
ATPESC 1 Aug 2016

David Keyes, Applied Mathematics & Computational Science
Director, Extreme Computing Research Center (ECRC)
King Abdullah University of Science and Technology

Algorithmic Adaptations to Extreme Scale

ATPESC 1 Aug 2016

Tie-ins to other ATPESC’16 presentations
n Numerous!

◆  architecture, applications, algorithms, programming models &
systems software, etc., form an interconnected ecosystem

◆  algorithms/software span diverging requirements in architecture
(more uniformity) & application (more irregularity)

n To architecture presentations today
◆  Intel, NVIDIA

n To programming models talks tonight thru Thursday:
◆  MPI, OpenMP, Open ACC, OCCA, Chapel, Charm++, UPC++,

ADLB

n To algorithms talks Friday and Monday:
◆  Demmel, Diachin & FASTMath team, Dongarra

ATPESC 1 Aug 2016

Shaheen I è Shaheen II
IBM Blue Gene/P Cray XC40

June 2009 (then #14) July 2015 (then #7)

.222 Petaflop/s (peak) 7.3 Petaflop/s (peak, é ~33X)
Power: 0.5 MW

0.44 GF/s/W
Power: 2.8 MW (é ~5.5X)
~2.5 GF/s/Watt (é ~5X)

Memory: 65 TeraBytes
 Amdahl-Case Ratio: 0.29 B/F/s

Memory: 793 TeraBytes (é ~12X)
 Amdahl-Case Ratio: 0.11 B/F/s (ê ~3X)

I/O bandwidth: 25 GB/s
Storage: 2.7 PetaBytes

I/O bandwidth: 500 GB/s (é ~20X)
Storage: 17.6 PetaBytes (é ~6.5X)

Nodes: 16,384
Cores: 65,536 at 0.85 Ghz

Nodes: 6,192
Cores: 198,144 at 2.3 Ghz

Burst buffer:
 none

Burst buffer:
1.5 Petabytes, 1.2 TB/s bandwidth

“A good player plays where the puck is, while a great
player skates to where the puck is going to be.” –

– Wayne Gretzsky

ATPESC 1 Aug 2016

Aspiration for this talk
n To paraphrase Gretzsky:

 “Algorithms for where architectures are going to be”

Such algorithms may or may not be the best today;
however, hardware trends can be extrapolated to

infer algorithmic “sweet” spots.

ATPESC 1 Aug 2016

Examples being developed at KAUST’s
Extreme Computing Research Center

n  ACR(ε), a new spin on 46-year-old cyclic reduction that recursively uses H
matrices on Schur complements to reduce O(N2) complexity to O(N log2N)

n  FMM(ε), a 30-year-old O(N) solver for potential problems with good
asymptotic complexity but a bad constant (relative to multigrid) when
used at high accuracy, used in low accuracy as a preconditioner

n  QDWH-SVD, a 3-year-old SVD algorithm that performs more flops but
generates essentially arbitrary amounts of dynamically schedulable
concurrency by recursive subdivision, and beats state-of-the-art on GPUs

n  MWD, a multicore wavefront diamond-tiling stencil evaluation library
that reduces memory bandwidth pressure on multicore processors

n  BDDC, a preconditioner well suited for high-contrast elliptic problems
that trades lots of local flops for low iteration count, now in PETSc

n  MSPIN, a new nonlinear preconditioner that replaces most of the global
synchronizations of Newton iteration with local problems

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

 Background of this talk:
www.exascale.org/iesp

The International Exascale
Software Roadmap,
J. Dongarra, P. Beckman, et al.,
International Journal of High
Performance Computer
Applications 25(1), 2011, ISSN
1094-3420.

Eight of these co-authors
will speak to you this week

ATPESC 1 Aug 2016

Uptake from IESP meetings
n  While obtaining the next order of magnitude of performance,

we also need an order more Flop/s per Watt
◆  target: 50 Gigaflop/s/W, today best is 6.7 Gigaflop/s/W
◆  tendency towards less memory and memory BW per flop

n  Power may be cycled off and on, or clocks slowed and speeded
◆  based on compute schedules (user-specified or software

adaptive) and dynamic thermal monitoring
◆  makes per-node performance rate unreliable*

n  Draconian reduction required in power per flop and per byte
may make computing and moving data less reliable
◆  circuit elements will be smaller and subject to greater physical

noise per signal, with less space and time redundancy for
resilience in the hardware

◆  more errors should be caught and corrected in software
* “Equal work is not equal time” (Beckman, this morning)

ATPESC 1 Aug 2016

Why exa- is different

(Intel Sandy Bridge, 2.27B transistors)

 c/o 2008 DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH)

Going across the die will require an order of magnitude more!
DARPA study predicts that by 2019:
u  Double precision FMADD flop: 11pJ
u  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall)

Which steps of FMADD take more energy?

input
input

input

output

four

QEERI, 14 Apr 2015

Typical power costs per operation

 c/o J. Shalf (LBNL)

Remember that a pico (10-12) of something done exa (1018)
times per second is a mega (106)-somethings per second
u  100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
u  1 MW-year costs about $1M ($0.12/KW-hr × 8760 hr/yr)

•  We “use” 1.4 KW continuously, so 100MW is 71,000 people

Operation approximate energy cost
DP FMADD flop 100 pJ
DP DRAM read-to-register 5,000 pJ
DP word transmit-to-neighbor 7,500 pJ
DP word transmit-across-system 10,000 pJ

QEERI, 14 Apr 2015

Why exa- is different

Moore’s Law (1965) does not end yet but
Dennard’s MOSFET scaling (1972) does

Eventually, processing is
limited by transmission,
as known for > 4 decades

Robert Dennard, IBM
(inventor of DRAM, 1966)

QEERI, 14 Apr 2015

Some exascale architecture trends
●  Clock rates cease to increase while arithmetic

capability continues to increase dramatically w/
concurrency consistent with Moore’s Law

●  Memory storage capacity diverges exponentially below
arithmetic capacity

●  Transmission capability (memory BW and network
BW) diverges exponentially below arithmetic capability

●  Mean time between hardware interrupts shortens
●  è Billions of $ € £ ¥ of scientific software worldwide

hangs in the balance until better algorithms arrive to
span the architecture-applications gap

ATPESC 1 Aug 2016

Node-based “weak scaling” is routine;
thread-based “strong scaling” is the game
n  Expanding the number of nodes (processor-memory units)

beyond 106 would not be a serious threat to algorithms that
lend themselves to well-amortized precise load balancing
◆  provided that the nodes are performance reliable

n  The real challenge is usefully expanding the number of cores
on a node to 103

◆  must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less (basically “strong” scaling)

◆  don’t need to wait for full exascale systems to experiment in this
regime – the battle is fought on individual shared-memory
nodes

ATPESC 1 Aug 2016

BSP
generation

Energy-aware
generation

ATPESC 1 Aug 2016

Bulk Synchronous
Parallelism

Leslie Valiant, Harvard
2010 Turing Award Winner Comm. of the ACM, 1990

ATPESC 1 Aug 2016

How are most simulations implemented at
the petascale today?

n  Iterative methods based on data decomposition and
message-passing
◆  data structures (e.g., grid points, particles, agents) are distributed
◆  each individual processor works on a subdomain of the original
◆  exchanges information at its boundaries with other processors

that own portions with which it interacts causally, to evolve in
time or to establish equilibrium

◆  computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

n The programming model is BSP/SPMD/CSP
◆  Bulk Synchronous Programming
◆  Single Program, Multiple Data
◆  Communicating Sequential Processes

ATPESC 1 Aug 2016

BSP parallelism w/ domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23 A21 A22
rows assigned

to proc “2”

ATPESC 1 Aug 2016

BSP has an impressive legacy

	

	

Year	

Cost	
 per	

delivered	

Gigaflop/s	

1989	
 $2,500,000	
 	
 	
 	
 	
 	
 	
 	

1999	
 $6,900	

2009	
 $8	

	

	

Year	

Gigaflop/s	

delivered	
 to	

applica4ons	

1988	
 1	

1998	
 1,020	

2008	
 1,350,000	

By the Gordon Bell Prize, performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, etc.) has improved more than
a million times in two decades. Simulation cost per performance has
improved by nearly a million times.

Gordon Bell
Prize: Peak
Performance

Gordon Bell
Prize: Price
Performance

ATPESC 1 Aug 2016

Extrapolating exponentials eventually fails
n Scientific computing at a crossroads w.r.t. extreme

scale
n Proceeded steadily for decades from giga- (1988) to

tera- (1998) to peta- (2008) with
◆  same BSP programming model
◆  same assumptions about who (hardware, systems software,

applications software etc.) is responsible for what
(resilience, performance, processor mapping, etc.)

◆  same classes of algorithms (cf. 25 yrs. of Gordon Bell
Prizes)

ATPESC 1 Aug 2016

Extrapolating exponentials eventually fails
n Exa- is qualitatively different and looks more

difficult
◆  but we once said that about message passing

n Core numerical analysis and scientific computing
will confront exascale to maintain relevance
◆  not a “distraction,” but an intellectual stimulus
◆  potentially big gains in adapting to new hardware

environment
◆  the journey will be as fun as the destination

ATPESC 1 Aug 2016

Main challenge going forward for BSP
n Almost all “good” algorithms in linear algebra,

differential equations, integral equations, signal
analysis, etc., require frequent synchronizing
global communication
◆  inner products, norms, and fresh global residuals are

“addictive” idioms
◆  tends to hurt efficiency beyond 100,000 threads
◆  can be fragile for smaller concurrency, as well, due to

algorithmic load imbalance, hardware performance variation,
etc.

n Concurrency is heading into the billions of cores
◆  Already 10.6 million on the most powerful system today

ATPESC 1 Aug 2016

Conclusions, up front
n Plenty of ideas exist to adapt or substitute for

favorite solvers with methods that have
◆  reduced synchrony (in frequency and/or span)
◆  greater arithmetic intensity
◆  greater SIMD-style shared-memory concurrency
◆  built-in resilience (“algorithm-based fault tolerance” or ABFT)

to arithmetic/memory faults or lost/delayed messages

n Programming models and runtimes may have to be
stretched to accommodate

n Everything should be on the table for trades,
beyond disciplinary thresholds è “co-design”

ATPESC 1 Aug 2016

Bad news/good news (1)
●  One will have to explicitly control more of

the data motion
●  carries the highest energy cost in the exascale

computational environment

●  One finally will get the privilege of
controlling the vertical data motion
●  horizontal data motion under control of users already
●  but vertical replication into caches and registers was

(until GPUs) mainly scheduled and laid out by hardware
and runtime systems, mostly invisibly to users

ATPESC 1 Aug 2016

●  “Optimal” formulations and algorithms may lead
to poorly proportioned computations for exascale
hardware resource balances
u  today’s “optimal” methods presume flops are

expensive and memory and memory bandwidth are
cheap

●  Architecture may lure scientific and engineering
users into more arithmetically intensive
formulations than (mainly) PDEs
u  tomorrow’s optimal methods will (by definition) evolve

to conserve whatever is expensive

Bad news/good news (2)

ATPESC 1 Aug 2016

●  Fully hardware-reliable executions may be regarded as
too costly/synchronization-vulnerable

●  Algorithmic-based fault tolerance (ABFT) will be
cheaper than hardware and OS-mediated reliability
u  developers will partition their data and their program units into

two sets
§  a small set that must be done reliably (with today’s standards for

memory checking and IEEE ECC)
§  a large set that can be done fast and unreliably, knowing the errors

can be either detected, or their effects rigorously bounded

●  Several examples in direct and iterative linear algebra
●  Anticipated by Von Neumann, 1956 (“Synthesis of reliable

organisms from unreliable components”)

Bad news/good news (3)

ATPESC 1 Aug 2016

●  Default use of (uniform) high precision in nodal bases on
dense grids may decrease, to save storage and bandwidth
u  representation of a smooth function in a hierarchical basis or on

sparse grids requires fewer bits than storing its nodal values, for
equivalent accuracy

u  we will have to compute and communicate “deltas” between states
rather than the full state quantities, as when double precision was
once expensive (e.g., iterative correction in linear algebra)

u  a generalized “combining network” node or a smart memory
controller may remember the last address, but also the last values,
and forward just the deltas

●  Equidistributing errors properly to minimize resource use
will lead to innovative error analyses in numerical analysis

Bad news/good news (4)

ATPESC 1 Aug 2016

●  Fully deterministic algorithms may be regarded as
too synchronization-vulnerable
u  rather than wait for missing data, e.g., in the tail Pete showed

earlier, we may predict it using various means and continue
u  we do this with increasing success in problems without models

(“big data”)
u  should be fruitful in problems coming from continuous models
u  “apply machine learning to the simulation machine”

●  A rich numerical analysis of algorithms that make
use of statistically inferred “missing” quantities may
emerge
u  future sensitivity to poor predictions can often be estimated
u  numerical analysts will use statistics, signal processing, ML, etc.

Bad news/good news (5)

ATPESC 1 Aug 2016

Warning: not all accept the full 4-fold agenda
n Non-controversial:

◆  reduced synchrony (in frequency and/or span)
◆  greater arithmetic intensity

n Mildly controversial, when it comes to porting real
applications:
◆  greater SIMD-style shared-memory concurrency

n More controversial:
◆  built-in resilience (“algorithm-based fault tolerance” or

ABFT) to arithmetic/memory faults or lost/delayed
messages

ATPESC 1 Aug 2016

The world according to algorithmicists

◆  full employment program for computational
scientists and engineers

◆  see, e.g., recent postdoc announcements from
■  Berkeley (8) for Cori Project (Cray & Intel MIC)
■  Oak Ridge (8) for CORAL Project (IBM & NVIDIA NVLink)
■  IBM (10) for Data-Centric Systems initiative

for porting applications to emerging hybrid
architectures

n Algorithms must adapt to span the gulf between
aggressive applications and austere architectures

ATPESC 1 Aug 2016

Required software at exascale
 Model-related

◆  Geometric modelers
◆  Meshers
◆  Discretizers
◆  Partitioners
◆  Solvers / integrators
◆  Adaptivity systems
◆  Random no. generators
◆  Subgridscale physics
◆  Uncertainty

quantification
◆  Dynamic load balancing
◆  Graphs and

combinatorial algs.
◆  Compression

 Development-related
u  Configuration systems
u  Source-to-source

translators
u  Compilers
u  Simulators
u  Messaging systems
u  Debuggers
u  Profilers

 Production-related
u  Dynamic resource

management
u  Dynamic performance

optimization
u  Authenticators
u  I/O systems
u  Visualization systems
u  Workflow controllers
u  Frameworks
u  Data miners
u  Fault monitoring,

reporting, and recovery

High-end computers come
with little of this stuff.

Most has to be contributed
by the user community

ATPESC 1 Aug 2016

Optimal hierarchical algorithms
n At large scale, one must start with algorithms with

optimal asymptotic scaling, O(N logp N)
n Some optimal hierarchical algorithms

◆  Fast Fourier Transform (1960’s)
◆  Multigrid (1970’s)
◆  Fast Multipole (1980’s)
◆  Sparse Grids (1990’s)
◆  H matrices (2000’s)*

 “With great computational power comes great
algorithmic responsibility.” – Longfei Gao

* hierarchically low-rank matrices

ATPESC 1 Aug 2016

Recap of algorithmic agenda
n  New formulations with

◆  greater arithmetic intensity (flops per byte moved into and out of
registers and upper cache)
■  including assured accuracy with (adaptively) less floating-

point precision
◆  reduced synchronization and communication

■  less frequent and/or less global
◆  greater SIMD-style thread concurrency for accelerators
◆  algorithmic resilience to various types of faults

n  Quantification of trades between limited resources
n  Plus all of the exciting analytical agendas that exascale is

meant to exploit
◆  “post-forward” problems: optimization, data assimilation,

parameter inversion, uncertainty quantification, etc.

ATPESC 1 Aug 2016

Some algorithmic “points of light”

Sample “points of light” that accomplish one or
more of these agendas

²  DAG-based data flow for dense symmetric linear algebra
²  In-place GPU implementations of dense symmetric linear

algebra
²  Fast multipole preconditioning for Poisson solves
²  Algebraic fast multipole for variable coefficient problems
²  Nonlinear preconditioning for Newton’s method
²  Very high order discretizations for PDEs

CENTER OF EXCELLENCE

ATPESC 1 Aug 2016

For details: ATPESC 2015
n Second half of my presentation last year briefly

describes projects in all of these areas
n Or write

 david.keyes@kaust.edu.sa (repeated on last slide)

ATPESC 1 Aug 2016

For closing minutes of ATPESC 2016
n Our 2016 Gordon Bell submission
n CFD application, with emphasis on very high order
n  Joint with:

◆  U of Chicago: Max Hutchinson
◆  Intel: Alex Heinecke
◆  KAUST: Matteo Parsani, Bilel Hadri
◆  Argonne: Oana Marin, Michel Shanen
◆  Cornell: Matthew Otten
◆  KTH: Philipp Schlatter
◆  U of Illinois: Paul Fischer

ATPESC 1 Aug 2016

ATPESC 1 Aug 2016

ATPESC 1 Aug 2016

ATPESC 1 Aug 2016

ATPESC 1 Aug 2016

[not a finalist]

ATPESC 1 Aug 2016

ATPESC 1 Aug 2016

ATPESC 1 Aug 2016

ATPESC 1 Aug 2016

8X

ATPESC 1 Aug 2016

27% of
theoretical

peak

21% of
theoretical

peak

ATPESC 1 Aug 2016

Parity with Haswell
(1 core each)

Parity with Haswell
(full node each)

ATPESC 1 Aug 2016

~20%
savings

ATPESC 1 Aug 2016

ATPESC 1 Aug 2016

BSP
generation

Energy-aware
generation

Skate to where the puck is going to be!

Thank you

 ششككرراا

david.keyes@kaust.edu.sa

ATPESC 1 Aug 2016

Extra Slide

ATPESC 1 Aug 2016

	
 	
 	
 CS	

Math	

Applica7ons	

Math	
 &	
 CS	

enable	

Applica7ons	

drive	

U. Schwingenschloegl

A. Fratalocchi G. Schuster F. Bisetti R. Samtaney

G. Stenchikov

I. Hoteit V. Bajic M. Mai

Philosophy of software investment

