

• Low hanging fruit (relatively)

• Pair MPI aggregators with Lustre OSTs

• Match MPI-IO buffer sizes and Lustre stripe size

• Worry about HDF5 (H5Part)
ATPESC 2016 60

www.hdfgroup.org

I/O Aggregation

ATPESC 2016 61

www.hdfgroup.org

Closing HDF5 File …

Q: How long does it take to close/flush an HDF5 file?

A: A lot longer than you might expect!

Feature has not

been released!

ATPESC 2016 62

www.hdfgroup.org

File Truncation (Today)

A call to H5Fflush or H5Fclose triggers a call to

ftruncate (serial) or MPI_File_set_size (parallel),

which can be fairly expensive.

Userblock HDF5 Data

Base address EOA EOF

Unused

Userblock HDF5 Data

Base address EOA = EOF

Currently, only one number

is stored in the file and used

for error detection.

ATPESC 2016 63

www.hdfgroup.org

File Truncation (Tomorrow)

A call to H5Fflush or H5Fclose triggers both values

(EOA, EOF) to be saved in the file and no truncation

takes place, IF the file was created with the “avoid

truncation” property set.

Userblock HDF5 Data

Base address EOA EOF

Unused

Userblock HDF5 Data

Base address EOA EOF

Unused

Caveat: Incompatible with older versions of the

library. Requires HDF5 library version 1.10 or later.

Continue allocation

from here:

ATPESC 2016 64

www.hdfgroup.org

Multi-Dataset I/O - Motivation

• HDF5 accesses elements in one dataset at a

time

• Many HPC applications access data in multiple

datasets in every time step

• Frequent small-size dataset access  Big

Trouble (≠Big Data)

• Parallel file systems tend not to like that.

• Idea: Let users to do more I/O per HDF5 call!

• Two New API routines:

• H5Dread_multi()

• H5Dwrite_multi()

Not a new idea: PnetCDF has

supported that for some time…

ATPESC 2016 65

www.hdfgroup.org

Sample Results

The plot shows the performance

difference between using a single

H5Dwrite() multiple times and

using H5Dwrite_multi() once

on 30 chunked datasets.

(On Hopper @ NERSC, a Cray

XE-6 with Lustre file system)

ATPESC 2016 66

www.hdfgroup.org

CGNS

Examples

Reference:

Parallel and Large-scale Simulation Enhancements to CGNS,

By Scot Breitenfeld, The HDF Group, 2015.

ATPESC 2016 67

https://hdfgroup.org/wp/2015/08/parallel-and-large-scale-simulation-enhancements-to-cgns/
https://hdfgroup.org/wp/2015/08/parallel-and-large-scale-simulation-enhancements-to-cgns/
https://hdfgroup.org/wp/2015/08/parallel-and-large-scale-simulation-enhancements-to-cgns/
http://cgns.github.io/

www.hdfgroup.org

CFD Standard

• CGNS = Computational Fluid Dynamics (CFD)

General Notation System

• An effort to standardize CFD input and output

data including:

• Grid (both structured and unstructured), flow solution

• Connectivity, boundary conditions, auxiliary information.

• Two parts:

• A standard format for recording the data

• Software that reads, writes, and modifies data in that

format.

• An American Institute of Aeronautics and

Astronautics Recommended Practice

ATPESC 2016 68

https://www.aiaa.org/default.aspx

www.hdfgroup.org

CGNS Storage Evolution

• CGNS data was originally stored in ADF

(‘Advanced Data Format’)

• ADF lacks parallel I/O or data compression

capabilities

• Doesn’t have HDF5’s support base and tools

• HDF5 superseded ADF as the official storage

mechanism

• CGNS introduced parallel I/O APIs w/ parallel

HDF5 in 2013

• Poor performance of the new parallel APIs in

most circumstances

• In 2014, NASA provided funding for The HDF

Group with the goal to improve the under-

performing parallel capabilities of the CGNS

library.

ATPESC 2016 69

www.hdfgroup.org

CGNS Performance Problems

• Opening an existing file

• CGNS reads the entire HDF5 file structure,

loading a lot of (HDF5) metadata

• Reads occur independently on ALL ranks

competing for the same metadata

”Read Storm”

• Closing a CGNS file

• Triggers HDF5 flush of a large amount of small

metadata entries

• Implemented as iterative, independent writes,

an unsuitable workload for parallel file systems

ATPESC 2016 70

www.hdfgroup.org

Opening CGNS File …

BEFORE IMPROVEMENTS

AFTER IMPROVEMENTS

IMPRACTICAL

ATPESC 2016 71

www.hdfgroup.org

Metadata Read Storm Problem (I)

• All metadata “write” operations are required to

be collective:

if(0 == rank)

 H5Dcreate(“dataset1”);

else if(1 == rank)

 H5Dcreate(“dataset2”);

• Metadata read operations are not required to

be collective



/* All ranks have to call */

H5Dcreate(“dataset1”);

H5Dcreate(“dataset2”);



if(0 == rank)

 H5Dopen(“dataset1”);

else if(1 == rank)

 H5Dopen(“dataset2”);

/* All ranks have to call */

H5Dopen(“dataset1”);

H5Dopen(“dataset2”);

 

ATPESC 2016 72

www.hdfgroup.org

Metadata Read Storm Problem (II)

• Metadata read operations are treated by the

library as independent read operations.

• Consider a very large MPI job size where all

processes want to open a dataset that already

exists in the file.

• All processes

• Call H5Dopen(“/G1/G2/D1”);

• Read the same metadata to get to the dataset and the

metadata of the dataset itself

• IF metadata not in cache, THEN read it from disk.

• Might issue read requests to the file system for the

same small metadata.

•  READ STORM

ATPESC 2016 73

www.hdfgroup.org

Avoiding a Read Storm

• Hint that metadata access is done collectively

• A property on an access property list

• If set on the file access property list, then all

metadata read operations will be required to

be collective

• Can be set on individual object property list

• If set, MPI rank 0 will issue the read for a

metadata entry to the file system and

broadcast to all other ranks

ATPESC 2016 74

www.hdfgroup.org

Closing a CGNS File …

ATPESC 2016 75

www.hdfgroup.org

Write Metadata Collectively!

• Symptoms: Many users reported that

H5Fclose() is very slow and doesn’t scale well

on parallel file systems.

• Diagnosis: HDF5 metadata cache issues very

small accesses (one write per entry). We know

that parallel file systems don’t do well with small

I/O accesses.

• Solution: Gather up all the entries of an epoch,

create an MPI derived datatype, and issue a

single collective MPI write.
ATPESC 2016 76

www.hdfgroup.org

A Benchmark Problem

 Computational mesh size: ~33 million elements and ~200 million nodes

ATPESC 2016 77

www.hdfgroup.org

Feature Release Schedule

• HDF5 1.10.0 (March 31, 2016)

• Metadata cache optimizations

• Avoiding the metadata “Read Storm”

• Collective metadata writes

• HDF5 1.10.1 (Q4 2016)

• Avoid truncation feature

• Multi-dataset I/O

ATPESC 2016 78

www.hdfgroup.org

PYHTON AND HDF5

Doing More With Less Code

ATPESC 2016 79

www.hdfgroup.org ATPESC 2016 80

www.hdfgroup.org

Resources

• HDF Group website www.hdfgroup.org

• HDF Forum

• Helpdesk help@hdfgroup.org

• Priority support

ATPESC 2016 81

http://www.hdfgroup.org/
mailto:help@hdfgroup.org

