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Challenges	in	Parallel	Programming	
•  ApplicaNons	are	geOng	more	sophisNcated	

–  AdapNve	refinements	
–  MulN-scale,	mulN-module,	mulN-physics	
–  E.g.	load	imbalance	emerges	as	a	huge	problem	for	some	apps	

•  Exacerbated	by	strong	scaling	needs	from	apps	
•  Future	challenge:	hardware	variability	

–  StaNc/dynamic	
–  Heterogeneity:	processor	types,	process	variaNon,	..	
–  Power/Temperature/Energy	
–  Component	failure	

•  To	deal	with	these,	we	must	seek	
–  Not	full	automaNon		
–  Not	full	burden	on	app-developers	
–  But:	a	good	division	of	labor	between	the	system	and	app	
developers	
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What	is	Charm++?	
•  Charm++	is	a	generalized	approach	to	wriNng	
parallel	programs	
– An	alternaNve	to	the	likes	of	MPI,	UPC,	GA	etc.	
–  But	not	to	sequenNal	languages	such	as	C,	C++,	and	
Fortran	

•  Represents:	
–  The	style	of	wriNng	parallel	programs	
–  The	runNme	system	
– And	the	enNre	ecosystem	that	surrounds	it	

•  Three	design	principles:		
– OverdecomposiNon,	Migratability,	Asynchrony	
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OverdecomposiNon	

•  Decompose	the	work	units	&	data	units	into	
many	more	pieces	than	execuNon	units	
– Cores/Nodes/..	

•  Not	so	hard:	we	do	decomposiNon	anyway	
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Migratability	

•  Allow	these	work	and	data	units	to	be	migratable	
at	runNme	
–  i.e.	the	programmer	or	runNme,	can	move	them	

•  Consequences	for	the	app-developer	
–  CommunicaNon	must	now	be	addressed	to	logical	
units	with	global	names,	not	to	physical	processors	

–  But	this	is	a	good	thing	
•  Consequences	for	RTS	

– Must	keep	track	of	where	each	unit	is	
– Naming	and	locaNon	management	
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Asynchrony:		
Message-Driven	ExecuNon	•  Now:	

–  You	have	mulNple	units	on	each	processor	
–  They	address	each	other	via	logical	names	

•  Need	for	scheduling:	
– What	sequence	should	the	work	units	execute	in?	
– One	answer:	let	the	programmer	sequence	them	

•  Seen	in	current	codes,	e.g.	some	AMR	frameworks	
– Message-driven	execuNon:		

•  Let	the	work-unit	that	happens	to	have	data	(“message”)	
available	for	it	execute	next	

•  Let	the	RTS	select	among	ready	work	units	
•  Programmer	should	not	specify	what	executes	next,	but	can	
influence	it	via	prioriNes	
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RealizaNon	of	this	model	in	Charm++	

•  Overdecomposed	enNNes:	chares	
–  Chares	are	C++	objects		
– With	methods	designated	as	“entry”	methods	

•  Which	can	be	invoked	asynchronously	by	remote	chares	
–  Chares	are	organized	into	indexed	collecNons	

•  Each	collecNon	may	have	its	own	indexing	scheme	
–  1D,	..7D		
–  Sparse	
–  Bitvector	or	string	as	an	index	

–  Chares	communicate	via	asynchronous	method	
invocaNons	

•  A[i].foo(….);		A	is	the	name	of	a	collecNon,	i	is	the	index	of	the	
parNcular	chare.	
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Message-driven	ExecuNon	
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Empowering	the	RTS	

•  The	AdapNve	RTS	can:	
–  Dynamically	balance	loads	
–  OpNmize	communicaNon:	

•  Spread	over	Nme,	async	collecNves	
–  AutomaNc	latency	tolerance	
–  Prefetch	data	with	almost	perfect	predictability	

Asynchrony	 OverdecomposiNon	 Migratability	

AdapNve	
RunNme	System	

IntrospecNon	 AdapNvity	
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Message-driven	execuNon	
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UNlity	for	MulN-cores,	Many-cores,	
Accelerators:	

•  Objects	connote	and	promote	locality	
•  Message-driven	execuNon	

–  A	strong	principle	of	predicNon	for	data	and	code	use	
– Much	stronger	than	principle	of	locality	

•  Can	use	to	scale	memory	wall:	
•  Prefetching	of	needed	data:		

–  into	scratch	pad	memories,	for	example	
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Impact	on	communicaNon	
•  Current	use	of	communicaNon	network:	

–  Compute-communicate	cycles	in	typical	MPI	apps	
–  The	network	is	used	for	a	fracNon	of	Nme	
–  and	is	on	the	criNcal	path	

•  Current	communica(on	networks	are	over-engineered	
for	by	necessity	
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Impact	on	communicaNon	
•  With	overdecomposiNon:	

– CommunicaNon	is	spread	over	an	iteraNon	
– AdapNve	overlap	of	communicaNon	and	
computaNon	
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DecomposiNon	Challenges	

•  Current	method	is	to	decompose	to	processors	
–  This	has	many	problems	
–  Deciding	which	processor	does	what	work	in	detail	is	
difficult	at	large	scale	

•  DecomposiNon	should	be	independent	of	number	of	
processors	–	enabled	by	object	based	decomposiNon	

•  AdapNve	scheduling	of	the	objects	on	available	
resources	by	the	RTS	
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DecomposiNon	Independent	of	numCores	

•  Rocket	simulaNon	example	under	tradiNonal	MPI	
	

•  With	migratable-objects:		

–  Benefit:	load	balance,	communicaNon	opNmizaNons,	modularity	

8/4/16	 ATPESC	

Solid 

Fluid 

Solid 

Fluid 

Solid 

Fluid 
.  .  . 

1                       2                                            P 

Solid1 

Fluid1 

Solid2 

Fluid2 

Solidn 

Fluidm 
.  .  . 

Solid3 
.  .  . 

20	



So,	What	is	Charm++?	

•  Charm++	is	a	way	of	parallel	programming	
based	on:	
– Objects	
– OverdecomposiNon	
– Messages	
– Asynchrony	
– Migratability	
– AdapNve	runNme	system	
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Hello World Example 
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•  hello.ci file 
mainmodule	hello	{		
		mainchare	Main	{	
				entry	Main(CkArgMsg	∗m);		
		};	
};	

•  hello.cpp file 
#include	<stdio.h>		
#include	”hello.decl.h”	
	
class	Main	:	public	CBase_Main	{		
		public:	Main(CkArgMsg∗	m)	{	
				ckout	<<	“Hello	World!”	<<	endl;		
				CkExit();	
		};		
};	
	
#include	“hello.def.h”	



Charm++ File Structure 
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• C++ objects (including Charm++ objects) 
Ø Defined in regular .h and .C files 

• Chare objects, entry methods (asynchronous methods) 
Ø Defined in .ci file 
Ø Implemented in the .C file 



Hello World Example 

• Compiling 
Ø charmc hello.ci 
Ø charmc -c hello.C 
Ø charmc -o hello hello.o 

• Running 
Ø ./charmrun +p7 ./hello 
Ø The +p7 tells the system to use seven cores 
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Compiling a Charm++ Program 
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Charm Interface: Modules 
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• Charm++ programs are organized as a collection of modules 
•  Each module has one or more chares 
•  The module that contains the mainchare, is declared as the 

mainmodule 
•  Each module, when compiled, generates two files: 
   MyModule.decl.h and MyModule.def.h 
 
.ci file 

[main]module	MyModule	{		
			//...	chare	definitions	...	
};	



Charm Interface: Chares 
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•  Chares are parallel objects that are managed by the RTS 
•  Each chare has a set of entry methods, which are asynchronous methods 

that may be invoked remotely 
•  The following code, when compiled, generates a C++ class        
CBase_MyChare that encapsulates the RTS object 

•  This generated class is extended and implemented in the .C file 

.ci file 
[main]chare	MyChare	{	
			//...	entry	method	definitions	...	
};	

.C file 
class	MyChare	:	public	CBase_MyChare	{		
			//...	entry	method	implementations	...	
};	



Charm Interface: Entry Methods 

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects  28 

•  Entry methods are C++ methods that can be remotely and 
asynchronously invoked by another chare 

.ci file 

entry	MyChare();	/∗	constructor	entry	method	∗/		
entry	void	foo();	
entry	void	bar(int	param);	

.C file 
MyChare::MyChare()	{	/∗...	constructor	code	...∗/	}	
MyChare::foo()	{	/∗...	code	to	execute	...∗/	}		
MyChare::bar(int	param)	{	/∗...	code	to	execute	...∗/	}	



Charm Interface: mainchare 

•  Execution begins with the mainchare’s constructor 

•  The mainchare’s constructor takes a pointer to system-defined class 
CkArgMsg 

•  CkArgMsg contains argv and argc 

•  The mainchare will typically creates some additional chares 
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Creating a Chare 
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• A chare declared as chare MyChare {...}; can be 
instantiated by the following call: 

CProxy_MyChare::ckNew(...	constructor	
arguments	...);	

•  To communicate with this class in the future, a proxy to it must be 
retained  

CProxy_MyChare	proxy	=																
												CProxy_MyChare::ckNew(arg1);	



Hello World with Chares 
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hello.ci file 

hello.cpp file 

mainmodule	hello	{		
		mainchare	Main	{	
				entry	Main(CkArgMsg	∗m);		
		};	
		chare	Singleton	{		
				entry	Singleton();	
		};	
};	

#include	<stdio.h>	
#include	“hello.decl.h”	
	
class	Main	:	public	CBase_Main	{		
		public:	Main(CkArgMsg∗	m)	{	
				CProxy_Singleton::ckNew();		
		};		
};	
class	Singleton	:		
									public	CBase_Singleton	{		
		public:	Singleton()	{	
				ckout<<“Hello	World!”<<endl;		
				CkExit();	
		};		
};	
#include	”hello.def.h”	



Chare Proxies 
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• A chare’s own proxy can be obtained through a special variable 
thisProxy 

• Chare proxies can also be passed so chares can learn about others  
•  In this snippet, MyChare learns about a chare instance main , and 

then invokes a method on it: 

.ci file 

entry	void	foobar2(CProxy_Main	main);	

.C file 

MyChare::foobar2(CProxy_Main	main)	{		
			main.foo();	
}	



Charm Termination 

• There is a special system call CkExit() that 
terminates the parallel execution on all processors (but it 
is called on one processor) and performs the requisite 
cleanup 

• The traditional exit() is insufficient because it only 
terminates one process, not the entire parallel job (and 
will cause a hang) 

• CkExit() should be called when you can safely 
terminate the application (you may want to synchronize 
before calling this) 
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Chare Creation Example: .ci file 

mainmodule	MyModule	{		
			mainchare	Main	{	
						entry	Main(CkArgMsg	∗m);		
			};	
	
			chare	Simple	{	
						entry	Simple(int	x,	double	y);	
			};		
};	
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Chare Creation Example: .C file 
#include	“MyModule.decl.h”	
class	Main	:	public	CBase_Main	{		
public:	Main(CkArgMsg∗	m)	{	
			ckout	<<	“Hello	World!”	<<	endl;	
			double	pi		=	3.1415;	
			CProxy_Simple::ckNew(12,	pi);	
	};	
};	
class	Simple	:	public	CBase_Simple	{	
public:	Simple(int	x,	double	y)	{	
			ckout	<<	“From	chare	running	on	”	<<	CkMyPe()	<<	“	Area	
of	a	circle	of	radius	”	<<	x	<<	“	is	”	<<	y*x*x	<<	endl;	
			CkExit();	
			};	
};	
#include	“MyModule.def.h”	
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Asynchronous Methods 
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•  Entry methods are invoked by performing a C++ method call on a 
chare’s proxy 

CProxy_MyChare	proxy	=	
			CProxy_MyChare::ckNew(...	constructor	arguments	...);	
	
proxy.foo();		
proxy.bar(5);	

•  The foo and bar methods will then be executed with the 
arguments, wherever the created chare, MyChare, happens to live 

•  The policy is one-at-a-time scheduling (that is, one entry method 
on one chare executes on a processor at a time) 



Asynchronous Methods 
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•  Method invocation is not ordered (between chares, entry methods on one 
chare, etc.)! 

•  For example, if a chare executes this code: 

CProxy_MyChare	proxy	=	CProxy_MyChare::ckNew();	
proxy.foo();	
proxy.bar(5);	

•  These prints may occur in any order 

MyChare::foo()	{	
			ckout	<<	“foo	executes”	<<	endl;	
}	
MyChare::bar(int	param)	{	
			ckout	<<	“bar	executes	with	”	<<	param	<<	endl;	
}	



Asynchronous Methods 
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•  For example, if a chare invokes the same entry method twice: 
proxy.bar(7);		
proxy.bar(5);	

•  These may be delivered in any order 
MyChare::bar(int	param)	{	
			ckout	<<	“bar	executes	with	”	<<	param	<<	endl;	
}	

• Output 

OR 

bar	executes	with	5		
bar	executes	with	7	

bar	executes	with	7	
bar	executes	with	5	



Asynchronous Example: .ci file 

mainmodule MyModule {  
   mainchare Main { 
      entry Main(CkArgMsg ∗m);  
   }; 
   chare Simple { 
      entry Simple(double y); 
      entry void findArea(int radius, bool done); 
   };  
}; 
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Does this program execute correctly? 
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struct	Main	:	public	CBase_Main	{		
			Main(CkArgMsg∗	m)	{	
						CProxy_Simple	sim	=	CProxy_Simple::ckNew(3.1415);		
						for	(int	i	=	1;	i	<	10;	i++)	sim.findArea(i,	false);		
						sim.findArea(10,	true);	
			};		
};	
struct	Simple	:	public	CBase_Simple	{		
			double	y;	
			Simple(double	pi)	{	y	=	pi;	}	
			void	findArea(int	r,	bool	done)	{	
						ckout	<<	“Area	of	a	circle	of	radius	”	<<	r	<<	“	is	”	
<<	y∗r∗r	<<	endl;		
						if	(done)	CkExit();	
};	



Data types and entry methods 
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• You can pass basic C++ types to entry methods (int, char, bool) 
• C++ STL data structures can be passed by including pup_stl.h	
• Arrays of basic data types can also be passed like this: 
	
.ci file: 

entry	void	foobar(int	length,	int	data[length]);	

•  .C file 

MyChare::foobar(int	length,	int∗	data)	{		
			//	...	foobar	code	...	
}	



Collections of Objects: Concepts 

• Objects can be grouped into indexed collections 
  
• Basic examples 

Ø Matrix block 
Ø Chunk of unstructured mesh 
Ø Portion of distributed data structure  
Ø Volume of simulation space 
 

• Advanced Examples 
Ø Abstract portions of computation 
Ø Interactions among basic objects or underlying entities 
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Collections of Objects 

• Structured: 1D, 2D, . . . , 7D  
 

• Unstructured: Anything hashable  
 

• Dense 
 

• Sparse 
 

• Static - all created at once 

• Dynamic - elements come and go 
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Declaring a Chare Array  
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.ci file: 
array	[1d]	foo	{	
			entry	foo();	//	constructor		
			//	...	entry	methods	...	
}	
array	[2d]	bar	{	
			entry	bar();	//	constructor	
			//	...	entry	methods	...	
}	

.C file: 
struct	foo	:	public	CBase_foo	{		
			foo()	{	}		
			foo(CkMigrateMessage∗)	{	}		
			//	...	entry	methods	…		
};		
struct	bar	:	public	CBase_bar	{	
			bar()	{	}		
			bar(CkMigrateMessage∗)	{	}		
};	



Constructing a Chare Array 
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•  Constructed much like a regular chare 
•  The size of each dimension is passed to the constructor 

void	someMethod()	{		
			CProxy_foo::ckNew(10);		
			CProxy_bar::ckNew(5,	5);	
}	

•  The proxy may be retained: 

CProxy_foo	myFoo	=	CProxy_foo::ckNew(10);		

•  The proxy represents the entire array, and may be indexed to obtain a 
proxy to an individual element in the array 

myFoo[4].invokeEntry();	



thisIndex 
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•  1d: thisIndex returns the index of the current chare array element  
•  2d: thisIndex.x and thisIndex.y return the indices of the 

current chare array element 
.ci	file: 
array	[1d]	foo	{		
			entry	foo();	
}		

.C	file: 

struct	foo	:	public	CBase_foo	{		
			foo()	{	
						CkPrintf(“array	index	=	%d”,	thisIndex);	
			}	
};	



Chare Array: Hello Example 
mainmodule	arr	{	
	
			mainchare	Main	{	
						entry	Main(CkArgMsg∗);	
			}	
			array	[1D]	hello	{		
						entry	hello(int);	
						entry	void	printHello();		
			}	
}	
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Chare Array: Hello Example 
#include	“arr.decl.h”	
struct	Main	:	CBase_Main	{		
			Main(CkArgMsg∗	msg)	{	
						int	arraySize	=	atoi(msg->argv[1]);	
						CProxy_hello	p	=	CProxy_hello::ckNew(arraySize);	
						p[0].printHello();	
			}	
};	
struct	hello	:	CBase_hello	{	
			hello(int	n)	:	arraySize(n)	{	}	
			void	printHello()	{	
						CkPrintf(“PE[%d]:	hello	from	p[%d]\n”,	CkMyPe(),	thisIndex);	
						if	(thisIndex	==	arraySize	–	1)	CkExit();	
						else	thisProxy[thisIndex	+	1].printHello();	
			}	
			int	arraySize;	
};	
#include	“arr.def.h”	
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Hello World Array Projections Timeline View 
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•  Add “-tracemode projections” to link line to enable tracing 
•  Run Projections tool to load trace log files and visualize performance 

•  arrayHello on BG/Q 16 Nodes, mode c16, 1024 elements 
(4 per process) 



Collections of Objects: Runtime Service 

•  System knows how to ‘find’ objects efficiently:           
  (collection, index) à processor 
 
• Applications can specify a mapping or use simple runtime-

provided options (e.g. blocked, round-robin) 
 
• Distribution can be static or dynamic! 
 
• Key abstraction: application logic doesn’t change, even though 

performance might 
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Collections of Objects: Runtime Service 
• Can develop and test logic in objects separately from their 

distribution 
 
•  Separation in time: make it work, then make it fast 
 
• Division of labor: domain specialist writes object code, 

computationalist writes mapping 
 
•  Portability: different mappings for different systems, scales, or 

configurations 
 
•  Shared progress: improved mapping techniques can benefit 

existing code 
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Collections of Objects 
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Collective Communication Operations 
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•  Point-to-point operations involve only two objects 
• Collective operations involve a collection of objects  
• Broadcast: calls a method in each object of the array  
• Reduction: collects a contribution from each object of the array  
• A spanning tree is used to send/receive data 

A
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Broadcast 
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• A message to each object in a collection 
•  The chare array proxy object is used to perform a broadcast  
•  It looks like a function call to the proxy object 
•  From the main chare: 

CProxy_Hello	helloArray	=	CProxy_Hello::ckNew(helloArraySize);		
helloArray.foo();	

•  From a chare array element that is a member of the same array: 

thisProxy.foo()	

•  From any chare that has a proxy p to the chare array 

p.foo()	



Reduction 

• Combines a set of values: sum, max, concat	

• Usually reduces the set of values to a single value  

• Combination of values requires an operator 

•  The operator must be commutative and associative  

•  Each object calls contribute in a reduction 
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Reduction: Example 

mainmodule	reduction	{		
		mainchare	Main	{	
				entry	Main(CkArgMsg∗	msg);	
				entry	[reductiontarget]	void	done(int	value);		
		};	
		array	[1D]	Elem	{	
				entry	Elem(CProxy_Main	mProxy);	
		};	
}	
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Reduction: Example 
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#include “reduction.decl.h”  
const int numElements = 49;  
class Main : public CBase_Main {   
public:  
   Main(CkArgMsg∗ msg) { CProxy_Elem::ckNew(thisProxy, numElements); }  
   void done(int value) {  
      CkPrintf(“value: %d\n”, value); 
      CkExit();  
   } 
}; 
class Elem : public CBase_Elem {  
public:  
   Elem(CProxy_Main mProxy) { 
      int val = thisIndex; 
      CkCallback cb(CkReductionTarget(Main, done), mProxy); 
      contribute(sizeof(int), &val, CkReduction::sum_int, cb);  
   }  
};   
#include ”reduction.def.h”  

Output 
value: 1176  
Program finished. 



Chares are reactive 

• The way we described Charm++ so far, a chare is a 
reactive entity: 
Ø If it gets this method invocation, it does this action, 
Ø If it gets that method invocation then it does that action 
Ø But what does it do? 
Ø In typical programs, chares have a life-cycle 

• How to express the life-cycle of a chare in code? 
Ø Only when it exists 

* i.e.  some chars may be truly reactive, and the programmer 
does not know the life cycle 

Ø But when it exists, its form is: 
* Computations depend on remote method invocations, and 
completion of other local computations 

* A DAG (Directed Acyclic Graph)! 
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Structured Dagger (sdag) 
The when construct 

• sdag code is written in the .ci file 
• It is like a script, with a simple language 
• Important: The  when construct 
Ø Declare the actions to perform when a method invocation is received 
Ø In sequence, it acts like a blocking receive 

entry void someMethod() { 
 when entryMethod1(parameters) { block1  } 
 when entryMethod2(parameters) { block2  } 

             block3  
}; 
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Implicit  
Sequencing 



Structured Dagger 
The serial construct 

• The serial construct 
• A sequential block of C++ code in the .ci file 
• The keyword serial means that the code block will be 
executed without interruption/preemption 

•  Syntax: serial <optionalString> {/*C++ code*/ }!
•  The <optionalString> is just a tag for performance analysis 
•  Serial blocks can access all members of the class they belong to 

entry void method1(parameters) { 
    when E(a) 
     serial 
        { thisProxy.invokeMethod(10, a);    
            callSomeFunction(); } 
… 
}; 

entry void method2(parameters) { 
    … 
    serial “setValue” { 
        value = 10; 
    } 
}; 
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Structured Dagger 
The when construct 

• Sequentially execute: 
1.  /* block1 */ 
2.  Wait for   entryMethod1 to arrive, if it has not, return control back 

to the Charm++ scheduler, otherwise, execute  /* block2 */!
3.  Wait for   entryMethod2 to arrive, if it has not, return control back 

to the Charm++ scheduler, otherwise, execute   /* block3 */!

entry void someMethod() { 
    serial { /∗ block1 ∗/ } 
    when entryMethod1(parameters) serial { /∗ block2 ∗/ } 
    when entryMethod2(parameters) serial { /∗ block3 ∗/ } 
}; 
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Structured Dagger 
The when construct 

• You can combine waiting for multiple method invocations 
•  Execute “code-block” when M1 and M2 arrive 
• You have access to param1, param2, param3 in the code-block!

When M1(int param1, int param2), M2(bool param3) 
         
               { code block } 
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Structured Dagger 
Boilerplate 

• Structured Dagger can be used in any entry method 
(except for a constructor) 
• For any class that has Structured Dagger in it you 
must insert: 
•  The Structured Dagger macro:   [ClassName]_SDAG_CODE!
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Structured Dagger 
Boilerplate 

The .ci file: 
 
 
 
 
The .cpp file: 

    [mainchare,chare,array,..] MyFoo { 
        … 
        entry void method(parameters) { 
            // … structured dagger code here … 
        }; 
        … 
    } 

    class MyFoo : public CBase MyFoo { 
        MyFoo_SDAG_Code/* insert SDAG macro */ 
    public: 
        MyFoo() { } 
    }; 
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•  The  when clause can wait on a certain reference number 
•  If a reference number is specified for a  when , the first 
parameter for the  when must be the reference number 
•  Semantics:  the  when will “block” until a message arrives 
with that reference number 

Structured Dagger 
The when construct: refnum 

    when method1[100](int ref, bool param1) 
         /∗ sdag block ∗/ 
… 
 
    serial { 
        proxy.method1(200, false); /∗ will not be delivered to the when ∗/ 
        proxy.method1(100, true); /∗ will be delivered to the when ∗/ 
    } 
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• The  overlap construct: 
Ø By default, Structured Dagger constructs are executed in a sequence 
Ø  overlap allows multiple independent constructs to execute in any 

order 
Ø Any constructs in the body of an   overlap can happen in any order 
Ø An   overlap finishes when all the statements in it are executed 
Ø Syntax:  overlap {  /* sdag constructs */ } 

What are the possible execution sequences? 

Structured Dagger 
The overlap construct 

    serial { /∗ block1 ∗/ } 
    overlap { 
        serial { /∗ block2 ∗/ } 
        when entryMethod1[100](int ref num, bool param1) /∗ block3 ∗/ 
        when entryMethod2(char myChar) /∗ block4 ∗/ 
    } 
    serial { /∗ block5 ∗/ } 66 



Illustration of a long “overlap” 

• Overlap can be used to 
regain some asynchrony 
within a chare 
• But it is constrained 
• More disciplined programming, 
• with fewer race conditions 
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Structured Dagger 
Other constructs 
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•  if-then-else 
•  Same as the typical C if-then-else semantics and syntax 

•  for 
•  Defines a sequenced for loop (like a sequential C for loop) 
•  Once the body for the ith iteration completes, the i + 1 iteration is started 

• while 
•  Defines a sequenced while loop (like a sequential C while loop) 

•  forall 
•  Has “do-all” semantics:  iterations may execute in any order 

http://charm.cs.illinois.edu/manuals/html/charm++/5.html 



Grainsize 
•  Charm++ philosophy: 

–  let the programer decompose their work and data 
into coarse-grained entities 

•  It is important to understand what I mean by 
coarse-grained entities 
–  You don’t write sequential programs that some 

system will auto-decompose 
–  You don’t write programs when there is one 

object for each float 
–  You consciously  choose a grainsize, BUT choose 

it independent of the number of processors 
•  Or parameterize it, so you can tune later 
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Crack Propagation 

Decomposition into 16 chunks (left) and 128 chunks, 8 for 
each PE (right). The middle area contains cohesive elements. 
Both decompositions obtained using Metis. Pictures: S. 
Breitenfeld, and P. Geubelle 

This is 2D, circa 2002…  
but shows over-decomposition for unstructured meshes.. 



Grainsize example: NAMD 
•  High performing examples (objects are the 

work-data units in Charm++): 
•  On Blue Waters, 100M atom simulation   

–  128K cores (4K nodes): 5,510,202 objects  
•  Edison, Apoa1 (92K atoms)   

–  4K cores:  33,124 objects 
•  Hopper, STMV (1M atoms) 

–  15,360 cores:  430,612 objects 
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Grainsize: Weather Forecasting in BRAMS 
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•  Brams: Brazillian weather code (based on RAMS) 
•  AMPI version (Eduardo Rodrigues, with Mendes,  J. Panetta, ..) 

Instead of using 64 work units on 64 cores, used 1024 on 64 
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Working definition of grainsize:  
  amount of computation per remote interaction 

Choose grainsize to be just large 
enough to amortize the overhead  



Grainsize in a common setting 
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Jacobi3D running on JYC using 64 cores on 2 nodes

2048x2048x2048 (total problem size)

2 MB/chare,  
256 objects per core 



Rules	of	thumb	for	grainsize	

•  Make it as small as possible, as long as it 
amortizes the overhead 

•  More specifically, ensure: 
–  Average grainsize is greater than k�v (say 10v) 
–  No single grain should be allowed to be too large  

•  Must be smaller than T/p, but actually we can express it 
as  

– Must be smaller than k�m�v (say 100v) 
•  Important corollary: 

–  You can be at close to optimal grainsize without 
having to think about P, the number of 
processors 

75	
75	



76 

Charm++ Applications  
as case studies 

Only brief overview today 



NAMD: Biomolecular Simulations 

•  Collaboration with K. 
Schulten 

•  With over 50,000 
registered users 

•  Scaled to most top US 
supercomputers 

•  In production use on 
supercomputers and 
clusters and desktops 

•  Gordon Bell award in 
2002 

Recent success: 
Determination of the 
structure of HIV capsid 
by researchers including 
Prof Schulten  
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Molecular Dynamics: NAMD 
•  Collection of [charged] atoms 

–  With bonds 
–  Newtonian mechanics 
–  Thousands to millions atoms 

•  At each time-step 
–  Calculate forces on each atom  

•  Bonds 
•  Non-bonded: electrostatic and van 

der Waal’s 
–  Short-distance: every timestep 
–  Long-distance: using PME (3D FFT) 
–  Multiple Time Stepping : PME every 

4 timesteps  
–  Calculate velocities 
–  Advance positions 

Challenge: femtosecond time-step, millions needed! 



Hybrid	DecomposiNon	

79	

Object	Based	ParallelizaNon	for	MD:	Force	Decomp.	+	SpaNal	Decomp.	

	
We	have	many	objects	
to	load	balance:	
•  Each	diamond	can	be	

assigned	to	any	proc.	
•  Number	of	diamonds	(3D)	
•  14	·	Number	of	Cells	
	



Parallelization using Charm++ 
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Sturdy design! 
•  This design,  

–  done in 1995 or so, running on 12 node HP cluster 
•  Has survived 

–  With minor refinements 
•  Until today 

–  Scaling to 500,000+ cores on Blue Waters! 
–  300,000 Cores of Jaguar, or BlueGene/P 
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Shallow valleys, high peaks, nicely overlapped PME 

green: communication 

Red: integration Blue/Purple: electrostatics 

turquoise: angle/dihedral 

Orange: PME 

94% efficiency 

Apo-A1, on BlueGene/L, 1024 procs 

Time intervals on X axis, activity added across processors on Y axis 

Projections: Charm++ Performance Analysis Tool 



NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and 
Mira IBM Blue Gene/Q for 21M and 224M atom benchmarks 
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ChaNGa: Parallel Gravity 
•  Collaborative project 

(NSF) 
–  with Tom Quinn, Univ. of 

Washington 
•  Gravity, gas dynamics 
•  Barnes-Hut tree codes 

–  Oct tree is natural decomp 
–  Geometry has better 

aspect ratios, so you 
“open” up fewer nodes 

–  But is not used because it 
leads to bad load balance 

–  Assumption: one-to-one 
map between sub-trees 
and PEs 

–  Binary trees are considered 
better load balanced 
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With Charm++: Use Oct-Tree, and 
let Charm++ map subtrees to 
processors 

Evolution of Universe and 
Galaxy Formation 



ChaNGa: Cosmology Simulation 

•  Tree: Represents 
particle 
distribution 

•  TreePiece: object/
chares containing 
particles 

Collaboration with 
Tom Quinn UW 



•  Asynchronous, highly overlapped, phases 
•  Requests for remote data overlapped with 

local computations 

ChaNGa: Optimized Performance 
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ChaNGa : a recent result 
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Episimdemics 
•  Simulation of spread of contagion 

–  Code by Madhav Marathe, Keith Bisset, .. Vtech 
–  Original was in MPI 

•  Converted to Charm++ 
–  Benefits: asynchronous reductions improved 

performance considerably 
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Simulating contagion over dynamic networks

EpiSimdemics1

Agent-based

Realistic population data

Intervention2

Co-evolving network,
behavior and policy2

transition by 
interaction 

S 

I 

Local transition 

P1 

P2 

P3 

P4 

P = 1-exp(t·log(1-I·S)) 
- t: duration of  

      co-presence 

- I: infectivity 

- S: susceptivity 

 
infectious 

uninfected 

S 

I 

t 

Location Social 
contact 
network L1 

L2 

1C. Barrett et al.,“EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,” SC08
2K. Bisset et al., “Modeling Interaction Between Individuals, Social Net-
works and Public Policy to Support Public Health Epidemiology,” WSC09.
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Strong scaling performance with the largest data set
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Contiguous US population data

XE6: the largest scale (352K cores)

BG/Q: good scaling up to 128K cores

Strong scaling helps timely reaction to
pandemic
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OpenAtom 
Car-Parinello Molecular Dynamics 

NSF ITR 2001-2007, IBM, DOE,NSF  
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Molecular Clusters : Nanowires: 

Semiconductor Surfaces: 3D-Solids/Liquids: 

Recent NSF SSI-SI2 grant 
With 

G. Martyna (IBM)  
Sohrab Ismail-Beigi 

Using Charm++ virtualization, we can efficiently scale 
small (32 molecule) systems to thousands of processors 



Decomposition and Computation 
Flow 
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Topology Aware Mapping of Objects 
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Improvements by topological aware 
mapping of computation to processors 
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The simulation of the left panel, maps computational work to processors taking the network 
connectivity into account while the right panel simulation does not. The “black’’ or idle time 
processors spent waiting for computational work to arrive on processors is significantly 
reduced at left. (256waters, 70R, on BG/L 4096 cores) 

Punchline: Overdecomposition into Migratable Objects created the 
degree of freedom needed for flexible mapping  



OpenAtom Performance Sampler 
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Mini-App Features Machine Max cores 
AMR Overdecomposition, 

Custom array index, 
Message priorities, 

Load Balancing, 
Checkpoint restart 

BG/Q 131,072 

LeanMD Overdecomposition, 
Load Balancing, 

Checkpoint restart, 
Power awareness 

BG/P  
BG/Q 

131,072 
32,768 

 

Barnes-Hut 
(n-body) 

Overdecomposition, 
Message priorities, 

Load Balancing 

Blue Waters 16,384 

LULESH 2.02 AMPI, Over-
decomposition, Load 

Balancing 

Hopper 8,000 

PDES Overdecomposition, 
Message priorities, 

TRAM 

Stampede 4,096 

MiniApps 
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Mini-App Features Machine Max cores 
1D FFT Interoperable with 

MPI 
BG/P 
BG/Q 

65,536 
16,384 

Random Access TRAM BG/P  
BG/Q 

 

131,072 
16,384 

Dense LU SDAG XT5 8,192 

Sparse Triangular 
Solver 

SDAG BG/P 512 

GTC SDAG BG/Q 1,024 

SPH Blue Waters - 

More MiniApps 
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A recently 
published book 
surveys seven 
major applications 
developed using 
Charm++ 

More info on Charm++:  
http://charm.cs.illinois.edu 
Including the miniApps 



Where are Exascale Issues? 
•  I didn’t bring up exascale at all so far.. 

–  Overdecomposition, migratability, asynchrony 
were needed on yesterday’s machines too 

–  And the app community has been using them 
–  But:  

•  On *some* of the applications, and maybe without a 
common general-purpose RTS 

•  The same concepts help at exascale 
–  Not just help, they are necessary, and adequate 
–  As long as the RTS capabilities are improved 

•  We have to apply overdecomposition to all 
(most) apps 

99 



Relevance to Exascale 

100 

Intelligent, introspective, Adaptive 
Runtime Systems, developed for handling 
application’s dynamic variability, already 
have features that can deal with 
challenges posed by exascale hardware 



Fault Tolerance in Charm++/AMPI 
•  Four approaches available: 

–  Disk-based checkpoint/restart 
–  In-memory double checkpoint w auto. restart 
–  Proactive object migration 
–  Message-logging: scalable fault tolerance 

•  Common Features: 
–  Easy checkpoint: migrate-to-disk 
–  Based on dynamic runtime capabilities 
–  Use of object-migration 
–  Can be used in concert with load-balancing 

schemes 
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Saving Cooling Energy 
•  Easy: increase A/C setting 

–  But: some cores may get too hot 
•  So, reduce frequency if temperature is high (DVFS) 

–  Independently for each chip 
•  But, this creates a load imbalance! 
•  No problem, we can handle that: 

–  Migrate objects away from the slowed-down processors 
–  Balance load using an existing strategy 
–  Strategies take speed of processors into account 

•  Implemented in experimental version 
–  SC 2011 paper, IEEE TC paper 

•  Several new power/energy-related strategies 
–  PASA ‘12: Exploiting differential sensitivities of  code segments 

to frequency change  
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PARM:Power Aware Resource Manager 

•  Charm++ RTS facilitates malleable jobs 
•  PARM can improve throughput under a fixed 

power budget using: 
–  overprovisioning (adding more nodes than 

conventional data center) 
–  RAPL (capping power consumption of nodes) 
–  Job malleability and moldability 

`"Job"Arrives" Job"Ends/
Terminates"

Schedule"
Jobs"(LP)"

Update"
Queue"

Scheduler"

Launch"Jobs/"
ShrinkAExpand"

Ensure"Power"
Cap"

ExecuEon"
framework"

Triggers"

Profiler"

Strong"Scaling"
Power"Aware"Model"

Job"CharacterisEcs"
Database"

Power"Aware"Resource"Manager"
(PARM)"
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Summary 
•  Charm++ embodies an adaptive, introspective 

runtime system 
•  Many applications have been developed using it 

–  NAMD, ChaNGa, Episimdemics, OpenAtom, … 
–  Many miniApps, and third-party apps 

•  Adaptivity developed for apps is useful for 
addressing exascale challenges 
–  Resilience, power/temperature optimizations, .. 
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More info on Charm++:  
http://charm.cs.illinois.edu 
Including the miniApps 

Overdecomposition Asynchrony Migratability 


