ATPESC 2016 Argonne S

NATIONAL LABORATORY

HPC
TRANSFORMATIONS:

OPTIMIZING DATA SO
YOU DON’'T HAVE TO

ROB LATHAM

PHIL CARNS

Argonne National Laboratory
robl@mcs.anl.gov
carns@mcs.anl.gov

August 11, 2016
St. Charles IL

mailto:robl@mcs.anl.gov

MANAGING CONCURRENT ACCESS

Files are treated like global shared memory regions. Locks are used to manage
concurrent access:

» Files are broken up into lock units
— Unit boundaries are dictated by the storage system regardless of access pattern

= Clients obtain locks on units that they will access before
I/O occurs

= Enables caching on clients as well (as long as client has a lock,
It kKnows its cached data is valid)

= | ocks are reclaimed from clients when others desire access

If an access touches any Offset in File
data in a lock unit, the | ‘ ‘ ‘ | ‘ ‘ 5 | Bm ‘
lock for that region must | : S—

be obtained before access Lock Lock File Access
OCCurs. Boundary Unit

LY

2 Argonne &

IMPLICATIONS OF LOCKING IN CONCURRENT

ACCESS

The left diagram shows a row-
block distribution of data for
three processes. On the right
we see how these accesses
map onto locking units in the

file.

In this example a header
(black) has been prepended to
the data. If the header is not
aligned with lock boundaries,
false sharing will occur.

In this example, processes
exhibit a block-block access
pattern (e.g.accessing a
subarray). This results in many

interleaved accesses in the file.

2D View of Data

Offset in File

Y

When accesses are to large contiguous
regions, and aligned with lock boundaries,
locking overhead is minimal.

These two regions exhibit false sharing:

no bytes are accessed by both processes, but
because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows
cause a higher degree of false sharing,
especially if data is not aligned with lock
boundaries.

Argonne &

/0 TRANSFORMATIONS

Software between the application and the PFS performs transformations,
primarily to improve performance.

= Goals of transformations:
— Reduce number of operations

to P_FS (avoiding Igtency) NN ’ % % ey

Process O Process | Process 2

— Avoid lock contention
(increasing level of

concurrency) |
— Hide number of clients (more __I_:_!!g__f_g_q ______________________________
on this later) |
= With “transparent” When we think about 1/O

transformations, data ends transform_atlons, we consider
the mapping of data between

up in the same locations application processes and

In the file locations in file.
— I.e., the file system is still

aware of the actual data
organization 4 Argonne &

AAAAAAAAAAAAAAAA

REDUCING NUMBER OF OPERATIONS

Since most operations go over the network, I/O to a PFS incurs more

latency than with a local FS. Data sieving is a technique to address I/O latency
by combining operations:

= When reading, application process reads a large region holding all needed data
and pulls out what is needed

= When writing, three steps required (below)
= Somewhat counter-intuitive: do extra I/O to avoid contention

Application Process
Memory
y y : Y
Buffer
%T_h_f T L Elk
T T 1T T 1 A
File | 5 o | [e e R [N I B
Step I: Data in region to be Step 2: Elements to be Step 3: Entire region is
modified are read into written to file are replaced written back to storage with
intermediate buffer (| read). in intermediate buffer. a single write operation.

5 Argonne &

AVOIDING LOCK CONTENTION

To avoid lock contention when writing to a shared file, we can reorganize
data between processes. Two-phase 1/0O splits 1/O into a data reorganization
phase and an interaction with the storage system (two-phase write depicted):

» Data exchanged between processes to match file layout

= Oth phase determines exchange schedule (not shown)

Process 0

Memory
Buffer

Server 0

File -

Process |

| m

B

Server |

LI

Process 2

Server 2

Phase |: Data are exchanged between
processes based on organization of data

in file.

Process 0

[

[]

Process |

o

S r

Process 2

HE B B
Seerr;;/

Phase 2: Data are written to file (storage
servers) with large writes, no contention.

Argonne &

TWO-PHASE I/O0 ALGORITHMS
(OR, YOU DON’T WANT TO DO THIS YOURSELF...)

Imagine a collective /O access Offset in File >
using four aggregators to a file CITT T ey [7 | DN [[[Do [[[
striped over four file servers A A |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly Aggregatorl-i-AggregatorZ-i-Aggregator3-i-Aggregator4
divide the region accessed [T T T Dopememe [[| DS [[[i [[[
across aggregators. YT - T - T

Aligning regions with lock —> —>
. . . === ==============--= Fe---s-sss s b aiatiiidititidil il === ===========- \
Eglzl:ednat';f:. eliminates lock “ + Aggregator | ' Aggregator 2 ! Aggregator 3 E Aggregator 4 E
L e

Mapping aggregators to servers
reduces the number of
concurrent operations on a
single server and can be helpful
when locks are handed out on
a per-server basis (e.g., Lustre).

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective
I/O Based on Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

7 Argonne &

S3D TURBULENT COMBUSTION CODE

» S3D is a turbulent combustion
application using a direct numerical
simulation solver from Sandia
National Laboratory

4D subarray in

= Checkpoints consist of four global process -ﬂzm-l
arrays "
— 2 3-dimensional O o to-globel |
— 2 4-dimensional N
— 50x50x50 fixed
: : n=m-1
subarrays , I R
= |
L]
Y
48~ 48 7 B0 . &1
1;2/ I?/ES/ 1; 1935
Thanks to Jackie Chen (SNL), Ray Grout /; Pl plp ; n=1
(SNL), and Wei-Keng Liao (NWU) for Sl I e B
providing the S3D I/O benchmark, Wei- Fo| Bs| B | P | 150
Keng Liao for providing this dlagrgm, C. | R B B 22? m: legth of the 4th dimmsion
Wang, H.Yu, and K.-L. Ma of UC Davis for AR V/ =0 n: index of the 4th dimension
Image. 12| H3) 4| fs

8 Argonne &

IMPACT OF TRANSFORMATIONS ON S3D I/O

= Testing with PnetCDF output to single file, three configurations,
16 processes
— All MPI-10 optimizations (collective buffering and data sieving) disabled
— Independent I/O optimization (data sieving) enabled
— Collective I/O optimization (collective buffering, a.k.a. two-phase 1/0) enabled

Coll. Buffering Data Sieving Coll. Buffering
and Data Sieving | Enabled Enabled (incl.
Disabled Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-10 writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time 1426.47 4.82 0.60

per proc (sec)

9 Argonne &

TRANSFORMATIONS IN THE 1/O0 FORWARDING
STEP

External Disk
network arrays

L L

| |
Compute nodes I/O forwarding nodes (or Storage nodes
I/O gateways) shuffle data
between compute nodes

and external resources,
including storage.

10 Argonne &

TRANSFORMATIONS IN THE 1/0O FORWARDING
STEP

Another way of transforming data access by clients is by introducing new
hardware: I/0O forwarding nodes.

= |/O forwarding nodes serve a number of functions:
— Bridge between internal and external networks
— Run PFS client software, allowing lighter-weight solutions internally
— Perform 1/O operations on behalf of multiple clients
— Transparently transform data on its way to and from the file system

» Transformations can take many forms:
— Performing one file open on behalf of many processes
— Combining small accesses into larger ones
— Caching of data (sometimes between 1/O forwarding nodes)
Note: Current vendor implementations don’t aggressively aggregate.

» Compute nodes can be allocated to provide a similar service

11 Argonne &

“NOT SO TRANSPARENT” TRANSFORMATIONS

Some transformations result in file(s) with different data organizations than
the user requested.

= |f processes are writing to different files, then
they will not have lock conflicts

= What if we convert writes to the same file into writes to different files?
— Need a way to group these files together
— Need a way to track what we put where
— Need a way to reconstruct on reads

» Parallel Log-Structured File System software does this
— It is transparent from the application/user perspective (it presents a virtual
view of the data) but not from the storage system perspective

See J. Bent et al. PLFS: a checkpoint filesystem for parallel applications. SC2009. Nov. 2009.
12 Argonne &

PARALLEL LOG STRUCTURED FILE SYSTEM

Process 0 Process | Process 2 Process 0 Process | Process 2

(Ea peR =5 pRE e R
LT

File foo \File data.0 File data. | File data.2

File index.0 File index.| File index.2

Folder foo/

Application intends to interleave data
regions into single file. |

PLFS remaps I/O into separate log files
Transparent transformations such as data per process, with indices capturing
sieving and two-phase 1/O preserve data locations of data in these files.
order on the file system.

PLFS software needed when reading to
reconstruct the file view.

See J. Bent et al. PLFS: a checkpoint filesystem for parallel applications. SC2009. Nov. 2009.
13 Argonne &

WHY NOT JUST WRITE A FILE PER PROCESS?

File per process vs. shared file access as function
of job size on Intrepid Blue Gene/P system

TO0 o [o o
Used at least 1 file per process
Used MPI-IO mannnsn

80 %

60 %

40 %

20 %

Percentage of core-hours in job size category

0 %

Small jobs Medium jobs Large jobs
(up to 4K procs) (up to 16K procs) (up to 160K procs)

14 Argonne &

AAAAAAAAAAAAAAAA

/0 TRANSFORMATIONS AND THE STORAGE
DATA MODEL

Historically, the storage data model has been the POSIX file model, and the
PFS has been responsible for managing it.

» Transparent transformations work within these limitations

» When data model libraries are used:
— Transforms can take advantage of more knowledge
 e.g., dimensions of multidimensional datasets
— Doesn’t matter so much whether there is a single file underneath
— Or in what order the data is stored
— As long as portability is maintained

= Single stream of bytes in a file is inconvenient for parallel access
— Future designs might provide a different underlying model

15 Argonne &

HOW IT WORKS: TODAY’S I/O SYSTEMS

AN EXAMPLE HPC I/0 SOFTWARE STACK

This example I/O stack captures the software stack used in some
applications on the IBM Blue Gene/Q system at Argonne.

Parallel netCDF is used in Application ROMIO is the basis for virtually
numerous climate and weather all MPI-10 implementations on

applications running on DOE 4‘ all platforms today and the
systems. starting point for nearly all MPI-
Built in collaboration with NWU.

patches from vendors.
ciod is the I/O forwarding _‘
implementation on the IBM Blue
Gene/P and Blue Gene/Q

systems.

GPFS is a production parallel
file system provided by IBM.

|O research.
Incorporates research from NWU and

/O Hardware

17 Argonne &

MIRA BLUE GENE/Q AND ITS STORAGE SYSTEM

BG/Q Optical QDR InfiniBand Serial ATA
2x 16 Gbit/sec 32 Gbit/sec 6.0 Gbit/sec

— 1

'
'

'
T

| ;‘ ‘ \—\

Compute nodes Gateway nodes Commodity Storage nodes Enterprise storage
run applications and run parallel file system network primarily run parallel file system controllers and large racks
some |/O middleware. client software and carries storage traffic. software and manage of disks are connected via

forward I/O operations incoming FS traffic InfiniBand.

from HPC clients. from gateway nodes.
768K cores with | Gbyte 384 |6-core PowerPC QDR Infiniband SFA [2KE hosts VM 32 DataDirect SFA | 2KE;
of RAM each A2 nodes with |6 Gbytes Federated Switch running GPFS servers 560 3 Tbyte drives + 32

of RAM each 200 GB SSD; 16

InfiniBand ports per pair

18 Argonne &

TAKEAWAYS

= Parallel file systems provide the underpinnings of HPC I/O solutions

= Data model libraries provide alternative data models for applications
— PnetCDF and HDF5 will both be discussed in detall later in the day

= Characteristics of PFSes lead to the need for transformations in order to achieve
high performance

— Implemented in a number of different software layers
— Some preserving file organization, others breaking it

= Number of layers complicates performance debugging
— Some ways of approaching this discussed later in the day

19 Argonne &

