ATPESC 2016 Argonne &

NATIONAL LABORATORY

UNDERSTANDING I/O

ROB LATHAM

PHIL CARNS
Argonne National Laboratory

4:30-5:00pm, August 11, 2016
St. Charles IL

CHARACTERIZING APPLICATION 1/O

How is your application using the 1/0 system, and how successful
is it at attaining high performance?

= The best way to answer these Simplified HPC 1/O stack
questions is by observing
beha_\/lor at the application ‘ Application ‘
and library level —_

. . L. Application I/O access

= |n this portion of the training
course we will focus on ‘ Runtime libraries ‘
Darshan, a scalable tool for File system access
characterizing application 1/O ‘ File system ‘
activity.

Block access

‘ Storage devices ‘

Argonne & X

DARSHAN: CONCEPT

Goal: to observe I/O patterns of the majority of
applications running on production HPC platforms,
without perturbing their execution, with enough detail to
gain insight and aid in performance debugging.

= Majority of applications — transparent integration with system
build environment

= \Without perturbation — bounded use of resources (memory,
network, storage); no communication or |/O prior to job
termination; compression.

= Adequate detail:
— basic job statistics
— file access information from multiple APls

3 Argonne &

AAAAAAAAAAAAAAAAAA

THE TECHNOLOGY BEHIND DARSHAN

= Intercepts I/O functions using link-time wrappers
— No code modification
— Can be transparently enabled in MPI compiler scripts
— Compatible with all major C, C++, and Fortran compilers

» Record statistics independently at each process, for each file
— Bounded memory consumption
— Compact summary rather than verbatim record

» Collect, compress, and store results at shutdown time
— Aggregate shared file data using custom MPI reduction operator
— Compress remaining data in parallel with zlib
— Write results with collective MPI-10
— Result is a single gzip-compatible file containing characterization information

» Works for Linux clusters, Blue Gene, and Cray systems

Argonne &

4

UL uar

DARSHAN: ANALYSIS EXAMPLE . _......00

Th e da rs ha n 'j (o) b-S umma ry tool [jobid: 1723213 | uid: 69628 | nprocs: 6000 | runtime: 71 seconds
produces a 3-page PDF file that 1/0 performance estimate (at the MPLIO layer): trafisferred 3072000.0 MiB at 48781.92 MiB/s
Summarizes jOb I/O behavior Average IO cost per process /O Operation Counts

£
Run time /

Performance estimate

Ops (Total, All Processes)

Read Write Open Stat Seek Mmap Fsync
POSIX s MPI-O Coll. s
MPI-IO Indep. smmmm

Percentage of runtime in 1/O oo TR S
Access type histograms % %
Access size histogram — i -
File usage S QRS C X

File Count Summary
(estimated by POSIX I/0 access offsets)

Most Common Access Sizes type | number of files | avg. size | max size

| access size | count total opened 6000 | 512M | 512M

POSIX 524288 | 6144000 read-only files 0 0 0
MPI-IO f 524288 | 6144000 write-only files 6000 512M 512M

i NOTE: MPI-IO accesses are given in terms of read/write ﬁles 0 0 0
5 aggregate datatype size. created files 6000 ﬂ%ﬁn nESA/[

Darshan analysis example (page 2)

Timespan from first to last write access on independent files (POSIX)

6000
5250
4500
3750
3000 |
2250 -
1500

750

0 = ————— L ,
00:00:00 00:00:10 00:00:20 00:00:30 00:00:40 00:00:50 00:01:00 00:01:10
hours:minutes:seconds

Time

This graph (and others like it) are on the second page of the darshan-
job-summary.pl output. This example shows intervals of 1/0 activity
from each MPI process. In this case we see that different ranks
completed 1/0 at very different times.

AAAAAAAAAAAAAAAAAA

HOW TO USE DARSHAN

= Compile a C, C++, or FORTRAN program that uses MPI
= Run the application
= Look for the Darshan log file

» This will be in a particular directory (depending on your system’s configuration)
— <dir>/<year>/<month>/<day>/<username>_<appname>*.darshan*
« Mira: see /projects/logs/darshan/
» Edison: see /scratch1/scratchdirs/darshanlogs/
» Cori: see /global/cscratch1/sd/darshanlogs/

» Use Darshan command line tools to analyze the log file

= Application must run to completion and call MPI_Finalize() to generate a log file
» Warning/disclaimer: Darshan does not currently work for F90 programs on Mira

» Optin (i.e., by loading module or software key) at OLCF, LANL, LLNL and others:

see site-specific documentation

Argonne &

7

AVAILABLE DARSHAN ANALYSIS TOOLS

= http://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html

= Key tools:
— Darshan-job-summary.pl: creates pdf with graphs for initial analysis
— Darshan-summary-per-file.sh: similar to above, but produces a separate
pdf summary for every file opened by application
— Darshan-parser: dumps all information into text format

Darshan-parser example (see all counters related to write operations):
“‘darshan-parser user_app_numbers.darshan.gz |grep WRITE”

See documentation above for definition of output fields

AAAAAAAAAAAAAAAAAA

http://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
http://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
http://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
http://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
http://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html

DARSHAN: EXAMPLES OF FINDING AND
ISOLATING I/O PERFORMANCE PROBLEMS

EXAMPLE: CHECKING USER EXPECTATIONS

jobid: | uid: | nprocs: 4096 | runtime: 175 seconds
Average I/O cost per process 1/O Operation Counts
100 3000
o 80 2500
£ @
- Q
c g
2 60 & 2000
5
‘%’ g 500
£ 40 <:_1 r
8 g
=]
& 5 1000 |
[
Q.
o)
0 500
0
Read s Read Write Open Stat Seek Mmap Fsync
Write sesssssm
Metadata s POSIX m— MPI-10 Coll. mmsmm—
Other (including application compute) mm— MPI-IO Indep. s
I/O Sizes I/0 Pattern
2500 3000
2000 [2500 |
8
nEj ?’2000
= + o
z 1500 &
g 2 1500
£1000 | 5
- =3
c =
3 21000
© 500 - &
I 500
o T o
) (R(7) 9, 0
% %, ‘ﬁ,o %, % 41% %, 2, %y, S o ,
T % %, % Read Write

Read

Write samsss

Total mmmmm Consecutive mmmm—

Sequential nmssen

Most Common Access Sizes

File Count Summary

access size count

67108864 2048
41120

8 4

4 3

type | number of files | avg. size | max size

total opened 129V 1017M 1.1G
read-only files 0 0 0
write-only files 129 | 1017M 1.1G
read/write files 0 0 0
created files 129 1017M 1.1G

= User opened 129 files (one
“control” file, and 128 data files)

= Should be one header, about 40
KiB, per data file

» This example shows 512 headers
being written

— Code bug: header was written
4x per file

Argonne &

NATIONAL LABORATORY

PERFORMANCE DEBUGGING OUTPUT

= Combustion physics application
— Was writing 2-3 files per process with up to 32,768 cores
— Darshan attributed 99% of the I/O time to metadata (on Intrepid BG/P)

o
| jobid: 0 | uid: 1817 | nprock: 8192) runtime: 863 seconds
Average 1/O cost per process
100
File Count Summary
o 80 type \ number of files | avg. size | max size
= total opened (16388 D 2.5M 8.1M
2 60 read-only files 0 0 0
° write-only files 16388 2.5M 8.1M
g 40 read/write files 0 0 0
8 created files 16388 2.5M 8.1M
(0]
& 20
0

Read mmmm

Write s

Metadata s

Other (including application compute) mm——

Argonne &

SIMULATION OUTPUT (CONTINUED)

= With help from ALCF catalysts and Darshan instrumentation, we developed an
I/O strategy that used MPI-IO collectives and a new file layout to reduce
metadata overhead

» Impact: 41X improvement in I/O throughput for production application

File Count Summary

type | number of files | avg. size | max size
total opened C 8)515M 2.0G
read-only files 2.2K 3.7K
1/0 performance with 32,768 cores write-only files 6| 686M | 2.0G
read/write files 0 0 0
2500 — created files 6 686M 2.0G
2,296 MiB/s Average |I/O cost per process
100
2000
1,611 MiB/s o 80
1500 | <
o 2 60
o k)
= 3
1000 + g 40
3
[0}
& 20
500 -
56 MiB/s 0 > -
0 —/ S ™ S *6
LIy
Y v recrea & P Wad —
rs;) S rite ossann
‘on dﬁe "o %y Metadata
e Other (including application compute) mm—"

Argonne &

PERFORMANCE DEBUGGING: AN ANALYSIS 1/O0
EXAMPLE

Headeri Analysis Headerﬁi Analysis
Data | Data Data | Data

= Variable-size analysis data requires headers to contain size information

= Original idea: all processes collectively write headers, followed by all processes
collectively write analysis data

» Use MPI-10, collective /0O, all optimizations
» 4 GB output file (not very large)

» Why does the 1/O take so long Process | 1/O Time Total Time
in this case? es) ()

8,192 8 60
16,384 16 47
32,768 32 57

Argonne & s

AN ANALYSIS 1/0 EXAMPLE (CONTINUED)

fAvprage O cost por process

* Problem: More than 50% of time spent writing e
output at 32K processes. Cause: Unexpected g
RMW pattern, difficult to see at the application : =
code level, was identified from Darshan ¥
summaries. E .
= What we expected to see, read data followed :
by write analysis: _

Wl m— O (incduding appicaicon compula)

i
i —

iR] [k e B D0EE1S 2000 250 [k e D0E0DE3D D008 DAl

= What we saw instead: RMW during the writing shown by overlapping
red (read) and blue (write), and a very long write as well.

mup fram el o les! et on Hhice shered by Gl |peoticcan

i —

W —

(LR ER S 0n3n 10 wroE (LR CEE DG 40 [Ea e g 1] w0 D i 0GR 2Ener -

Argonne & »

AN ANALYSIS 1/0 EXAMPLE (CONTINUED)

= Solution: Reorder operations to combine fwerage 1) cost per process
writing block headers with block payloads, so
that "holes" are not written into the file during
the writing of block headers, to be filled when
writing block payloads

» Result: Less than 25% of time spent writing
output, output time 4X shorter, overall run
time 1.7X shorter

» Impact: Enabled parallel Morse-Smale *o:ér i

computation to scale to 32K processes on H:'Hm —
Rayleigh-Taylor instability data Matacabs

L {induding appicaion compuin) =55

& B =B B2

Farcaniags ¢ e Bma

=

f=]

Process | 1/0 Time Total Time
es (s) (s)

8,192 7 60
16,384 6 40
32,768 7 33

Argonne & s

EXAMPLE: REDUNDANT READ TRAFFIC

= Scenario: Applications that read more bytes of data from the file system
than were present in the file
— Even with caching effects, this type of job can cause disruptive I/O network

traffic file Count S
. : ile Count Summary
- Candldatgs for aggregatlon (estimated by I/0 access offsets)
or collective I/O type ‘ number of files ‘ avg. size ‘ max size
. total opened 1299 1.1G 8.0G
" Example: read-only files 1187 | 1.1G| 8.0G
— Scale: 6,138 processes write-only files 112 | 418M 2.6G
— Run time: 6.5 hours read/write files 0 0 0
. created files 112 418M 2.6G
— Avg. I/O time per process:
27 minutes
= 1.3 TiB of file data Data Transfer Per Filesystem
. . Write Read
= 500+ TiB read! ——File System ———ym—¢as MiB | Ratio
/ 47161.47354 | T. 575224145.24837]].00000

Argonne &

EXAMPLE: SMALL WRITES TO SHARED FILES

» Scenario: Small writes can contribute to poor performance
— Particularly when writing to shared files
— Candidates for collective I/O or batching/buffering of write operations

= Example:
— Issued 5.7 billion writes to shared files, each less than 100 bytes in size
— Averaged just over 1 MiB/s per process during shared write phase

/O Sizes
6e+09

Most Common Access Sizes
_ 5400 | access size count
| - 1| 3418409696
E;Sem 15 2275400442
] 24 42289948
S2e409 12 14725053
° 1e+09 |

0

2, 4% 41, ?f, Q,
/f-
%% foqffﬁ, 04,4’90@2"@

Read mmmmm Wiite s Argonne &

EXAMPLE: EXCESSIVE METDATA OVERHEAD

» Scenario: Very high percentage of I/O time spent performing metadata

operations such as open(), close(), stat(), and seek()
— Close() cost can be misleading due to write-behind cache flushing
— Candidates for coalescing files and eliminating extra metadata calls

= Example:
— Scale: 40,960 processes for 229 seconds, 103 seconds of I/0O
— 99% of 1/0O time in metadata operations
— Generated 200,000+ files with 600,000+ write() and 600,000+ stat() calls

Average /O cost per process I/O Operation Counts
100 700000
» 80 f 600000 |
E —_—
< % 500000
60 - 2
s £ 400000 |
gaof <
8 T 300000 |
[++] o
@ 20 f E
20 £ 200000 |
0 100000 |
s %, I
% kel 0 . . . : . . .
c?ad — Read Write Open Stat Seek Mmap Fsync
rite soosoen
Metadata s POSIX o MPI-10 Coll. s
Other (including application compute) s MPI-1O Indep. sessssen

Argonne &

METADATA SIDE TOPIC: WHAT’S SO BAD
ABOUT STAT()?

= stat() is actually quite cheap on most file systems
(and practically free on a laptop)

= But not a large-scale HPC 1/O system!

» The usual problem is that stat() requires a consistent size calculation for the file

» To do this, a PFS has two options:
— Store a precalculated size on the metadata server, which becomes a source
of contention
— Calculate size on demand, which might cause a storm of requests to *all*
servers

» No present-day PFS deployments respond very well when thousands of
processes stat() the same file at once

Argonne &

/O UNDERSTANDING TAKEAWAY

» Scalable tools like Darshan can yield useful insight
— ldentify characteristics that make applications successful
...and those that cause problems.
— It's easy to use, in fact the technically hard part (instrumenting your
application) may already be done

» Scalable performance tools require special considerations
— Target the problem domain carefully to minimize amount of data
— Avoid shared resources
— Use collectives where possible

* For more information, see:
http://www.mcs.anl.gov/research/projects/darshan

Argonne &
NATIONAL LABORATORY 20

/O PERFORMANCE TUNING
“RULES OF THUMB”

= Make sure you are using the right file system
— Burst buffers if you have them
— Not your home directory

= Use collectives when possible

= Use high-level libraries (e.g. HDFS5 or PnetCDF) when possible

= A few large |I/O operations are better than many small I/O operations
» Avoid unnecessary metadata operations, especially stat()

= Avoid writing to shared files with POSIX

= Avoid leaving gaps/holes in files to be written later

» Use tools like Darshan to check assumptions about behavior
— It's probably already instrumenting your code

Argonne & 9

THANK YOU!

THIS CONCLUDES “UNDERSTANDING 1/O0”

NEXT UP: “FUTURE OF 1/O”

www.anl.gov

