Argonne°

NATIONAL LABORATORY

Programming Models and Languages
Session - Track 2

Rusty Lusk, ANL

Rajeev Thakur, ANL

Bill Gropp, UIUC

Tim Mattson, Intel

Tim Warburton, Virginia Tech

Brad Chamberlain, Cray

Sanjay Kale, UIUC

Kathy Yelick, LBNL and UC Berkeley

Programming Models

= Aprogramming modelis how you think about what the computeris doing
when it executes your program.

— This may not be what the computer is doing.

= Forexample,in a sequential programming model, you write the program
as if the computeris executingyour code one statement at a time, in the
order you have written.

— With today’s architectures and compilers, featuring instruction-level
parallelism and out-of-order execution, what really happens will be quite
different.

= Programming models differ greatly in their level of abstraction (how far
the the programmer’s mental model is from what the computer actually
doesin responseto the program (as partially directed by the compiler.

— High-level (e.g. Prolog, Lisp, ML): portability, conciseness, “ease of
programming”

— Low-level (e.g. assembly language): performance

The Next Three Days

= |nthistrack we will talk about a range of parallel programming models
(between low-level and high-) and how to use the programming systems
(libraries and languages) that implement them.

= The message-passingmodel: Processes with separate address spaces
communicate with explicit messages.
— System: MPI (this afternoon and tomorrow)
= The shared-memory model: A sequential programming model is
augmented with hintsto the compiler about what can be donein parallel.
— System: OpenMP (Wednesday)

e OpenMP also has extensions beyond the sequential model
= A hybrid model: Shared-memory parallelism combined with message
passing
— System: MPI + OpenMP (Tuesday afternoon)

The Next Three Days (cont.)

= The accelerator model: Extra hardware with limited (but very fast and
parallel) capabilitiesis accessible to the “main” process.
— Systems: CUDA, Open ACC, OCCA (Thursday morning)
= Higher-level approaches (Thursday afternoon):
— System: Chapel (A sort of high-performance, parallel Python)
— System: Charm++ (Task-based parallelism)
— System: UPC++ (Partitioned Global Address Space model)
— System: ADLB: (A simple task-based load-balancing system)

