Asynchronous Dynamic Load Balancing
(ADLB)

A high-level, non-general-purpose®*, but easy-to-
use programming model and portable library for
task parallelism

Rusty Lusk

Mathematics and Computer Science Division
Argonne National Laboratory

*But more than you might think...

:.,f:’\ v,:.{ U.S. DEPARTMENT OF
{¢) ENERGY

Two General Approaches to Parallel Algorithms

= Data Parallelism

— Parallelism arises from the fact that physicsis largely local

— Same operations carried out on different data representing different
patches of space

— Communicationusually necessary between patches (local)
e global (collective) communication sometimes also needed

— Load balancingsometimes needed

= Task Parallelism

— Work to be done consists of largely independent tasks, perhaps not all of
the same type

— Little or nocommunication between tasks

— Dependenciesamongtasks must be managed (statically or dynamically)
— Load balancingfundamental

Load Balancing

= Definition: the assignment (scheduling) of tasks (code + data)
to processes so as to minimize the total idle times of
processes

= Static load balancing
— alltasks are known in advance and pre-assigned to processes
— works well if all tasks take the same amount of time
— requiresno coordination process

= Dynamic load balancing (old-fashioned version)

— A taskis assigned to a worker process by a master process when the
worker process becomes available by completing previous task

— Requires communication between manager and worker processes
— Tasks may create additional tasks
— Tasks may be quite different from one another

Generic Manager/Worker Algorithm for Dynamic
Load Balancing

Shared
Manager | 1 Work queue

put / get

Wofker Worker Worker Worker W(Srker

= Easily implementedin MPI

= Solves some problems

implements dynamic load balancing

termination

dynamic task creation

can implement workflow structure of task dependencies

= Provides some scalability problems

Manager can become a communication bottleneck (granularity dependent)
Memory can become a bottleneck (depends on task description size)

The ADLB Idea

= Atask is described by a string of bytes (defined by application)
— Tasks havetypes

= No explicit master for load balancing; workers make put/get
calls to ADLB library; those subroutines access local and
remote data structures (remote ones via MPI).

= Simple Put/Get interface from application code to distributed
work queue hides MPI calls

= Potential proactive load balancing in background

The ADLB Model (no master)

Worker Worker Worker Worker Worker

put / get

Shared
Work queue

= Doesn’t really change algorithms in workers
= Not anew idea(e.g. Linda)

= But need scalable, portable, distributed implementation of
the shared work queue

— Considerable complexity hidden here

API for a Simple Programming Model

= Basic calls
— ADLB_Init(hnum_servers,am_server,app_comm)
— ADLB_Server()
— ADLB_Put(type, priority, len, buf, target_rank, answer_dest)
— ADLB_Reserve(req_types, handle, len, type, prio, answer_dest)
— ADLB_Get_Reserved(handle, buffer)
— ADLB lIreserve(...)
— ADLB_Set Done()
— ADLB_Finalize()

= A few others, for optimizing and debugging
— ADLB_{Begin,End} Batch_ Put()
— Gettingperformance statistics with ADLB_Get_info(key)

= Both Cand Fortran bindings
a 7

APl Notes

= Types, answer_rank, target_rank can be used to implement
some common patterns
— Sendinga message
— Decomposinga task into subtasks

= Return codes (defined constants)
— ADLB_SUCCESS
— ADLB_DONE
— ADLB_DONE_BY_EXHAUSTION
— ADLB_NO_ CURRENT_WORK (for ADLB_Ireserve)

= Batch puts are for inserting work units that share a large
proportion of their data

More API Notes

= |f some parameters are allowed to default, this becomes a
simple, high-level, work-stealing API
— examples follow

= Use of the “fancy” parameters on Puts and Reserve-Gets
allows variations that allow more elaborate patterns to be

constructed
= This allows ADLB to be used as a low-level execution engine
for higher-level models

— ADLB is being used as execution engine for the Swift
workflow management language

How It Works (current production implementation)

00000
X o
o ye

“A‘ put/g e
4'
’0" %@
c

O Application Processes
() ADLB Servers

10

The ADLB Server Logic

= Main loop:
— MPI_Iprobe for message in busy loop
— MPI_Recv message

— Process according to type
e Updatestatusvector of work stored on remote servers

e Manage work queue and request queue
* (may involve posting MPI_Isendsto isend queue)

— MPI_Test all requests in isend queue
— Return to top of loop

= The status vector replaces single master or shared
memory

— Circulates among servers at high priority

11

ADLB Uses Multiple MPI Features

= ADLB_Init returns separate application communicator, so application
processes can communicate with one another using MPI as well as by using
ADLB features.

= Servers are in MPI_lprobe loop for responsiveness.
= MPI_Datatypesfor some complex, structured messages (status)

= Servers use nonblocking sends and receives, maintain queue of active
MPI_Request objects.

= Queueistraversedand each request kicked with MPI_Test each time
through loop; could use MPI_Testany. No MPI_Wait.

= C(Clientsideuses MPI_Ssend to implement ADLB_Put in order to conserve
memory on servers, MPI_Send for other actions.

= Servers respond to requests with MPI_Rsend since MPI_Irecvs are known to
be posted by clients before requests.

= MPI provides portability: laptop, Linux cluster, BG/Q, Cray
= MPI profilinglibraryis used to understand application/ADLB behavior.

12

Typical Code Pattern

rc = MPI_Init(&argc, &argv);

aprintf_flag = 0; /* no output from adlb itself */
num_servers = 1; /* one server might be enough */
use_debug_server = 0; /* default: no debug server */

rc = ADLB_Init(num_servers, use_debug_server, aprintf_flag, num_t,
type_vec, &am_server, &am_debug_server, &app_comm);

if (am_server) {
ADLB_Server(3000000, 0.0); /* mem 1limit, no logging */

¥
else { /* application process */

code using ADLB_Put and ADLB_Reserve, ADLB_Get_Reserved, etc.
}

ADLB_Finalize(Q);
MPI_Finalize();

13

Some Example Applications

= Fun —Sudoku solver

= Simple but useful Physics application — parameter sweep

= World’s simplest batch scheduler for clusters

= Serious—GFMC: complex Monte Carlo physics application

14

A Tutorial Example: Sudoku

112 9 7
3 6 |1
I 38
o513
14 9 |1 8 (2 6
5|6
1 9
6 |7 1
2 5 3|8

= (The followingalgorithmis nota good way to solve this, but it
uses ADLB and fits on one slide.)

15

Parallel Sudoku Solver with ADLB

Ol
N[(W|OC| O

N[([—=]O1|©
o

2

Work unit =

partially completed “board”

Program:

if (rank = 0)

ADLB_Put initial board
ADLB_Get board (Reserve+Get)
while success (else done)

ooh

find first blank square

1f failure (problem solved!)

print solution
ADLB_Set_Done
else
for each valid value
set blank square to value
ADLB_Put new board
ADLB_Get board
endif
end while

16

° 3 6
How it Works 115
513
Put ANEANEANE
1@ 9 7 5
v 6|1 1 9
7 8 7 1
513 Get 5 8
7 91 812 6 <<
5
1 9
617 1
L TAEEE
@ 9 7 ‘m' 9 7 1@ 9 7
N 6 [1 o 6|1 N 6|1
7 8 7 8 7 8
513 513 513
911 812 6 7 911 8)2 6 7 911 812 6
5 516 5
1 9 1 9 1 9
617 1 617 1 617 1
5 318 2 5 318 2 5 318
Put

= After initial Put, all processes execute same loop (no master)

17

Optimizing Within the ADLB Framework

= Can embed smarter strategies in this algorithm

— ooh = “optional optimization here”, to fillin more squaresinside the
main loop

— Even so, potentially a /ot of work units for ADLB to manage

= Can use prioritiesto address this problem
— On ADLB_Put, set priority to the number of filled squares

— This will guide depth-first search while ensuringthat there is enough
work to go around

e How one would do it sequentially

= Exhaustion automatically detected by ADLB (e.g., proof that

there is only one solution, or the case of an invalid input
board)

18

A Physics Application - Parameter Sweep in

Material Science Application

B Finding materials to use in luminescent solar concentrators
— Stationary, no moving parts
— Operate efficiently under diffuse light conditions (northern climates)
— Inexpensive collector, concentrate light on high-performance solar

cell

B In this case, the authors never learned any parallel programming
approach other than ADLB

(@)

light guide

incident sunlight

37 @ KQ photovoltalc cell

luminescent material

‘d

O

4

19

The “Batcher”: World’s Simplest Job Scheduler for
Linux Clusters

= Simple (100 lines of code) but potentially useful

= |nputis afile (or stream) of Unix command lines, which
become the ADLB work units put into the work pool by one
manager process

= ADLB worker processes execute each one with the Unix
“system” call

= Easy to add priority considerations

20

Green’s Function Monte Carlo - A Complex Application

= Green’s Function Monte Carlo -- the “gold standard” for ab initio
calculationsin nuclear physics at Argonne (Steve Pieper, Physics Division)

= A non-trivial manager/worker algorithm, with assorted work types and
priorities; multiple processes create work dynamically; large work units

= Had scaled to 2000 processors on BG/L, then hit scalability wall.

= Neededto get to 10’s of thousands of processors at least, in orderto carry
out calculations on '2C, an explicit goal of the UNEDF SciDAC project.

= The algorithmthreatened to become even more complex, with more
types and dependencies amongwork units, together with smaller work
units

= Wanted to maintain original manager/worker structure of physics code
= Thissituation brought forth ADLB
= Achievingscalability has been a multi-step process

— balancing processing
— balancing memory
— balancing communication
= Now runs with 100’s of thousands of processes
; 21

Scalability of GFMC/ADLB

40 N
. O\Q\M —]
30]
- —e— Actual -
= —Ideal s

- 12C - GFMC+ADLB - BG/Q .
- Weak scaling, 2 configs/rank 2

Time (minutes)
(\O)
S
|
|

S
|
|

‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘T
0 256 1,024 4,096 16,384 65,536 262,144

Number of MPI ranks

An Alternate Implementation of the Same API

= Motivation for 1-sided, single-server version:

— Eliminate multiple views of “shared” queue data structure and the effort
required to keep them (almost) coherent

— Free up more processors for application calculations by eliminating most
servers.

— Use larger client memory to store work packages
= Relied on “passive target” MPI-2 remote memory operations

= Single master proved to be a scalability bottleneck at 32,000 processors
(8K nodes on BG/P) not because of processing capability but because of
network congestion.

ADLB_Put ADLB_Get

MPI_Put MPI_Get

23

Getting ADLB

Web site is http://www.cs.mtsu.edu/~rbutler/adlb
— documentation

— download button 4
What you get: ,’;' '
— source code
— configure script and Makefile %
— README, with APl documentation %
— Examples |
e Sudoku
e Batcher
e Traveling Salesman Problem -->

To run your application
13,509 U.S. cities with populations of more than 500 people
— Configure, make to build ADLB library
— Compile your application with mpicc, use Makefile as example

— Run with mpiexec

Problems/questions/suggestions to {lusk,rbutler}@mcs.anl.gov

24

A Problem Arising With Large Work Units

= As work units get larger (as they do when we
apply Argonne’s GFMC to more nucleons)
memory gets tight.

= To storelarge numbers of large work units, O °®
more servers are needed. OO ®

= Butthentheyaren’tavailableforapplication .‘A¥.
computations. wf

= ADLB is complicated enough without tryingto ® ®.
integrate a solution for this problem into it. C‘ ;7 ‘x
O

= So we chose an orthogonalapproach...

25

DMEM: a Simple Library for Distributed Memory
Management of Large Items

= APl summary: put, get, copy, free, get-part, update

= User (application oranotherlibrary)refersto a memory object viaa
(small) handle, which encodes its location and size.

= DMEM manages memory on all clients. Runsasseparate thread, sharing
memory with application processes, so local operations are fast.

= Optimization: putand copyoperationsarelocalif possible.

= ADLB is then free to manage only DMEM handles, which are tiny, thus
reducing requirement for lots of servers just for memory reasons.

= Lookingahead, objectsize is of type MPI_Aint, which is typicallya longint
in Cand an integer*8in Fortran.

26

The DMEM API

The C API:
int DMEM _Init(MPI_Comm user_comm, MPI_Aintinit_memsize)
int DMEM _Finalize()
int DMEM _Put(void *pkg_addr, MPI_Aint pkg_len, DMEM _handle dh)
int DMEM_Get(DMEM _handle dh, void *buf_addr)
int DMEM_Copy(DMEM _handle orig, DMEM _handle *copy)
int DMEM_Get_part(DMEM _handle dh, MPI_Aint offset, MPI_Aint len, void *buf _addr)
int DMEM_Update(DMEM _handle dh, MPI_Aint offset, MPI_Aint len, void *buf_addr)
int DMEM _Free(DMEM _handle dh)

= The Fortran APl is similar, with an extra argument for return codes, as in MPI
= Status: implemented, GFMC converted to use it

= Available from same web site as ADLB: http://www.cs.mtsu.edu/~rbutler/adlb

27

A Lurking Future Problem (LFP)

(Near) future machines are going to have lots of memory per node (for huge work
units) and lots of threads (hardware and software) per node (to work on them).
What if an ADLB (or even just a DMEM) application wants to utilize work units
whose size is larger than 2 GB (approximately the size of a 32-bit integer)?

ADLB and DMEM are agnostic about the internal structure of work units, so their
internal messages use MPI_BYTE as their message type, so the count argument in
MPI communications is the size (in bytes) of the message.

MPI_{Send/Recv} specifies the count argument as an integer (still 32 bytes on most
systems).

The MPI-3 forum decided not to change this, because “long” messages could be
sent/received on an MPI-compliant implementation by using MPI datatypes to
lower the count argument into the 32-bit range.

But:
— Some people (even me, a computer scientist) consider MPI datatypes inconvenient.
— Some important MPlimplementations are not MPIl-compliant! (e.g. Mira’s)

Solution: along-message library for anyone who needs it

28

MPIL - MPI Long Messages

= API
— MPIL_Init(comm)
— MPIL_Send(*buf, MPI_Count count, datatype, rank, tag, comm)
— MPIL_Recv(*buf, MPI_Count count, datatype, rank, tag, comm, MPIL_Status

&status)
— MPIL_Finalize(comm)
— MPIL_Probe(...) (the tricky one)
— MPIL_Bcast(...) (etc.)

= |mplementation(in progress)
— For MPI-standard-conforming implementations:

e Construct datatype consisting of large number of user’s datatypes

e MPISend/Recv using this datatype and 32-bit value of count. Use (hidden) struct
datatype if division has remainder

— For implementations where the underlying communication layer can only
handle 32-bit-size messages:
e Divide user message into multiple smaller messages (chunks).

e Send header with first chunk, so MPIL_Recv knows how many MPI_Recvs to post.

e Use hidden communicator to help with MPIL_Probe.

29

Summary

= ADLB demonstratesthat by giving up generality, a programming model can
provide scalability without complexity.

= GFMC motivated ADLB, which motivated DMEM, which motivated MPIL.
— Butall 3 are small, portable, generally useful libraries

= DMEM was a big help to ADLB, butis potentially usefulina more general
context. (e.g. to exploit multiple types of memory in a hierarchical memory
system).

= MPIL will be a simple, portable way to provide long message supportto any
MPI program.

30

The End

31

