
Suggested line of text (optional):

WE START WITH YES.

HPC
TRANSFORMATIONS:
OPTIMIZING DATA SO
YOU DON’T HAVE TO

drhgfdjhngngfmhgmghmghjmghfmf

ROB LATHAM

PHIL CARNS
Argonne National Laboratory
robl@mcs.anl.gov
carns@mcs.anl.gov

August 11, 2016

St. Charles IL

ATPESC 2016

mailto:robl@mcs.anl.gov

MANAGING CONCURRENT ACCESS
Files are treated like global shared memory regions. Locks are used to manage

concurrent access:

 Files are broken up into lock units
– Unit boundaries are dictated by the storage system regardless of access pattern

 Clients obtain locks on units that they will access before

I/O occurs

 Enables caching on clients as well (as long as client has a lock,

it knows its cached data is valid)

 Locks are reclaimed from clients when others desire access

If an access touches any

data in a lock unit, the

lock for that region must

be obtained before access

occurs.

2

IMPLICATIONS OF LOCKING IN CONCURRENT
ACCESS

3

I/O TRANSFORMATIONS

Software between the application and the PFS performs transformations,

primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

 Goals of transformations:
– Reduce number of operations

to PFS (avoiding latency)

– Avoid lock contention

(increasing level of

concurrency)

– Hide number of clients (more

on this later)

 With “transparent”

transformations, data ends

up in the same locations

in the file
– i.e., the file system is still

aware of the actual data

organization

When we think about I/O

transformations, we consider

the mapping of data between

application processes and

locations in file.

4

REDUCING NUMBER OF OPERATIONS

Since most operations go over the network, I/O to a PFS incurs more

latency than with a local FS. Data sieving is a technique to address I/O latency

by combining operations:

 When reading, application process reads a large region holding all needed data

and pulls out what is needed

 When writing, three steps required (below)

 Somewhat counter-intuitive: do extra I/O to avoid contention

Step 1: Data in region to be

modified are read into

intermediate buffer (1 read).

Step 2: Elements to be

written to file are replaced

in intermediate buffer.

Step 3: Entire region is

written back to storage with

a single write operation.

5

AVOIDING LOCK CONTENTION

To avoid lock contention when writing to a shared file, we can reorganize

data between processes. Two-phase I/O splits I/O into a data reorganization

phase and an interaction with the storage system (two-phase write depicted):

 Data exchanged between processes to match file layout

 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between

processes based on organization of data

in file.

Phase 2: Data are written to file (storage

servers) with large writes, no contention.

6

TWO-PHASE I/O ALGORITHMS
(OR, YOU DON’T WANT TO DO THIS YOURSELF…)

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective

I/O Based on Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

7

S3D TURBULENT COMBUSTION CODE
 S3D is a turbulent combustion

application using a direct numerical

simulation solver from Sandia

National Laboratory

 Checkpoints consist of four global

arrays

– 2 3-dimensional

– 2 4-dimensional

– 50x50x50 fixed

subarrays

Thanks to Jackie Chen (SNL), Ray Grout

(SNL), and Wei-Keng Liao (NWU) for

providing the S3D I/O benchmark, Wei-

Keng Liao for providing this diagram, C.

Wang, H. Yu, and K.-L. Ma of UC Davis for

image.

8

IMPACT OF TRANSFORMATIONS ON S3D I/O
 Testing with PnetCDF output to single file, three configurations,

16 processes

– All MPI-IO optimizations (collective buffering and data sieving) disabled

– Independent I/O optimization (data sieving) enabled

– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled

Coll. Buffering

and Data Sieving

Disabled

Data Sieving

Enabled

Coll. Buffering

Enabled (incl.

Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time

per proc (sec)

1426.47 4.82 0.60

9

TRANSFORMATIONS IN THE I/O FORWARDING
STEP

Compute nodes I/O forwarding nodes (or

I/O gateways) shuffle data

between compute nodes

and external resources,

including storage.

Storage nodes

External

network
Disk

arrays

10

TRANSFORMATIONS IN THE I/O FORWARDING
STEP

Another way of transforming data access by clients is by introducing new

hardware: I/O forwarding nodes.

 I/O forwarding nodes serve a number of functions:

– Bridge between internal and external networks

– Run PFS client software, allowing lighter-weight solutions internally

– Perform I/O operations on behalf of multiple clients

– Transparently transform data on its way to and from the file system

 Transformations can take many forms:

– Performing one file open on behalf of many processes

– Combining small accesses into larger ones

– Caching of data (sometimes between I/O forwarding nodes)

Note: Current vendor implementations don’t aggressively aggregate.

 Compute nodes can be allocated to provide a similar service

 11

“NOT SO TRANSPARENT” TRANSFORMATIONS

Some transformations result in file(s) with different data organizations than

the user requested.

 If processes are writing to different files, then

they will not have lock conflicts

 What if we convert writes to the same file into writes to different files?

– Need a way to group these files together

– Need a way to track what we put where

– Need a way to reconstruct on reads

 Parallel Log-Structured File System software does this

– It is transparent from the application/user perspective (it presents a virtual

view of the data) but not from the storage system perspective

See J. Bent et al. PLFS: a checkpoint filesystem for parallel applications. SC2009. Nov. 2009.

12

PARALLEL LOG STRUCTURED FILE SYSTEM

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

See J. Bent et al. PLFS: a checkpoint filesystem for parallel applications. SC2009. Nov. 2009.

Application intends to interleave data

regions into single file.

Transparent transformations such as data

sieving and two-phase I/O preserve data

order on the file system.

PLFS remaps I/O into separate log files

per process, with indices capturing

locations of data in these files.

PLFS software needed when reading to

reconstruct the file view.

13

WHY NOT JUST WRITE A FILE PER PROCESS?
File per process vs. shared file access as function

of job size on Intrepid Blue Gene/P system

14

I/O TRANSFORMATIONS AND THE STORAGE
DATA MODEL

Historically, the storage data model has been the POSIX file model, and the

PFS has been responsible for managing it.

 Transparent transformations work within these limitations

 When data model libraries are used:

– Transforms can take advantage of more knowledge

• e.g., dimensions of multidimensional datasets

– Doesn’t matter so much whether there is a single file underneath

– Or in what order the data is stored

– As long as portability is maintained

 Single stream of bytes in a file is inconvenient for parallel access

– Future designs might provide a different underlying model

15

Instructions on

replacing a

current image:

1. Select and

delete image

and click the

icon to insert

a different

image

2. Use the crop

tool to

position the

image within

the shape.

HOW IT WORKS: TODAY’S I/O SYSTEMS

AN EXAMPLE HPC I/O SOFTWARE STACK

This example I/O stack captures the software stack used in some

applications on the IBM Blue Gene/Q system at Argonne.

Parallel netCDF is used in

numerous climate and weather

applications running on DOE

systems.
Built in collaboration with NWU.

ciod is the I/O forwarding

implementation on the IBM Blue

Gene/P and Blue Gene/Q

systems.

ROMIO is the basis for virtually

all MPI-IO implementations on

all platforms today and the

starting point for nearly all MPI-

IO research.
Incorporates research from NWU and

patches from vendors.

GPFS is a production parallel

file system provided by IBM.

I/O Hardware

Application

ciod

GPFS

ROMIO MPI-IO

Parallel netCDF

17

MIRA BLUE GENE/Q AND ITS STORAGE SYSTEM
BG/Q Optical

2x16 Gbit/sec

QDR InfiniBand

32 Gbit/sec

Serial ATA

6.0 Gbit/sec

Gateway nodes

run parallel file system

client software and

forward I/O operations

from HPC clients.

384 16-core PowerPC

A2 nodes with 16 Gbytes

of RAM each

Commodity

network primarily

carries storage traffic.

QDR Infiniband

Federated Switch

Storage nodes

run parallel file system

software and manage

incoming FS traffic

from gateway nodes.

SFA12KE hosts VM

running GPFS servers

Enterprise storage

controllers and large racks

of disks are connected via

InfiniBand.

32 DataDirect SFA12KE;

560 3 Tbyte drives + 32

200 GB SSD; 16

InfiniBand ports per pair

Compute nodes

run applications and

some I/O middleware.

768K cores with 1 Gbyte

of RAM each

18

TAKEAWAYS

 Parallel file systems provide the underpinnings of HPC I/O solutions

 Data model libraries provide alternative data models for applications

– PnetCDF and HDF5 will both be discussed in detail later in the day

 Characteristics of PFSes lead to the need for transformations in order to achieve

high performance

– Implemented in a number of different software layers

– Some preserving file organization, others breaking it

 Number of layers complicates performance debugging

– Some ways of approaching this discussed later in the day

19

