
Charm++		
Mo*va*ons	and	Basic	Ideas	

Laxmikant	(Sanjay)	Kale	
h3p://charm.cs.illinois.edu	

Parallel	Programming	Laboratory	
Department	of	Computer	Science	

University	of	Illinois	at	Urbana	Champaign	

8/4/16	 ATPESC	 1	

Challenges	in	Parallel	Programming	
•  ApplicaNons	are	geOng	more	sophisNcated	

–  AdapNve	refinements	
–  MulN-scale,	mulN-module,	mulN-physics	
–  E.g.	load	imbalance	emerges	as	a	huge	problem	for	some	apps	

•  Exacerbated	by	strong	scaling	needs	from	apps	
•  Future	challenge:	hardware	variability	

–  StaNc/dynamic	
–  Heterogeneity:	processor	types,	process	variaNon,	..	
–  Power/Temperature/Energy	
–  Component	failure	

•  To	deal	with	these,	we	must	seek	
–  Not	full	automaNon		
–  Not	full	burden	on	app-developers	
–  But:	a	good	division	of	labor	between	the	system	and	app	
developers	

2	8/4/16	 ATPESC	

What	is	Charm++?	
•  Charm++	is	a	generalized	approach	to	wriNng	
parallel	programs	
– An	alternaNve	to	the	likes	of	MPI,	UPC,	GA	etc.	
–  But	not	to	sequenNal	languages	such	as	C,	C++,	and	
Fortran	

•  Represents:	
–  The	style	of	wriNng	parallel	programs	
–  The	runNme	system	
– And	the	enNre	ecosystem	that	surrounds	it	

•  Three	design	principles:		
– OverdecomposiNon,	Migratability,	Asynchrony	

8/4/16	 ATPESC	 3	

OverdecomposiNon	

•  Decompose	the	work	units	&	data	units	into	
many	more	pieces	than	execuNon	units	
– Cores/Nodes/..	

•  Not	so	hard:	we	do	decomposiNon	anyway	

4	8/4/16	 ATPESC	

Migratability	

•  Allow	these	work	and	data	units	to	be	migratable	
at	runNme	
–  i.e.	the	programmer	or	runNme,	can	move	them	

•  Consequences	for	the	app-developer	
–  CommunicaNon	must	now	be	addressed	to	logical	
units	with	global	names,	not	to	physical	processors	

–  But	this	is	a	good	thing	
•  Consequences	for	RTS	

– Must	keep	track	of	where	each	unit	is	
– Naming	and	locaNon	management	

5	8/4/16	 ATPESC	

Asynchrony:		
Message-Driven	ExecuNon	•  Now:	

–  You	have	mulNple	units	on	each	processor	
–  They	address	each	other	via	logical	names	

•  Need	for	scheduling:	
– What	sequence	should	the	work	units	execute	in?	
– One	answer:	let	the	programmer	sequence	them	

•  Seen	in	current	codes,	e.g.	some	AMR	frameworks	
– Message-driven	execuNon:		

•  Let	the	work-unit	that	happens	to	have	data	(“message”)	
available	for	it	execute	next	

•  Let	the	RTS	select	among	ready	work	units	
•  Programmer	should	not	specify	what	executes	next,	but	can	
influence	it	via	prioriNes	

6	8/4/16	 ATPESC	

RealizaNon	of	this	model	in	Charm++	

•  Overdecomposed	enNNes:	chares	
–  Chares	are	C++	objects		
– With	methods	designated	as	“entry”	methods	

•  Which	can	be	invoked	asynchronously	by	remote	chares	
–  Chares	are	organized	into	indexed	collecNons	

•  Each	collecNon	may	have	its	own	indexing	scheme	
–  1D,	..7D		
–  Sparse	
–  Bitvector	or	string	as	an	index	

–  Chares	communicate	via	asynchronous	method	
invocaNons	

•  A[i].foo(….);		A	is	the	name	of	a	collecNon,	i	is	the	index	of	the	
parNcular	chare.	

	
8/4/16	 ATPESC	 7	

Parallel	Address	Space	

Processor	3	Processor	2	

Processor	1	Processor	0	

Scheduler	

Message	Queue	

Scheduler	

Message	Queue	

Scheduler	

Message	Queue	

Scheduler	

Message	Queue	
8/4/16	 ATPESC	 8	

Message-driven	ExecuNon	

Processor	1	

Scheduler	

Message	Queue	

Processor	0	

Scheduler	

Message	Queue	

A[23].foo(…)	

8/4/16	 ATPESC	 9	

Processor	2	

Scheduler	

Message	Queue	

Processor	1	

Scheduler	

Message	Queue	

Processor	0	

Scheduler	

Message	Queue	

Processor	3	

Scheduler	

Message	Queue	
8/4/16	 ATPESC	 10	

Processor	2	

Scheduler	

Message	Queue	

Processor	1	

Scheduler	

Message	Queue	

Processor	0	

Scheduler	

Message	Queue	

Processor	3	

Scheduler	

Message	Queue	
8/4/16	 ATPESC	 11	

Processor	2	

Scheduler	

Message	Queue	

Processor	1	

Scheduler	

Message	Queue	

Processor	0	

Scheduler	

Message	Queue	

Processor	3	

Scheduler	

Message	Queue	
8/4/16	 ATPESC	 12	

Empowering	the	RTS	

•  The	AdapNve	RTS	can:	
–  Dynamically	balance	loads	
–  OpNmize	communicaNon:	

•  Spread	over	Nme,	async	collecNves	
–  AutomaNc	latency	tolerance	
–  Prefetch	data	with	almost	perfect	predictability	

Asynchrony	 OverdecomposiNon	 Migratability	

AdapNve	
RunNme	System	

IntrospecNon	 AdapNvity	

13	8/4/16	 ATPESC	

Message-driven	execuNon	

Migratability	

IntrospecNve	and	adapNve	
runNme	system	

Scalable	Tools	

AutomaNc	overlap	of	CommunicaNon	
and	ComputaNon		

EmulaNon	for	
Performance	
PredicNon	

Fault	Tolerance	

Dynamic	load	balancing	(topology-aware,	
scalable)	

Temperature/Power/Energy	
OpNmizaNons	

Charm++	Benefits	

Perfect	prefetch	

composiNonality	

Over-decomposiNon	

14	8/4/16	 ATPESC	

Message-driven	execuNon	

Migratability	

IntrospecNve	and	adapNve	
runNme	system	

Scalable	Tools	

AutomaNc	overlap	of	CommunicaNon	
and	ComputaNon		

EmulaNon	for	
Performance	
PredicNon	

Fault	Tolerance	

Dynamic	load	balancing	(topology-aware,	
scalable)	

Temperature/Power/Energy	
OpNmizaNons	

Charm++	Benefits	

Perfect	prefetch	

composiNonality	

Over-decomposiNon	

15	8/4/16	 ATPESC	

UNlity	for	MulN-cores,	Many-cores,	
Accelerators:	

•  Objects	connote	and	promote	locality	
•  Message-driven	execuNon	

–  A	strong	principle	of	predicNon	for	data	and	code	use	
– Much	stronger	than	principle	of	locality	

•  Can	use	to	scale	memory	wall:	
•  Prefetching	of	needed	data:		

–  into	scratch	pad	memories,	for	example	

8/4/16	 ATPESC	 16	

Processor	1	

Scheduler	

Message	Queue	

Impact	on	communicaNon	
•  Current	use	of	communicaNon	network:	

–  Compute-communicate	cycles	in	typical	MPI	apps	
–  The	network	is	used	for	a	fracNon	of	Nme	
–  and	is	on	the	criNcal	path	

•  Current	communica(on	networks	are	over-engineered	
for	by	necessity	

8/4/16	 ATPESC	 17	

P1	

P2	

BSP	based	applicaNon	

Impact	on	communicaNon	
•  With	overdecomposiNon:	

– CommunicaNon	is	spread	over	an	iteraNon	
– AdapNve	overlap	of	communicaNon	and	
computaNon	

8/4/16	 ATPESC	 18	

P1	

P2	

OverdecomposiNon	enables	overlap	

DecomposiNon	Challenges	

•  Current	method	is	to	decompose	to	processors	
–  This	has	many	problems	
–  Deciding	which	processor	does	what	work	in	detail	is	
difficult	at	large	scale	

•  DecomposiNon	should	be	independent	of	number	of	
processors	–	enabled	by	object	based	decomposiNon	

•  AdapNve	scheduling	of	the	objects	on	available	
resources	by	the	RTS	

8/4/16	 ATPESC	 19	

DecomposiNon	Independent	of	numCores	

•  Rocket	simulaNon	example	under	tradiNonal	MPI	
	

•  With	migratable-objects:		

–  Benefit:	load	balance,	communicaNon	opNmizaNons,	modularity	

8/4/16	 ATPESC	

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm
. . .

Solid3
. . .

20	

So,	What	is	Charm++?	

•  Charm++	is	a	way	of	parallel	programming	
based	on:	
– Objects	
– OverdecomposiNon	
– Messages	
– Asynchrony	
– Migratability	
– AdapNve	runNme	system	

8/4/16	 ATPESC	 21	

Hello World Example

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 22

•  hello.ci file
mainmodule	hello	{		
		mainchare	Main	{	
				entry	Main(CkArgMsg	∗m);		
		};	
};	

•  hello.cpp file
#include	<stdio.h>		
#include	”hello.decl.h”	
	
class	Main	:	public	CBase_Main	{		
		public:	Main(CkArgMsg∗	m)	{	
				ckout	<<	“Hello	World!”	<<	endl;		
				CkExit();	
		};		
};	
	
#include	“hello.def.h”	

Charm++ File Structure

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 23

• C++ objects (including Charm++ objects)
Ø Defined in regular .h and .C files

• Chare objects, entry methods (asynchronous methods)
Ø Defined in .ci file
Ø Implemented in the .C file

Hello World Example

• Compiling
Ø charmc hello.ci
Ø charmc -c hello.C
Ø charmc -o hello hello.o

• Running
Ø ./charmrun +p7 ./hello
Ø The +p7 tells the system to use seven cores

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 24

Compiling a Charm++ Program

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 25

Charm Interface: Modules

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 26

• Charm++ programs are organized as a collection of modules
•  Each module has one or more chares
•  The module that contains the mainchare, is declared as the

mainmodule
•  Each module, when compiled, generates two files:
 MyModule.decl.h and MyModule.def.h

.ci file

[main]module	MyModule	{		
			//...	chare	definitions	...	
};	

Charm Interface: Chares

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 27

•  Chares are parallel objects that are managed by the RTS
•  Each chare has a set of entry methods, which are asynchronous methods

that may be invoked remotely
•  The following code, when compiled, generates a C++ class
CBase_MyChare that encapsulates the RTS object

•  This generated class is extended and implemented in the .C file

.ci file
[main]chare	MyChare	{	
			//...	entry	method	definitions	...	
};	

.C file
class	MyChare	:	public	CBase_MyChare	{		
			//...	entry	method	implementations	...	
};	

Charm Interface: Entry Methods

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 28

•  Entry methods are C++ methods that can be remotely and
asynchronously invoked by another chare

.ci file

entry	MyChare();	/∗	constructor	entry	method	∗/		
entry	void	foo();	
entry	void	bar(int	param);	

.C file
MyChare::MyChare()	{	/∗...	constructor	code	...∗/	}	
MyChare::foo()	{	/∗...	code	to	execute	...∗/	}		
MyChare::bar(int	param)	{	/∗...	code	to	execute	...∗/	}	

Charm Interface: mainchare

•  Execution begins with the mainchare’s constructor

•  The mainchare’s constructor takes a pointer to system-defined class
CkArgMsg

•  CkArgMsg contains argv and argc

•  The mainchare will typically creates some additional chares

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 29

Creating a Chare

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 30

• A chare declared as chare MyChare {...}; can be
instantiated by the following call:

CProxy_MyChare::ckNew(...	constructor	
arguments	...);	

•  To communicate with this class in the future, a proxy to it must be
retained

CProxy_MyChare	proxy	=																
												CProxy_MyChare::ckNew(arg1);	

Hello World with Chares

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 31

hello.ci file

hello.cpp file

mainmodule	hello	{		
		mainchare	Main	{	
				entry	Main(CkArgMsg	∗m);		
		};	
		chare	Singleton	{		
				entry	Singleton();	
		};	
};	

#include	<stdio.h>	
#include	“hello.decl.h”	
	
class	Main	:	public	CBase_Main	{		
		public:	Main(CkArgMsg∗	m)	{	
				CProxy_Singleton::ckNew();		
		};		
};	
class	Singleton	:		
									public	CBase_Singleton	{		
		public:	Singleton()	{	
				ckout<<“Hello	World!”<<endl;		
				CkExit();	
		};		
};	
#include	”hello.def.h”	

Chare Proxies

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 32

• A chare’s own proxy can be obtained through a special variable
thisProxy

• Chare proxies can also be passed so chares can learn about others
•  In this snippet, MyChare learns about a chare instance main , and

then invokes a method on it:

.ci file

entry	void	foobar2(CProxy_Main	main);	

.C file

MyChare::foobar2(CProxy_Main	main)	{		
			main.foo();	
}	

Charm Termination

• There is a special system call CkExit() that
terminates the parallel execution on all processors (but it
is called on one processor) and performs the requisite
cleanup

• The traditional exit() is insufficient because it only
terminates one process, not the entire parallel job (and
will cause a hang)

• CkExit() should be called when you can safely
terminate the application (you may want to synchronize
before calling this)

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 33

Chare Creation Example: .ci file

mainmodule	MyModule	{		
			mainchare	Main	{	
						entry	Main(CkArgMsg	∗m);		
			};	
	
			chare	Simple	{	
						entry	Simple(int	x,	double	y);	
			};		
};	

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 34

Chare Creation Example: .C file
#include	“MyModule.decl.h”	
class	Main	:	public	CBase_Main	{		
public:	Main(CkArgMsg∗	m)	{	
			ckout	<<	“Hello	World!”	<<	endl;	
			double	pi		=	3.1415;	
			CProxy_Simple::ckNew(12,	pi);	
	};	
};	
class	Simple	:	public	CBase_Simple	{	
public:	Simple(int	x,	double	y)	{	
			ckout	<<	“From	chare	running	on	”	<<	CkMyPe()	<<	“	Area	
of	a	circle	of	radius	”	<<	x	<<	“	is	”	<<	y*x*x	<<	endl;	
			CkExit();	
			};	
};	
#include	“MyModule.def.h”	

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 35

Asynchronous Methods

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 36

•  Entry methods are invoked by performing a C++ method call on a
chare’s proxy

CProxy_MyChare	proxy	=	
			CProxy_MyChare::ckNew(...	constructor	arguments	...);	
	
proxy.foo();		
proxy.bar(5);	

•  The foo and bar methods will then be executed with the
arguments, wherever the created chare, MyChare, happens to live

•  The policy is one-at-a-time scheduling (that is, one entry method
on one chare executes on a processor at a time)

Asynchronous Methods

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 37

•  Method invocation is not ordered (between chares, entry methods on one
chare, etc.)!

•  For example, if a chare executes this code:

CProxy_MyChare	proxy	=	CProxy_MyChare::ckNew();	
proxy.foo();	
proxy.bar(5);	

•  These prints may occur in any order

MyChare::foo()	{	
			ckout	<<	“foo	executes”	<<	endl;	
}	
MyChare::bar(int	param)	{	
			ckout	<<	“bar	executes	with	”	<<	param	<<	endl;	
}	

Asynchronous Methods

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 38

•  For example, if a chare invokes the same entry method twice:
proxy.bar(7);		
proxy.bar(5);	

•  These may be delivered in any order
MyChare::bar(int	param)	{	
			ckout	<<	“bar	executes	with	”	<<	param	<<	endl;	
}	

• Output

OR

bar	executes	with	5		
bar	executes	with	7	

bar	executes	with	7	
bar	executes	with	5	

Asynchronous Example: .ci file

mainmodule MyModule {
 mainchare Main {
 entry Main(CkArgMsg ∗m);
 };
 chare Simple {
 entry Simple(double y);
 entry void findArea(int radius, bool done);
 };
};

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 39

Does this program execute correctly?

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 40

struct	Main	:	public	CBase_Main	{		
			Main(CkArgMsg∗	m)	{	
						CProxy_Simple	sim	=	CProxy_Simple::ckNew(3.1415);		
						for	(int	i	=	1;	i	<	10;	i++)	sim.findArea(i,	false);		
						sim.findArea(10,	true);	
			};		
};	
struct	Simple	:	public	CBase_Simple	{		
			double	y;	
			Simple(double	pi)	{	y	=	pi;	}	
			void	findArea(int	r,	bool	done)	{	
						ckout	<<	“Area	of	a	circle	of	radius	”	<<	r	<<	“	is	”	
<<	y∗r∗r	<<	endl;		
						if	(done)	CkExit();	
};	

Data types and entry methods

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 41

• You can pass basic C++ types to entry methods (int, char, bool)
• C++ STL data structures can be passed by including pup_stl.h	
• Arrays of basic data types can also be passed like this:
	
.ci file:

entry	void	foobar(int	length,	int	data[length]);	

•  .C file

MyChare::foobar(int	length,	int∗	data)	{		
			//	...	foobar	code	...	
}	

Collections of Objects: Concepts

• Objects can be grouped into indexed collections

• Basic examples

Ø Matrix block
Ø Chunk of unstructured mesh
Ø Portion of distributed data structure
Ø Volume of simulation space

• Advanced Examples
Ø Abstract portions of computation
Ø Interactions among basic objects or underlying entities

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 42

Collections of Objects

• Structured: 1D, 2D, . . . , 7D

• Unstructured: Anything hashable

• Dense

• Sparse

• Static - all created at once

• Dynamic - elements come and go

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 43

Declaring a Chare Array

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 44

.ci file:
array	[1d]	foo	{	
			entry	foo();	//	constructor		
			//	...	entry	methods	...	
}	
array	[2d]	bar	{	
			entry	bar();	//	constructor	
			//	...	entry	methods	...	
}	

.C file:
struct	foo	:	public	CBase_foo	{		
			foo()	{	}		
			foo(CkMigrateMessage∗)	{	}		
			//	...	entry	methods	…		
};		
struct	bar	:	public	CBase_bar	{	
			bar()	{	}		
			bar(CkMigrateMessage∗)	{	}		
};	

Constructing a Chare Array

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 45

•  Constructed much like a regular chare
•  The size of each dimension is passed to the constructor

void	someMethod()	{		
			CProxy_foo::ckNew(10);		
			CProxy_bar::ckNew(5,	5);	
}	

•  The proxy may be retained:

CProxy_foo	myFoo	=	CProxy_foo::ckNew(10);		

•  The proxy represents the entire array, and may be indexed to obtain a
proxy to an individual element in the array

myFoo[4].invokeEntry();	

thisIndex

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 46

•  1d: thisIndex returns the index of the current chare array element
•  2d: thisIndex.x and thisIndex.y return the indices of the

current chare array element
.ci	file:
array	[1d]	foo	{		
			entry	foo();	
}		

.C	file:

struct	foo	:	public	CBase_foo	{		
			foo()	{	
						CkPrintf(“array	index	=	%d”,	thisIndex);	
			}	
};	

Chare Array: Hello Example
mainmodule	arr	{	
	
			mainchare	Main	{	
						entry	Main(CkArgMsg∗);	
			}	
			array	[1D]	hello	{		
						entry	hello(int);	
						entry	void	printHello();		
			}	
}	
Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 47

Chare Array: Hello Example
#include	“arr.decl.h”	
struct	Main	:	CBase_Main	{		
			Main(CkArgMsg∗	msg)	{	
						int	arraySize	=	atoi(msg->argv[1]);	
						CProxy_hello	p	=	CProxy_hello::ckNew(arraySize);	
						p[0].printHello();	
			}	
};	
struct	hello	:	CBase_hello	{	
			hello(int	n)	:	arraySize(n)	{	}	
			void	printHello()	{	
						CkPrintf(“PE[%d]:	hello	from	p[%d]\n”,	CkMyPe(),	thisIndex);	
						if	(thisIndex	==	arraySize	–	1)	CkExit();	
						else	thisProxy[thisIndex	+	1].printHello();	
			}	
			int	arraySize;	
};	
#include	“arr.def.h”	
Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 48

Hello World Array Projections Timeline View

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 49

•  Add “-tracemode projections” to link line to enable tracing
•  Run Projections tool to load trace log files and visualize performance

•  arrayHello on BG/Q 16 Nodes, mode c16, 1024 elements
(4 per process)

Collections of Objects: Runtime Service

•  System knows how to ‘find’ objects efficiently:
 (collection, index) à processor

• Applications can specify a mapping or use simple runtime-

provided options (e.g. blocked, round-robin)

• Distribution can be static or dynamic!

• Key abstraction: application logic doesn’t change, even though

performance might

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 50

Collections of Objects: Runtime Service
• Can develop and test logic in objects separately from their

distribution

•  Separation in time: make it work, then make it fast

• Division of labor: domain specialist writes object code,

computationalist writes mapping

•  Portability: different mappings for different systems, scales, or

configurations

•  Shared progress: improved mapping techniques can benefit

existing code
Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 51

Collections of Objects

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 52

Collective Communication Operations

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 53

•  Point-to-point operations involve only two objects
• Collective operations involve a collection of objects
• Broadcast: calls a method in each object of the array
• Reduction: collects a contribution from each object of the array
• A spanning tree is used to send/receive data

A

B C

D E F G

Broadcast

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 54

• A message to each object in a collection
•  The chare array proxy object is used to perform a broadcast
•  It looks like a function call to the proxy object
•  From the main chare:

CProxy_Hello	helloArray	=	CProxy_Hello::ckNew(helloArraySize);		
helloArray.foo();	

•  From a chare array element that is a member of the same array:

thisProxy.foo()	

•  From any chare that has a proxy p to the chare array

p.foo()	

Reduction

• Combines a set of values: sum, max, concat	

• Usually reduces the set of values to a single value

• Combination of values requires an operator

•  The operator must be commutative and associative

•  Each object calls contribute in a reduction

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 55

Reduction: Example

mainmodule	reduction	{		
		mainchare	Main	{	
				entry	Main(CkArgMsg∗	msg);	
				entry	[reductiontarget]	void	done(int	value);		
		};	
		array	[1D]	Elem	{	
				entry	Elem(CProxy_Main	mProxy);	
		};	
}	

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 56

Reduction: Example

Laxmikant Kalé and PPL (UIUC) – Parallel Migratable Objects 57

#include “reduction.decl.h”
const int numElements = 49;
class Main : public CBase_Main {
public:
 Main(CkArgMsg∗ msg) { CProxy_Elem::ckNew(thisProxy, numElements); }
 void done(int value) {
 CkPrintf(“value: %d\n”, value);
 CkExit();
 }
};
class Elem : public CBase_Elem {
public:
 Elem(CProxy_Main mProxy) {
 int val = thisIndex;
 CkCallback cb(CkReductionTarget(Main, done), mProxy);
 contribute(sizeof(int), &val, CkReduction::sum_int, cb);
 }
};
#include ”reduction.def.h”

Output
value: 1176
Program finished.

Chares are reactive

• The way we described Charm++ so far, a chare is a
reactive entity:
Ø If it gets this method invocation, it does this action,
Ø If it gets that method invocation then it does that action
Ø But what does it do?
Ø In typical programs, chares have a life-cycle

• How to express the life-cycle of a chare in code?
Ø Only when it exists

* i.e. some chars may be truly reactive, and the programmer
does not know the life cycle

Ø But when it exists, its form is:
* Computations depend on remote method invocations, and
completion of other local computations

* A DAG (Directed Acyclic Graph)!

58

Structured Dagger (sdag)
The when construct

• sdag code is written in the .ci file
• It is like a script, with a simple language
• Important: The when construct
Ø Declare the actions to perform when a method invocation is received
Ø In sequence, it acts like a blocking receive

entry void someMethod() {
 when entryMethod1(parameters) { block1 }
 when entryMethod2(parameters) { block2 }

 block3
};

59

Implicit
Sequencing

Structured Dagger
The serial construct

• The serial construct
• A sequential block of C++ code in the .ci file
• The keyword serial means that the code block will be
executed without interruption/preemption

•  Syntax: serial <optionalString> {/*C++ code*/ }!
•  The <optionalString> is just a tag for performance analysis
•  Serial blocks can access all members of the class they belong to

entry void method1(parameters) {
 when E(a)
 serial
 { thisProxy.invokeMethod(10, a);
 callSomeFunction(); }
…
};

entry void method2(parameters) {
 …
 serial “setValue” {
 value = 10;
 }
};

60

Structured Dagger
The when construct

• Sequentially execute:
1.  /* block1 */
2.  Wait for entryMethod1 to arrive, if it has not, return control back

to the Charm++ scheduler, otherwise, execute /* block2 */!
3.  Wait for entryMethod2 to arrive, if it has not, return control back

to the Charm++ scheduler, otherwise, execute /* block3 */!

entry void someMethod() {
 serial { /∗ block1 ∗/ }
 when entryMethod1(parameters) serial { /∗ block2 ∗/ }
 when entryMethod2(parameters) serial { /∗ block3 ∗/ }
};

61

Structured Dagger
The when construct

• You can combine waiting for multiple method invocations
•  Execute “code-block” when M1 and M2 arrive
• You have access to param1, param2, param3 in the code-block!

When M1(int param1, int param2), M2(bool param3)

 { code block }

62

Structured Dagger
Boilerplate

• Structured Dagger can be used in any entry method
(except for a constructor)
• For any class that has Structured Dagger in it you
must insert:
•  The Structured Dagger macro: [ClassName]_SDAG_CODE!

63

Structured Dagger
Boilerplate

The .ci file:

The .cpp file:

 [mainchare,chare,array,..] MyFoo {
 …
 entry void method(parameters) {
 // … structured dagger code here …
 };
 …
 }

 class MyFoo : public CBase MyFoo {
 MyFoo_SDAG_Code/* insert SDAG macro */
 public:
 MyFoo() { }
 };

64

•  The when clause can wait on a certain reference number
•  If a reference number is specified for a when , the first
parameter for the when must be the reference number
•  Semantics: the when will “block” until a message arrives
with that reference number

Structured Dagger
The when construct: refnum

 when method1[100](int ref, bool param1)
 /∗ sdag block ∗/
…

 serial {
 proxy.method1(200, false); /∗ will not be delivered to the when ∗/
 proxy.method1(100, true); /∗ will be delivered to the when ∗/
 }

65

• The overlap construct:
Ø By default, Structured Dagger constructs are executed in a sequence
Ø  overlap allows multiple independent constructs to execute in any

order
Ø Any constructs in the body of an overlap can happen in any order
Ø An overlap finishes when all the statements in it are executed
Ø Syntax: overlap { /* sdag constructs */ }

What are the possible execution sequences?

Structured Dagger
The overlap construct

 serial { /∗ block1 ∗/ }
 overlap {
 serial { /∗ block2 ∗/ }
 when entryMethod1[100](int ref num, bool param1) /∗ block3 ∗/
 when entryMethod2(char myChar) /∗ block4 ∗/
 }
 serial { /∗ block5 ∗/ } 66

Illustration of a long “overlap”

• Overlap can be used to
regain some asynchrony
within a chare
• But it is constrained
• More disciplined programming,
• with fewer race conditions

67

Structured Dagger
Other constructs

68

•  if-then-else
•  Same as the typical C if-then-else semantics and syntax

•  for
•  Defines a sequenced for loop (like a sequential C for loop)
•  Once the body for the ith iteration completes, the i + 1 iteration is started

• while
•  Defines a sequenced while loop (like a sequential C while loop)

•  forall
•  Has “do-all” semantics: iterations may execute in any order

http://charm.cs.illinois.edu/manuals/html/charm++/5.html

Grainsize
•  Charm++ philosophy:

–  let the programer decompose their work and data
into coarse-grained entities

•  It is important to understand what I mean by
coarse-grained entities
–  You don’t write sequential programs that some

system will auto-decompose
–  You don’t write programs when there is one

object for each float
–  You consciously choose a grainsize, BUT choose

it independent of the number of processors
•  Or parameterize it, so you can tune later

69

70

Crack Propagation

Decomposition into 16 chunks (left) and 128 chunks, 8 for
each PE (right). The middle area contains cohesive elements.
Both decompositions obtained using Metis. Pictures: S.
Breitenfeld, and P. Geubelle

This is 2D, circa 2002…
but shows over-decomposition for unstructured meshes..

Grainsize example: NAMD
•  High performing examples (objects are the

work-data units in Charm++):
•  On Blue Waters, 100M atom simulation

–  128K cores (4K nodes): 5,510,202 objects
•  Edison, Apoa1 (92K atoms)

–  4K cores: 33,124 objects
•  Hopper, STMV (1M atoms)

–  15,360 cores: 430,612 objects

71

Grainsize: Weather Forecasting in BRAMS

72

•  Brams: Brazillian weather code (based on RAMS)
•  AMPI version (Eduardo Rodrigues, with Mendes, J. Panetta, ..)

Instead of using 64 work units on 64 cores, used 1024 on 64

73

Working definition of grainsize:
 amount of computation per remote interaction

Choose grainsize to be just large
enough to amortize the overhead

Grainsize in a common setting

74

 1

 2

 4

128M32M8M2M512K64K16K4K

tim
es

te
p(

se
c)

number of points per chare

Jacobi3D running on JYC using 64 cores on 2 nodes

2048x2048x2048 (total problem size)

2 MB/chare,
256 objects per core

Rules	of	thumb	for	grainsize	

•  Make it as small as possible, as long as it
amortizes the overhead

•  More specifically, ensure:
–  Average grainsize is greater than k�v (say 10v)
–  No single grain should be allowed to be too large

•  Must be smaller than T/p, but actually we can express it
as

– Must be smaller than k�m�v (say 100v)
•  Important corollary:

–  You can be at close to optimal grainsize without
having to think about P, the number of
processors

75	
75	

76

Charm++ Applications
as case studies

Only brief overview today

NAMD: Biomolecular Simulations

•  Collaboration with K.
Schulten

•  With over 50,000
registered users

•  Scaled to most top US
supercomputers

•  In production use on
supercomputers and
clusters and desktops

•  Gordon Bell award in
2002

Recent success:
Determination of the
structure of HIV capsid
by researchers including
Prof Schulten

77

78

Molecular Dynamics: NAMD
•  Collection of [charged] atoms

–  With bonds
–  Newtonian mechanics
–  Thousands to millions atoms

•  At each time-step
–  Calculate forces on each atom

•  Bonds
•  Non-bonded: electrostatic and van

der Waal’s
–  Short-distance: every timestep
–  Long-distance: using PME (3D FFT)
–  Multiple Time Stepping : PME every

4 timesteps
–  Calculate velocities
–  Advance positions

Challenge: femtosecond time-step, millions needed!

Hybrid	DecomposiNon	

79	

Object	Based	ParallelizaNon	for	MD:	Force	Decomp.	+	SpaNal	Decomp.	

	
We	have	many	objects	
to	load	balance:	
•  Each	diamond	can	be	

assigned	to	any	proc.	
•  Number	of	diamonds	(3D)	
•  14	·	Number	of	Cells	
	

Parallelization using Charm++

80

Sturdy design!
•  This design,

–  done in 1995 or so, running on 12 node HP cluster
•  Has survived

–  With minor refinements
•  Until today

–  Scaling to 500,000+ cores on Blue Waters!
–  300,000 Cores of Jaguar, or BlueGene/P

81

1993

82

Shallow valleys, high peaks, nicely overlapped PME

green: communication

Red: integration Blue/Purple: electrostatics

turquoise: angle/dihedral

Orange: PME

94% efficiency

Apo-A1, on BlueGene/L, 1024 procs

Time intervals on X axis, activity added across processors on Y axis

Projections: Charm++ Performance Analysis Tool

NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and
Mira IBM Blue Gene/Q for 21M and 224M atom benchmarks

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 256 512 1024 2048 4096 8192 16384

Pe
rfo

rm
an

ce
 (n

s
pe

r d
ay

)

Number of Nodes

NAMD on Petascale Machines (2fs timestep with PME)

21M atoms

224M atoms

Titan XK7
Blue Waters XE6

Mira Blue Gene/Q

ChaNGa: Parallel Gravity
•  Collaborative project

(NSF)
–  with Tom Quinn, Univ. of

Washington
•  Gravity, gas dynamics
•  Barnes-Hut tree codes

–  Oct tree is natural decomp
–  Geometry has better

aspect ratios, so you
“open” up fewer nodes

–  But is not used because it
leads to bad load balance

–  Assumption: one-to-one
map between sub-trees
and PEs

–  Binary trees are considered
better load balanced

84

With Charm++: Use Oct-Tree, and
let Charm++ map subtrees to
processors

Evolution of Universe and
Galaxy Formation

ChaNGa: Cosmology Simulation

•  Tree: Represents
particle
distribution

•  TreePiece: object/
chares containing
particles

Collaboration with
Tom Quinn UW

•  Asynchronous, highly overlapped, phases
•  Requests for remote data overlapped with

local computations

ChaNGa: Optimized Performance

86

ChaNGa : a recent result

87

Episimdemics
•  Simulation of spread of contagion

–  Code by Madhav Marathe, Keith Bisset, .. Vtech
–  Original was in MPI

•  Converted to Charm++
–  Benefits: asynchronous reductions improved

performance considerably

88

89

Simulating contagion over dynamic networks

EpiSimdemics1

Agent-based

Realistic population data

Intervention2

Co-evolving network,
behavior and policy2

transition by
interaction

S

I

Local transition

P1

P2

P3

P4

P = 1-exp(t·log(1-I·S))
- t: duration of

 co-presence

- I: infectivity

- S: susceptivity

infectious

uninfected

S

I

t

Location Social
contact
network L1

L2

1C. Barrett et al.,“EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,” SC08
2K. Bisset et al., “Modeling Interaction Between Individuals, Social Net-
works and Public Policy to Support Public Health Epidemiology,” WSC09.

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 3 / 26

90

Strong scaling performance with the largest data set

����

��

���

����

��� ��� �� �� 	�
� ��� ��� �	����
�������

�

�
��
��

�
��
�
�

��
��

���
��

���
�

���������� ���!�������

�����"�� ��
�"��#���$������%�&'��

����

((!���
�)� *���#��
((*������

((!���
�)� *������

����

��

���

����

�� �� �� �� �	�
�� 	�� ����

��

��
��
��
��
��

��
��

���
��
���
�

��
������������

����� ������� ��!������"�#$%&�

''(�
����
''(�)'*+

'',�����-��(�
����
'',�����-��(���#��
'',�����-��(�)'*+

����

��

���

����

��� ��� �� �� 	�
� ���

��

��
��
��
��
��

��
��

���
��
���
�

��
������������

����� ������� ��!���"�#�$�������
%%&�����'�� ������"�(%)*

+��"�(%)*
�,���-��."�
���

Contiguous US population data

XE6: the largest scale (352K cores)

BG/Q: good scaling up to 128K cores

Strong scaling helps timely reaction to
pandemic

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 26 / 26

OpenAtom
Car-Parinello Molecular Dynamics

NSF ITR 2001-2007, IBM, DOE,NSF

91

Molecular Clusters : Nanowires:

Semiconductor Surfaces: 3D-Solids/Liquids:

Recent NSF SSI-SI2 grant
With

G. Martyna (IBM)
Sohrab Ismail-Beigi

Using Charm++ virtualization, we can efficiently scale
small (32 molecule) systems to thousands of processors

Decomposition and Computation
Flow

92

Topology Aware Mapping of Objects

93

Improvements by topological aware
mapping of computation to processors

94

The simulation of the left panel, maps computational work to processors taking the network
connectivity into account while the right panel simulation does not. The “black’’ or idle time
processors spent waiting for computational work to arrive on processors is significantly
reduced at left. (256waters, 70R, on BG/L 4096 cores)

Punchline: Overdecomposition into Migratable Objects created the
degree of freedom needed for flexible mapping

OpenAtom Performance Sampler

95

 1

 2

 4

 8

 16

 32

512 1K 2K 4K 8K 16K

T
im

e
st

e
p
 (

se
cs

/s
te

p
)

No. of cores

OpenAtom running WATER 256M 70Ry on various platforms

Blue Gene/L
Blue Gene/P

Cray XT3

Ongoing work on:
K-points

Mini-App Features Machine Max cores
AMR Overdecomposition,

Custom array index,
Message priorities,

Load Balancing,
Checkpoint restart

BG/Q 131,072

LeanMD Overdecomposition,
Load Balancing,

Checkpoint restart,
Power awareness

BG/P
BG/Q

131,072
32,768

Barnes-Hut
(n-body)

Overdecomposition,
Message priorities,

Load Balancing

Blue Waters 16,384

LULESH 2.02 AMPI, Over-
decomposition, Load

Balancing

Hopper 8,000

PDES Overdecomposition,
Message priorities,

TRAM

Stampede 4,096

MiniApps

96

Mini-App Features Machine Max cores
1D FFT Interoperable with

MPI
BG/P
BG/Q

65,536
16,384

Random Access TRAM BG/P
BG/Q

131,072
16,384

Dense LU SDAG XT5 8,192

Sparse Triangular
Solver

SDAG BG/P 512

GTC SDAG BG/Q 1,024

SPH Blue Waters -

More MiniApps

97

98

A recently
published book
surveys seven
major applications
developed using
Charm++

More info on Charm++:
http://charm.cs.illinois.edu
Including the miniApps

Where are Exascale Issues?
•  I didn’t bring up exascale at all so far..

–  Overdecomposition, migratability, asynchrony
were needed on yesterday’s machines too

–  And the app community has been using them
–  But:

•  On *some* of the applications, and maybe without a
common general-purpose RTS

•  The same concepts help at exascale
–  Not just help, they are necessary, and adequate
–  As long as the RTS capabilities are improved

•  We have to apply overdecomposition to all
(most) apps

99

Relevance to Exascale

100

Intelligent, introspective, Adaptive
Runtime Systems, developed for handling
application’s dynamic variability, already
have features that can deal with
challenges posed by exascale hardware

Fault Tolerance in Charm++/AMPI
•  Four approaches available:

–  Disk-based checkpoint/restart
–  In-memory double checkpoint w auto. restart
–  Proactive object migration
–  Message-logging: scalable fault tolerance

•  Common Features:
–  Easy checkpoint: migrate-to-disk
–  Based on dynamic runtime capabilities
–  Use of object-migration
–  Can be used in concert with load-balancing

schemes
101

Saving Cooling Energy
•  Easy: increase A/C setting

–  But: some cores may get too hot
•  So, reduce frequency if temperature is high (DVFS)

–  Independently for each chip
•  But, this creates a load imbalance!
•  No problem, we can handle that:

–  Migrate objects away from the slowed-down processors
–  Balance load using an existing strategy
–  Strategies take speed of processors into account

•  Implemented in experimental version
–  SC 2011 paper, IEEE TC paper

•  Several new power/energy-related strategies
–  PASA ‘12: Exploiting differential sensitivities of code segments

to frequency change

102

PARM:Power Aware Resource Manager

•  Charm++ RTS facilitates malleable jobs
•  PARM can improve throughput under a fixed

power budget using:
–  overprovisioning (adding more nodes than

conventional data center)
–  RAPL (capping power consumption of nodes)
–  Job malleability and moldability

`"Job"Arrives" Job"Ends/
Terminates"

Schedule"
Jobs"(LP)"

Update"
Queue"

Scheduler"

Launch"Jobs/"
ShrinkAExpand"

Ensure"Power"
Cap"

ExecuEon"
framework"

Triggers"

Profiler"

Strong"Scaling"
Power"Aware"Model"

Job"CharacterisEcs"
Database"

Power"Aware"Resource"Manager"
(PARM)"

103

Summary
•  Charm++ embodies an adaptive, introspective

runtime system
•  Many applications have been developed using it

–  NAMD, ChaNGa, Episimdemics, OpenAtom, …
–  Many miniApps, and third-party apps

•  Adaptivity developed for apps is useful for
addressing exascale challenges
–  Resilience, power/temperature optimizations, ..

104

More info on Charm++:
http://charm.cs.illinois.edu
Including the miniApps

Overdecomposition Asynchrony Migratability

