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Tie-ins to other ATPESC’16 presentations 
n Numerous! 

◆  architecture, applications, algorithms, programming models & 
systems software, etc., form an interconnected ecosystem 

◆  algorithms/software span diverging requirements in architecture 
(more uniformity) & application (more irregularity) 

n To architecture presentations today 
◆  Intel, NVIDIA 

n To programming models talks tonight thru Thursday: 
◆  MPI, OpenMP, Open ACC, OCCA, Chapel, Charm++, UPC++, 

ADLB 

n To algorithms talks Friday and Monday: 
◆  Demmel, Diachin & FASTMath team, Dongarra  
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Shaheen I  è  Shaheen II 
IBM Blue Gene/P Cray XC40 

June 2009 (then #14) July 2015 (then #7) 

.222 Petaflop/s  (peak) 7.3 Petaflop/s (peak, é ~33X) 
Power: 0.5 MW 

0.44 GF/s/W 
Power: 2.8 MW (é ~5.5X) 
~2.5 GF/s/Watt (é ~5X) 

Memory: 65 TeraBytes 
 Amdahl-Case Ratio: 0.29 B/F/s 

Memory: 793 TeraBytes (é ~12X) 
 Amdahl-Case Ratio: 0.11 B/F/s (ê ~3X) 

I/O bandwidth: 25 GB/s  
Storage: 2.7 PetaBytes  

I/O bandwidth:  500 GB/s (é ~20X) 
Storage: 17.6 PetaBytes (é ~6.5X)  

Nodes: 16,384  
Cores: 65,536 at 0.85 Ghz 

Nodes: 6,192   
Cores: 198,144 at 2.3 Ghz 

Burst buffer: 
 none 

Burst buffer:  
1.5 Petabytes, 1.2 TB/s bandwidth  



“A good player plays where the puck is, while a great 
player skates to where the puck is going to be.” –  

– Wayne Gretzsky 
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Aspiration for this talk 
n To paraphrase Gretzsky: 

  “Algorithms for where architectures are going to be” 

Such algorithms may or may not be the best today; 
however, hardware trends can be extrapolated to  

infer algorithmic “sweet” spots.  
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Examples being developed at KAUST’s 
Extreme Computing Research Center 

n  ACR(ε), a new spin on 46-year-old cyclic reduction that recursively uses H 
matrices on Schur complements to reduce O(N2)  complexity to O(N log2N) 

n  FMM(ε), a 30-year-old O(N) solver for potential problems with good 
asymptotic complexity but a bad constant (relative to multigrid) when 
used at high accuracy, used in low accuracy as a preconditioner 

n  QDWH-SVD, a 3-year-old SVD algorithm that performs more flops but 
generates essentially arbitrary amounts of dynamically schedulable 
concurrency by recursive subdivision, and beats state-of-the-art on GPUs 

n  MWD, a multicore wavefront diamond-tiling stencil evaluation library 
that reduces memory bandwidth pressure on multicore processors 

n  BDDC, a preconditioner well suited for high-contrast elliptic problems 
that trades lots of local flops for low iteration count, now in PETSc 

n  MSPIN, a new nonlinear preconditioner that replaces most of the global 
synchronizations of Newton iteration with local problems 
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 Background of this talk: 
www.exascale.org/iesp 

The International Exascale 
Software Roadmap,  
J. Dongarra, P. Beckman, et al., 
International Journal of High 
Performance Computer 
Applications 25(1), 2011, ISSN 
1094-3420. 

Eight of these co-authors 
will speak to you this week 
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Uptake from IESP meetings 
n  While obtaining the next order of magnitude of performance, 

we also need an order more Flop/s per Watt 
◆  target: 50 Gigaflop/s/W, today best is 6.7 Gigaflop/s/W 
◆  tendency towards less memory and memory BW per flop 

n  Power may be cycled off and on, or clocks slowed and speeded  
◆  based on compute schedules (user-specified or software 

adaptive) and dynamic thermal monitoring 
◆  makes per-node performance rate unreliable* 

n  Draconian reduction required in power per flop and per byte 
may make computing and moving data less reliable 
◆  circuit elements will be smaller and subject to greater physical 

noise per signal, with less space and time redundancy for 
resilience in the hardware 

◆  more errors should be caught and corrected in software 
* “Equal work is not equal time” (Beckman, this morning) 
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Why exa- is different 

(Intel Sandy Bridge, 2.27B transistors) 

  c/o 2008 DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH) 

Going across the die will require an order of magnitude more! 
DARPA study predicts that by 2019: 
u  Double precision FMADD flop: 11pJ 
u  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall) 

Which steps of FMADD take more energy?  

input 
input 

input 

output 

four 



QEERI, 14 Apr 2015 

Typical power costs per operation 

   c/o J. Shalf (LBNL) 

Remember that a pico (10-12) of something done exa (1018) 
times per second is a mega (106)-somethings per second 
u  100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!) 
u  1 MW-year costs about $1M ($0.12/KW-hr × 8760 hr/yr) 

•  We “use” 1.4 KW continuously, so 100MW is 71,000 people 

Operation approximate energy cost 
DP FMADD flop 100 pJ 
DP DRAM read-to-register 5,000 pJ 
DP word transmit-to-neighbor 7,500 pJ 
DP word transmit-across-system 10,000 pJ 
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Why exa- is different 

Moore’s Law (1965) does not end yet but 
Dennard’s MOSFET scaling (1972) does 

Eventually, processing is 
limited by transmission, 
as known for > 4 decades 

Robert Dennard, IBM 
(inventor of DRAM, 1966) 
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Some exascale architecture trends 
●  Clock rates cease to increase while arithmetic 

capability continues to increase dramatically w/
concurrency consistent with Moore’s Law 

●  Memory storage capacity diverges exponentially below 
arithmetic capacity 

●  Transmission capability (memory BW and network 
BW) diverges exponentially below arithmetic capability 

●  Mean time between hardware interrupts shortens 
●  è Billions of $ € £ ¥ of scientific software worldwide 

hangs in the balance until better algorithms arrive to 
span the architecture-applications gap 
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Node-based “weak scaling” is routine; 
thread-based “strong scaling” is the game 
n  Expanding the number of nodes (processor-memory units)  

beyond 106 would not be a serious threat to algorithms that 
lend themselves to well-amortized precise load balancing  
◆  provided that the nodes are performance reliable 

n  The real challenge is usefully expanding the number of cores 
on a node to 103 

◆  must be done while memory and memory bandwidth per node 
expand by (at best) ten-fold less (basically “strong” scaling) 

◆  don’t need to wait for full exascale systems to experiment in this 
regime – the battle is fought on individual shared-memory 
nodes 
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BSP 
generation 

Energy-aware 
generation 
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Bulk Synchronous 
Parallelism 

Leslie Valiant, Harvard  
2010 Turing Award Winner Comm. of the ACM, 1990 
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How are most simulations implemented at 
the petascale today? 

n  Iterative methods based on data decomposition and 
message-passing 
◆  data structures (e.g., grid points, particles, agents) are distributed 
◆  each individual processor works on a subdomain of the original 
◆  exchanges information at its boundaries with other processors 

that own portions with which it interacts causally, to evolve in 
time or to establish equilibrium 

◆  computation and neighbor communication are both fully 
parallelized and their ratio remains constant in weak scaling 

n The programming model is BSP/SPMD/CSP 
◆  Bulk Synchronous Programming  
◆  Single Program, Multiple Data 
◆  Communicating Sequential Processes 
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BSP parallelism w/ domain decomposition 

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian) 

Ω1 

Ω2 

Ω3 

A23 A21 A22 
rows assigned 

to proc “2” 
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BSP has an impressive legacy 

	
  
	
  

Year	
  

Cost	
  per	
  
delivered	
  
Gigaflop/s	
  

1989	
   $2,500,000	
  	
  	
  	
  	
  	
  	
  	
  
1999	
   $6,900	
  
2009	
   $8	
  

	
  
	
  

Year	
  

Gigaflop/s	
  
delivered	
  to	
  
applica4ons	
  

1988	
   1	
  
1998	
   1,020	
  
2008	
   1,350,000	
  

By the Gordon Bell Prize, performance on real applications (e.g., 
mechanics, materials, petroleum reservoirs, etc.) has improved more than 
a million times in two decades.  Simulation cost per performance has 
improved by nearly a million times.  

Gordon Bell 
Prize: Peak 
Performance 

Gordon Bell 
Prize: Price 
Performance 
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Extrapolating exponentials eventually fails 
n Scientific computing at a crossroads w.r.t. extreme 

scale 
n Proceeded steadily for decades from giga- (1988) to 

tera- (1998) to peta- (2008) with  
◆  same BSP programming model 
◆  same assumptions about who (hardware, systems software, 

applications software etc.) is responsible for what 
(resilience, performance, processor mapping, etc.) 

◆  same classes of algorithms (cf. 25 yrs. of Gordon Bell 
Prizes) 
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Extrapolating exponentials eventually fails 
n Exa- is qualitatively different and looks more 

difficult 
◆  but we once said that about message passing 

n Core numerical analysis and scientific computing 
will confront exascale to maintain relevance 
◆  not a “distraction,” but an intellectual stimulus 
◆  potentially big gains in adapting to new hardware 

environment 
◆  the journey will be as fun as the destination 
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Main challenge going forward for BSP 
n Almost all “good” algorithms in linear algebra, 

differential equations, integral equations, signal 
analysis, etc., require frequent synchronizing 
global communication 
◆  inner products, norms, and fresh global residuals are 

“addictive” idioms 
◆  tends to hurt efficiency beyond 100,000 threads 
◆  can be fragile for smaller concurrency, as well, due to 

algorithmic load imbalance, hardware performance variation, 
etc. 

n Concurrency is heading into the billions of cores 
◆  Already 10.6 million on the most powerful system today 
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Conclusions, up front 
n Plenty of ideas exist to adapt or substitute for 

favorite solvers with methods that have 
◆  reduced synchrony (in frequency and/or span) 
◆  greater arithmetic intensity  
◆  greater SIMD-style shared-memory concurrency 
◆  built-in resilience (“algorithm-based fault tolerance” or ABFT) 

to arithmetic/memory faults or lost/delayed messages 

n Programming models and runtimes may have to be 
stretched to accommodate 

n Everything should be on the table for trades, 
beyond disciplinary thresholds è “co-design” 



ATPESC 1 Aug 2016 

Bad news/good news (1) 
●  One will have to explicitly control more of 

the data motion 
●  carries the highest energy cost in the exascale 

computational environment 

●  One finally will get the privilege of 
controlling the vertical data motion 
●  horizontal data motion under control of users already  
●  but vertical replication into caches and registers was 

(until GPUs) mainly scheduled and laid out by hardware 
and runtime systems, mostly invisibly to users 
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●  “Optimal” formulations and algorithms may lead 
to poorly proportioned computations for exascale 
hardware resource balances 
u  today’s “optimal” methods presume flops are 

expensive and memory and memory bandwidth are 
cheap 

●  Architecture may lure scientific and engineering 
users into more arithmetically intensive 
formulations than (mainly) PDEs 
u  tomorrow’s optimal methods will (by definition) evolve 

to conserve whatever is expensive 

Bad news/good news (2) 
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●  Fully hardware-reliable executions may be regarded as 
too costly/synchronization-vulnerable 

●  Algorithmic-based fault tolerance (ABFT) will be 
cheaper than hardware and OS-mediated reliability 
u  developers will partition their data and their program units into 

two sets 
§  a small set that must be done reliably (with today’s standards for 

memory checking and IEEE ECC) 
§  a large set that can be done fast and unreliably, knowing the errors 

can be either detected, or their effects rigorously bounded 

●  Several examples in direct and iterative linear algebra  
●  Anticipated by Von Neumann, 1956 (“Synthesis of reliable 

organisms from unreliable components”) 

Bad news/good news (3) 
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●  Default use of (uniform) high precision in nodal bases on 
dense grids may decrease, to save storage and bandwidth 
u  representation of a smooth function in a hierarchical basis or on 

sparse grids requires fewer bits than storing its nodal values, for 
equivalent accuracy 

u  we will have to compute and communicate “deltas” between states 
rather than the full state quantities, as when double precision was 
once expensive (e.g., iterative correction in linear algebra) 

u  a generalized “combining network” node or a smart memory 
controller may remember the last address, but also the last values, 
and forward just the deltas 

●  Equidistributing errors properly to minimize resource use 
will lead to innovative error analyses in numerical analysis 

Bad news/good news (4) 
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●  Fully deterministic algorithms may be regarded as 
too synchronization-vulnerable 
u  rather than wait for missing data, e.g., in the tail Pete showed 

earlier, we may predict it using various means and continue 
u  we do this with increasing success in problems without models 

(“big data”) 
u  should be fruitful in problems coming from continuous models 
u  “apply machine learning to the simulation machine”  

●  A rich numerical analysis of algorithms that make 
use of statistically inferred “missing” quantities may 
emerge 
u  future sensitivity to poor predictions can often be estimated 
u  numerical analysts will use statistics, signal processing, ML, etc. 

 

Bad news/good news (5) 
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Warning: not all accept the full 4-fold agenda 
n Non-controversial:  

◆  reduced synchrony (in frequency and/or span) 
◆  greater arithmetic intensity  

n Mildly controversial, when it comes to porting real 
applications: 
◆  greater SIMD-style shared-memory concurrency 

n More controversial: 
◆  built-in resilience (“algorithm-based fault tolerance” or 

ABFT) to arithmetic/memory faults or lost/delayed 
messages 
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The world according to algorithmicists 

◆  full employment program for computational 
scientists and engineers 

◆  see, e.g., recent postdoc announcements from  
■  Berkeley (8) for Cori Project (Cray & Intel MIC) 
■  Oak Ridge (8) for CORAL Project (IBM & NVIDIA NVLink) 
■  IBM (10) for Data-Centric Systems initiative 

for porting applications to emerging hybrid 
architectures 

n Algorithms must adapt to span the gulf between 
aggressive applications and austere architectures 
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Required software at exascale 
      Model-related 

◆  Geometric modelers 
◆  Meshers 
◆  Discretizers 
◆  Partitioners 
◆  Solvers / integrators 
◆  Adaptivity systems 
◆  Random no. generators 
◆  Subgridscale physics  
◆  Uncertainty 

quantification 
◆  Dynamic load balancing 
◆  Graphs and 

combinatorial algs. 
◆  Compression  
 

        Development-related        
u  Configuration systems 
u  Source-to-source 

translators 
u  Compilers 
u  Simulators 
u  Messaging systems 
u  Debuggers 
u  Profilers 
 

      Production-related 
u  Dynamic resource 

management 
u  Dynamic performance 

optimization 
u  Authenticators 
u  I/O systems 
u  Visualization systems 
u  Workflow controllers 
u  Frameworks 
u  Data miners 
u  Fault monitoring, 

reporting, and recovery 

High-end computers come 
with little of this stuff. 

Most has to be contributed 
by the user  community 
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Optimal hierarchical algorithms 
n At large scale, one must start with algorithms with 

optimal asymptotic scaling, O(N logp N) 
n Some optimal hierarchical algorithms 

◆  Fast Fourier Transform (1960’s) 
◆  Multigrid (1970’s) 
◆  Fast Multipole (1980’s) 
◆  Sparse Grids (1990’s) 
◆  H matrices (2000’s)* 

 “With great computational power comes great 
algorithmic responsibility.” – Longfei Gao 

* hierarchically low-rank matrices 
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Recap of algorithmic agenda 
n  New formulations with  

◆  greater arithmetic intensity (flops per byte moved into and out of 
registers and upper cache) 
■  including assured accuracy with (adaptively) less floating-

point precision 
◆  reduced synchronization and communication 

■  less frequent and/or less global 
◆  greater SIMD-style thread concurrency for accelerators 
◆  algorithmic resilience to various types of faults 

n  Quantification of trades between limited resources 
n  Plus all of the exciting analytical agendas that exascale is 

meant to exploit  
◆  “post-forward” problems: optimization, data assimilation, 

parameter inversion, uncertainty quantification, etc. 
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Some algorithmic “points of light” 

Sample “points of light” that accomplish one or 
more of these agendas 

²  DAG-based data flow for dense symmetric linear algebra 
²  In-place GPU implementations of dense symmetric linear 

algebra 
²  Fast multipole preconditioning for Poisson solves 
²  Algebraic fast multipole for variable coefficient problems 
²  Nonlinear preconditioning for Newton’s method 
²  Very high order discretizations for PDEs 

CENTER OF EXCELLENCE 
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For details: ATPESC 2015 
n Second half of my presentation last year briefly 

describes projects in all of these areas 
n Or write 

 david.keyes@kaust.edu.sa (repeated on last slide) 
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For closing minutes of ATPESC 2016 
n Our 2016 Gordon Bell submission  
n CFD application, with emphasis on very high order 
n  Joint with: 

◆  U of Chicago: Max Hutchinson 
◆  Intel: Alex Heinecke  
◆  KAUST: Matteo Parsani, Bilel Hadri 
◆  Argonne: Oana Marin, Michel Shanen 
◆  Cornell: Matthew Otten 
◆  KTH: Philipp Schlatter 
◆  U of Illinois: Paul Fischer 
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[not a finalist] 
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8X 
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27% of 
theoretical 

peak 

21% of 
theoretical 

peak 
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Parity with Haswell 
(1 core each) 

Parity with Haswell 
(full node each) 
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~20% 
savings 
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BSP 
generation 

Energy-aware 
generation 

Skate to where the puck is going to be! 



Thank you 

 ششككرراا   

david.keyes@kaust.edu.sa 
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Extra Slide 
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