
1
1

A “Hands-on” Introduction to
OpenMP*

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson
Intel Corp.

timothy.g.mattson@intel.com

Acknowledgements: J. Mark Bull (EPCC), Mike Pearce (Intel), Larry Meadows

(Intel), Barbara Chapman (SBU), Bronis de Supinski (LLNL), and many others

have contributed to these slides over the years.

Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel
products, reference www.intel.com/software/products.

All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, VTune, and Cilk are trademarks of Intel
Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations

that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction

sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this

product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and

Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

3

Preliminaries: Systems for exercises
• Blue Gene

ssh <<login_name>>@vesta.aclf.anl.gov

• The OpenMP compiler

Uncomment the line in .soft then run the resoft command

+mpiwrapper-xl

xlc++_r –qsmp=omp << file names>>

• Copy the exercises to your home directory

$ cp /projects/ATPESC2016/openmp

• You can just run on the login nodes or use qsub (to get good timing numbers)

• To get a single node for 30 minutes in interactive mode

qsub –A ATPESC2016 –n 1 –t 30 -Ik

• X86 cluster

ssh <<login_name>>@cooley.aclf.anl.gov

• The OpenMP compiler

Add the line to “.soft.cooley” and then run the resoft command

+intel-composer-xe

icc –qopenmp –O3 << file names>>

Use either

system or

even your

laptop if

you wish

4

Preliminaries: Part 1

• Disclosures

–The views expressed in this tutorial are those of the

people delivering the tutorial.

– We are not speaking for our employers.

– We are not speaking for the OpenMP ARB

• We take these tutorials VERY seriously:

–Help us improve … tell us how you would make this

tutorial better.

5

Preliminaries: Part 2

• Our plan for the day .. Active learning!
–We will mix short lectures with short exercises.

–You will use your laptop to connect to a multiprocessor
server.

• Please follow these simple rules
–Do the exercises that we assign and then change things

around and experiment.
– Embrace active learning!

–Don’t cheat: Do Not look at the solutions before you
complete an exercise … even if you get really frustrated.

6

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

7

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

8

OpenMP* overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER
C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

A set of compiler directives and library routines for
parallel application programmers

Greatly simplifies writing multi-threaded (MT) programs
in Fortran, C and C++

Standardizes established SMP practice + vectorization and
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

9

OpenMP basic definitions: Basic Solution stack

Versions 1.0 to 3.1

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment

variables

Application

End User

Shared Address Space

Proc3Proc2Proc1 ProcN

10

OpenMP basic definitions: NUMA Solution stack

Version 4.0-4.5

Shared Address Space

Shared Address Space

Proc2Proc1

Shared Address Space

Proc4Proc3

Shared Address Space

ProcNProcN-1

Supported with first touch policies plus

newer constructs such as places,

omp_proc_bind, teams, and more

OpenMP basic definitions: Target solution stack

Version 4.0-4.5

Supported (since OpenMP

4.0) with target, teams,

distribute, and other

constructs

Target Device: Intel® Xeon Phi™

coprocessor

Host

Target Device: GPU

12

OpenMP core syntax

• Most of the constructs in OpenMP are compiler directives.

#pragma omp construct [clause [clause]…]

–Example

#pragma omp parallel num_threads(4)

• Function prototypes and types in the file:

#include <omp.h>

use omp_lib

• Most OpenMP* constructs apply to a “structured block”.

–Structured block: a block of one or more statements with
one point of entry at the top and one point of exit at the
bottom.

– It’s OK to have an exit() within the structured block.

13

Exercise 1, Part A: Hello world
Verify that your environment works

• Write a program that prints “hello world”.

#include<stdio.h>

int main()

{

int ID = 0;

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

14

Exercise 1, Part B: Hello world
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>

int main()

{

int ID = 0;

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

Switches for compiling and linking

gcc -fopenmp Linux, OSX

pgcc -mp pgi

icl /Qopenmp intel (windows)

icc –qopenmp intel (linux, OSX)

#pragma omp parallel

{

}

#include <omp.h>

}

15

Exercise 1: Solution
A multi-threaded “Hello world” program

• Write a multithreaded program where each thread prints

“hello world”.

#include <omp.h>

#include <stdio.h>

int main()

{

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

}

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with

default number of threads

Runtime library function to

return a thread ID.
End of the Parallel region

16

OpenMP overview:
How do threads interact?

• OpenMP is a multi-threading, shared address model

– Threads communicate by sharing variables.

• Unintended sharing of data causes race conditions:

– Race condition: when the program’s outcome changes as the threads

are scheduled differently.

• To control race conditions:

– Use synchronization to protect data conflicts.

• Synchronization is expensive so:

– Change how data is accessed to minimize the need for synchronization.

17

OpenMP programming model:

Fork-Join Parallelism:
Master thread spawns a team of threads as needed.

Parallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Parallel Regions

Master

Thread

in red

A Nested

Parallel

region

Sequential Parts

18

Thread creation: Parallel regions

• You create threads in OpenMP* with the parallel construct.

• For example, To create a 4 thread Parallel region:

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread

executes a

copy of the

code within

the

structured

block

Runtime function to

request a certain

number of threads

Runtime function

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

19

Thread creation: Parallel regions

• You create threads in OpenMP* with the parallel construct.

• For example, To create a 4 thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread

executes a

copy of the

code within

the

structured

block

clause to request a certain

number of threads

Runtime function

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

20

Thread creation: Parallel regions example

• Each thread executes the
same code redundantly.

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID, A);

}

printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single

copy of A is

shared

between all

threads.

Threads wait here for all threads to finish

before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

21

Exercises 2-4,6:
Numerical integration

4.0

(1+x2)
dx =

0

1

 F(xi)x
i = 0

N

Mathematically, we know that:

We can approximate the integral as a

sum of rectangles:

Where each rectangle has width x and

height F(xi) at the middle of interval i.

4.0

2.0

1.0

X
0.0

22

Exercises 2-4,6: Serial PI program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

See OMP_exercises/pi.c

23

Exercise 2

• Create a parallel version of the pi program using a parallel

construct:

#pragma omp parallel.

• Pay close attention to shared versus private variables.

• In addition to a parallel construct, you will need the runtime

library routines

– int omp_get_num_threads();

– int omp_get_thread_num();

–double omp_get_wtime();

–omp_set_num_threads(); Time in Seconds since a

fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of

threads in the team

24

Exercise 2 (hints)

• Use a parallel construct:

#pragma omp parallel.

• The challenge is to:

– divide loop iterations between threads (use the thread ID and the

number of threads).

– Create an accumulator for each thread to hold partial sums that you

can later combine to generate the global sum.

• In addition to a parallel construct, you will need the runtime

library routines

– int omp_set_num_threads();

– int omp_get_num_threads();

– int omp_get_thread_num();

– double omp_get_wtime();

Results*: The SPMD pattern

25

*Intel compiler (icc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st

SPMD

1 1.86

2 1.03

3 1.08

4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

26

Why such poor scaling? False sharing
• If independent data elements happen to sit on the same cache line, each

update will cause the cache lines to “slosh back and forth” between threads

… This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program,

the array elements are contiguous in memory and hence share cache lines

… Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

27

#include <omp.h>

static long num_steps = 100000; double step;

#define PAD 8 // assume 64 byte L1 cache line size

#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS][PAD];

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{ int i, id,nthrds;

double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

sum[id][0] += 4.0/(1.0+x*x);

}

}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;

}

Example: Eliminate false sharing by padding the sum array

Pad the array so

each sum value is

in a different

cache line

Results*: pi program padded accumulator

28

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

1 1.86 1.86

2 1.03 1.01

3 1.08 0.69

4 0.97 0.53

29

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

Discussed later

30

Synchronization

• High level synchronization:

–critical

–atomic

–barrier

–ordered

• Low level synchronization

– flush

– locks (both simple and nested)

Synchronization is used to

impose order constraints and

to protect access to shared

data

31

Synchronization: critical

• Mutual exclusion: Only one thread at a time can enter a
critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+=nthrds){

B = big_job(i);

#pragma omp critical

res += consume (B);

}

}

Threads wait

their turn – only

one at a time

calls consume()

hints were added to critical in OpenMP 4.5 to suggest a locking strategy based on intended use of the

critical construct (e.g. contended, unconteded, speculative,, unspeculative)

32

Synchronization: atomic

• Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{

double tmp, B;

B = DOIT();

#pragma omp atomic

X += big_ugly(B);

}

#pragma omp parallel

{

double B;

B = DOIT();

#pragma omp atomic

X += big_ugly(B);

}

33

Synchronization: atomic

• Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{

double B, tmp;

B = DOIT();

tmp = big_ugly(B);

#pragma omp atomic

X += tmp;

}

Atomic only protects the

read/update of X

Additional forms of atomic were added in 3.1 (discussed later)

34

Exercise 3

• In exercise 2, you probably used an array to create space for

each thread to store its partial sum.

• If array elements happen to share a cache line, this leads to

false sharing.
– Non-shared data in the same cache line so each update invalidates the

cache line … in essence “sloshing independent data” back and forth

between threads.

• Modify your “pi program” from exercise 2 to avoid false

sharing due to the sum array.

Pi program with false sharing*

35

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st

SPMD

1 1.86

2 1.03

3 1.08

4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum to an

array made the coding easy,

but led to false sharing and

poor performance.

36

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id, nthrds; double x, sum;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

#pragma omp critical

pi += sum * step;

}

}

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi in a critical region so

updates don’t conflict

No array, so

no false

sharing.

Create a scalar local

to each thread to

accumulate partial

sums.

Results*: pi program critical section

37

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

SPMD

critical

1 1.86 1.86 1.87

2 1.03 1.01 1.00

3 1.08 0.69 0.68

4 0.97 0.53 0.53

38

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id,nthrds; double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;

#pragma omp critical

pi += 4.0/(1.0+x*x);

}

}

pi *= step;

}

Example: Using a critical section to remove impact of false sharing

What would happen if

you put the critical

section inside the

loop?

Be careful where

you put a critical

section

39

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id,nthrds; double x, sum;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthrds){

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

sum = sum*step;

#pragma omp atomic

pi += sum ;

}

}

Example: Using an atomic to remove impact of false sharing

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi so updates don’t

conflict

No array, so

no false

sharing.

Create a scalar local to

each thread to

accumulate partial

sums.

40

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

41

Discussed later

Alternatives to SPMD

• A parallel construct by itself creates an SPMD or “Single
Program Multiple Data” program … i.e., each thread
redundantly executes the same code.

• How do you split up pathways through the code between
threads within a team?

–Worksharing constructs

 Loop construct

 Sections/section constructs

 Single construct

–Task constructs

42

The loop worksharing constructs

• The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{

#pragma omp for

for (I=0;I<N;I++){

NEAT_STUFF(I);

}

}

Loop construct name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each

thread by default. You could do this

explicitly with a “private(I)” clause

43

Loop worksharing constructs
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1)iend = N;

for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel

#pragma omp for

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel

region

OpenMP parallel

region and a

worksharing for

construct

44

Loop worksharing constructs:
The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts
large and shrinks down to size “chunk” as the calculation proceeds.

– schedule(runtime)

– Schedule and chunk size taken from the OMP_SCHEDULE environment
variable (or the runtime library).

– schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any of the
above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.

45

Schedule Clause When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED Special case of dynamic
to reduce scheduling
overhead

AUTO When the runtime can
“learn” from previous
executions of the same
loop

loop work-sharing constructs:
The schedule clause

Least work at

runtime :

scheduling done

at compile-time

Most work at

runtime :

complex

scheduling logic

used at run-time

46

Combined parallel/worksharing construct

• OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

double res[MAX]; int i;

#pragma omp parallel

{

#pragma omp for

for (i=0;i< MAX; i++) {

res[i] = huge();

}

}

These are equivalent

double res[MAX]; int i;

#pragma omp parallel for

for (i=0;i< MAX; i++) {

res[i] = huge();

}

47

Working with loops

• Basic approach

– Find compute intensive loops

– Make the loop iterations independent ... So they can safely execute in

any order without loop-carried dependencies

– Place the appropriate OpenMP directive and test

int i, j, A[MAX];

j = 5;

for (i=0;i< MAX; i++) {

j +=2;

A[i] = big(j);

}

int i, A[MAX];

#pragma omp parallel for

for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);

A[i] = big(j);

}
Remove loop

carried

dependence

Note: loop index

“i” is private by

default

#pragma omp parallel for collapse(2)

for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {

.....

}

}

48

Nested loops

• Will form a single loop of length NxM and then parallelize

that.

• Useful if N is O(no. of threads) so parallelizing the outer loop

makes balancing the load difficult.

Number of loops

to be

parallelized,

counting from

the outside

 For perfectly nested rectangular loops we can parallelize
multiple loops in the nest with the collapse clause:

49

Reduction

• We are combining values into a single accumulation variable
(ave) … there is a true dependence between loop iterations
that can’t be trivially removed

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel
programming environments.

double ave=0.0, A[MAX]; int i;

for (i=0;i< MAX; i++) {

ave + = A[i];

}

ave = ave/MAX;

 How do we handle this case?

50

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:

– A local copy of each list variable is made and initialized depending

on the “op” (e.g. 0 for “+”).

– Updates occur on the local copy.

– Local copies are reduced into a single value and combined with

the original global value.

• The variables in “list” must be shared in the enclosing

parallel region.

double ave=0.0, A[MAX]; int i;

#pragma omp parallel for reduction (+:ave)

for (i=0;i< MAX; i++) {

ave + = A[i];

}

ave = ave/MAX;

51

OpenMP: Reduction operands/initial-values

• Many different associative operands can be used with reduction:

• Initial values are the ones that make sense mathematically.

Operator Initial value

+ 0

* 1

- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

Fortran Only

Operator Initial value

.AND. .true.

.OR. .false.

.NEQV. .false.

.IEOR. 0

.IOR. 0

.IAND. All bits on

.EQV. .true.

OpenMP 4.0 added user defined reductions

(discussed later).

52

Exercise 4: Pi with loops

• Go back to the serial pi program and parallelize it with a loop

construct

• Your goal is to minimize the number of changes made to the

serial program.

53

Example: Pi with a loop and a reduction

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel

{

double x;

#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

}

pi = step * sum;

}

Create a scalar local to each thread to hold

value of x at the center of each interval

Create a team of threads …

without a parallel construct, you’ll

never have more than one thread

Break up loop iterations

and assign them to

threads … setting up a

reduction into sum.

Note … the loop index is

local to a thread by default.

Results*: pi with a loop and a reduction

54

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

SPMD

critical

PI Loop

1 1.86 1.86 1.87 1.91

2 1.03 1.01 1.00 1.02

3 1.08 0.69 0.68 0.80

4 0.97 0.53 0.53 0.68

55

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

56

Synchronization: Barrier

• Barrier: Each thread waits until all threads arrive.

double A[big], B[big], C[big];

#pragma omp parallel

{

int id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}

#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }

A[id] = big_calc4(id);

}
implicit barrier at the end

of a parallel region

implicit barrier at the end of a for

worksharing construct

no implicit barrier

due to nowait

57

Single worksharing construct

• The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

• A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel

{

do_many_things();

#pragma omp single

{ exchange_boundaries(); }

do_many_other_things();

}

58

Master construct

• The master construct denotes a structured block that is only
executed by the master thread.

• The other threads just skip it (no synchronization is implied).

#pragma omp parallel

{

do_many_things();

#pragma omp master

{ exchange_boundaries(); }

#pragma omp barrier

do_many_other_things();

}

59

Sections worksharing construct

• The Sections worksharing construct gives a different
structured block to each thread.

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

X_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

}

}

By default, there is a barrier at the end of the “omp sections”.

Use the “nowait” clause to turn off the barrier.

60

Synchronization: Lock routines

• Simple Lock routines:

–A simple lock is available if it is unset.

–omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks

–A nested lock is available if it is unset or if it is set but owned by
the thread executing the nested lock function

–omp_init_nest_lock(), omp_set_nest_lock(),
omp_unset_nest_lock(), omp_test_nest_lock(),
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock,

so you don’t need to use a flush on the lock variable.

A lock implies a

memory fence (a

“flush”) of all thread

visible variables

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on

intended use (e.g. contended, unconteded, speculative,, unspeculative)

61

Synchronization: Simple locks
• Example: conflicts are rare, but to play it safe, we must assure mutual

exclusion for updates to histogram elements.

#pragma omp parallel for

for(i=0;i<NBUCKETS; i++){

omp_init_lock(&hist_locks[i]); hist[i] = 0;

}

#pragma omp parallel for

for(i=0;i<NVALS;i++){

ival = (int) sample(arr[i]);

omp_set_lock(&hist_locks[ival]);

hist[ival]++;

omp_unset_lock(&hist_locks[ival]);

}

for(i=0;i<NBUCKETS; i++)

omp_destroy_lock(&hist_locks[i]);
Free-up storage when done.

One lock per element of hist

Enforce mutual

exclusion on update

to hist array

62

Runtime library routines

• Runtime environment routines:

– Modify/Check the number of threads

–omp_set_num_threads(), omp_get_num_threads(),
omp_get_thread_num(), omp_get_max_threads()

– Are we in an active parallel region?

–omp_in_parallel()

– Do you want the system to vary the number of threads dynamically
from one parallel construct to another?

–omp_set_dynamic(), omp_get_dynamic();

– How many processors in the system?

–omp_get_num_procs()

…plus a few less commonly used routines.

63

Runtime Library routines

• To use a known, fixed number of threads in a program,
(1) tell the system that you don’t want dynamic adjustment of the
number of threads, (2) set the number of threads, then (3) save the
number you got.

#include <omp.h>

void main()

{ int num_threads;

omp_set_dynamic(0);

omp_set_num_threads(omp_get_num_procs());

#pragma omp parallel

{ int id= omp_get_thread_num();

#pragma omp single

num_threads = omp_get_num_threads();

do_lots_of_stuff(id);

}

}

Protect this op since Memory

stores are not atomic

Request as many threads as

you have processors.

Disable dynamic adjustment of the

number of threads.

Even in this case, the system may give you fewer threads

than requested. If the precise # of threads matters, test for

it and respond accordingly.

64

Environment Variables

• Set the default number of threads to use.

–OMP_NUM_THREADS int_literal

• Control how “omp for schedule(RUNTIME)” loop iterations
are scheduled.

–OMP_SCHEDULE “schedule[, chunk_size]”

• Process binding is enabled if this variable is true … i.e., if
true the runtime will not move threads around between
processors.

–OMP_PROC_BIND true | false

… Plus several less commonly used environment variables.

65

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

66

Data environment:
Default sharing attributes

• Shared memory programming model:
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables

– C: File scope variables, static

– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE

– Automatic variables within a statement block are PRIVATE.

67

double A[10];

int main() {

int index[10];

#pragma omp parallel

work(index);

printf(“%d\n”, index[0]);

}

extern double A[10];

void work(int *index) {

double temp[10];

static int count;

...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are

shared by all threads.

temp is local to each

thread

68

Data sharing:
Changing sharing attributes

• One can selectively change sharing attributes for constructs
using the following clauses* (note: list is a comma-separated list of variables)

– shared(list)

– private(list)

– firstprivate(list)

• The final value of a private variable inside a parallel loop can

be transmitted to the shared variable outside the loop with:

– lastprivate(list)

• The default attributes can be overridden with:

– default (private| shared| none)

All the clauses on this page apply

to the OpenMP construct NOT to

the entire region.

*All data clauses apply to parallel, worksharing, and task constructs

except “shared”, which only applies to parallel and task constructs

default(private) iin Fortran only

69

Data sharing: Private clause

void wrong() {

int tmp = 0;

#pragma omp parallel for private(tmp)

for (int j = 0; j < 1000; ++j)

tmp += j;

printf(“%d\n”, tmp);

}

• private(var) creates a new local copy of var for each thread.

– The value of the private copies is uninitialized

– The value of the original variable is unchanged after the region

tmp was not

initialized

tmp reverts to the value of

the original variable after the

construct (0 in this case)

Nomenclature: The

version of tmp prior

to the construct is

called the “original”

variable

70

Data sharing: Private clause
When is the original variable valid?

int tmp;

void danger() {

tmp = 0;

#pragma omp parallel private(tmp)

work();

printf(“%d\n”, tmp);

}

• The original variable’s value is unspecified if it is referenced
outside of the construct

– Implementations may reference the original variable or a copy ….. a

dangerous programming practice!

– For example, consider what would happen if the compiler inlined work()?

extern int tmp;

void work() {

tmp = 5;

}

unspecified which

copy of tmp
tmp has unspecified value

Firstprivate clause

• Variables initialized from a shared variable

• C++ objects are copy-constructed

71

incr = 0;

#pragma omp parallel for firstprivate(incr)

for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;

A[i] = incr;

}

Each thread gets its own copy of

incr with an initial value of 0

Lastprivate clause

• Variables update a shared variable using value from the

(logically) last iteration

• C++ objects are updated as if by assignment

void sq2(int n, double *lastterm)

{
double x; int i;
#pragma omp parallel for lastprivate(x)
for (i = 0; i < n; i++){

x = a[i]*a[i] + b[i]*b[i];
b[i] = sqrt(x);

}
*lastterm = x;

}

72

“x” has the value it held for

the “last sequential” iteration

(i.e., for i=(n-1))

73

Data sharing:
A data environment test

• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C private to each thread or shared inside the parallel region?

• What are their initial values inside and values after the parallel region?

variables: A = 1,B = 1, C = 1

#pragma omp parallel private(B) firstprivate(C)

Inside this parallel region ...

 “A” is shared by all threads; equals 1

 “B” and “C” are private to each thread.

– B’s initial value is undefined

– C’s initial value equals 1

Following the parallel region ...

 B and C revert to their original values of 1

 A is either 1 or the value it was set to inside the parallel region

74

Data sharing: Default clause

• The default storage attribute is default(shared)

(so no need to use it)

– Exception: #pragma omp task

• To change default: default(private)

– each variable in the construct is made private as if specified in a
private clause

– mostly saves typing

• default(none): no default for variables in static extent.

Must list storage attribute for each variable in static
extent. Good programming practice!

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

75

Data sharing: Default clause example

itotal = 1000

C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)

np = omp_get_num_threads()

each = itotal/np

………

C$OMP END PARALLEL

itotal = 1000

C$OMP PARALLEL PRIVATE(np, each)

np = omp_get_num_threads()

each = itotal/np

………

C$OMP END PARALLEL These two code

fragments are

equivalent

76

Exercise 5: Mandelbrot set area

• The supplied program (mandel.c) computes the area of a

Mandelbrot set.

• The program has been parallelized with OpenMP, but we

were lazy and didn’t do it right.

• Find and fix the errors (hint … the problem is with the data
environment).

• Once you have a working version, try to optimize the
program.
– Try different schedules on the parallel loop.

– Try different mechanisms to support mutual exclusion … do the
efficiencies change?

77

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

What are tasks?

• Tasks are independent units of work

• Tasks are composed of:

– code to execute

– data to compute with

• Threads are assigned to perform the

work of each task.

– The thread that encounters the task construct

may execute the task immediately.

– The threads may defer execution until later Serial Parallel

What are tasks?

• The task construct includes a structured

block of code

• Inside a parallel region, a thread

encountering a task construct will

package up the code block and its data

for execution

• Tasks can be nested: i.e. a task may

itself generate tasks.
Serial Parallel

Task Directive

#pragma omp parallel

{

#pragma omp master

{

#pragma omp task

fred();

#pragma omp task

daisy();

#pragma omp task

billy();

}

}

Thread 0 packages

tasks

Create some threads

Tasks executed by

some thread in some

order

All tasks complete before this barrier is released

#pragma omp task [clauses]

structured-block

Exercise 5: Simple tasks
• Write a program using tasks that will “randomly” generate one of two

strings:

– I think race cars are fun

– I think car races are fun

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race”

or “car” parts).

• This is called a “Race Condition”. It occurs when the result of a program

depends on how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”.

They produce race conditions. Programs containing data races are

undefined (in OpenMP but also ANSI standards C++’11 and beyond).

#pragma omp parallel

#pragma omp task

#pragma omp master

#pragma omp single
81

82

When/where are tasks complete?

• At thread barriers (explicit or implicit)

– applies to all tasks generated in the current parallel region up to the

barrier

• At taskwait directive

– i.e. Wait until all tasks defined in the current task have completed.

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to

“descendants” .

• At the end of a taskgroup region
– #pragma omp taskgroup

structured-block

– wait until all tasks created within the taskgroup have completed …

applies to all “descendants”

Example

83

#pragma omp parallel

{

#pragma omp master

{

#pragma omp task

fred();

#pragma omp task

daisy();

#pragma taskwait

#pragma omp task

billy();

}

}

fred() and daisy()

must complete before
billy() starts

84

Linked list traversal

• Classic linked list traversal

• Do some work on each item in the list

• Assume that items can be processed independently

• Cannot use an OpenMP loop directive

p = listhead ;

while (p) {

process(p);

p=next(p) ;

}

85

Parallel linked list traversal

#pragma omp parallel

{

#pragma omp master

{

p = listhead ;

while (p) {

#pragma omp task firstprivate(p)

{

process (p);

}

p=next (p) ;

}

}

}

makes a copy of p

when the task is

packaged

Only one thread

packages tasks

86

Thread 0:

p = listhead ;

while (p) {

< package up task >

p=next (p) ;

}

while (tasks_to_do){

< execute task >

}

< barrier >

Other threads:

while (tasks_to_do) {

< execute task >

}

< barrier >

Parallel linked list traversal

87

Parallel pointer chasing on multiple lists

#pragma omp parallel

{

#pragma omp for private(p)

for (int i =0; i <numlists; i++) {

p = listheads[i] ;

while (p) {

#pragma omp task firstprivate(p)

{

process(p);

}

p=next(p);

}

}

}

All threads package

tasks

Data scoping with tasks

• Variables can be shared, private or firstprivate with respect to

task

• These concepts are a little bit different compared with

threads:

– If a variable is shared on a task construct, the references to it inside

the construct are to the storage with that name at the point where the

task was encountered

– If a variable is private on a task construct, the references to it inside

the construct are to new uninitialized storage that is created when the

task is executed

– If a variable is firstprivate on a construct, the references to it inside the

construct are to new storage that is created and initialized with the

value of the existing storage of that name when the task is

encountered

88

89

Data scoping defaults

• The behavior you want for tasks is usually firstprivate, because the task

may not be executed until later (and variables may have gone out of

scope)

– Variables that are private when the task construct is encountered are firstprivate by

default

• Variables that are shared in all constructs starting from the innermost

enclosing parallel construct are shared by default

#pragma omp parallel shared(A) private(B)

{

...

#pragma omp task

{

int C;

compute(A, B, C);

}

}

A is shared

B is firstprivate

C is private

Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(n2) recursive

implementation!

int fib (int n)

{

int x,y;

if (n < 2) return n;

x = fib(n-1);

y = fib (n-2);

return (x+y);

}

Int main()

{

int NW = 5000;

fib(NW);

}

Parallel Fibonacci

91

• Binary tree of tasks

• Traversed using a recursive

function

• A task cannot complete until all

tasks below it in the tree are

complete (enforced with taskwait)

• x,y are local, and so by default

they are private to current task

– must be shared on child tasks so they

don’t create their own firstprivate

copies at this level!

int fib (int n)

{ int x,y;

if (n < 2) return n;

#pragma omp task shared(x)

x = fib(n-1);

#pragma omp task shared(y)

y = fib (n-2);

#pragma omp taskwait

return (x+y);

}

Int main()

{ int NW = 5000;

#pragma omp parallel

{

#pragma omp master

fib(NW);

}

}

92

Using tasks

• Getting the data attribute scoping right can be quite tricky

– default scoping rules different from other constructs

– as usual, using default(none) is a good idea

• Don’t use tasks for things already well supported by

OpenMP

–e.g. standard do/for loops

– the overhead of using tasks is greater

• Don’t expect miracles from the runtime

–best results usually obtained where the user controls the

number and granularity of tasks

93

Exercise 6: Pi with tasks

• Consider the program Pi_recur.c. This program implements

a recursive algorithm version of the program for computing pi

– Parallelize this program using OpenMP tasks

#pragma omp parallel

#pragma omp task

#pragma omp taskwait

#pragma omp master

#pragma omp single

double omp_get_wtime()

int omp_get_thread_num();

int omp_get_num_threads();

Task switching

• Certain constructs define task scheduling points … for

example:

– Generation and completion of a Task, Taskwait, implicit or explicit

barriers, target data-region constructs,

• When a thread encounters a task scheduling point, it is

allowed to suspend the current task and execute another

(called task switching)

• It can then return to the original task and resume

94

#pragma omp single

{

for (i=0; i<ONEZILLION; i++)

#pragma omp task

process(item[i]);

}

• Risk of generating too many tasks

• Generating task will have to suspend for a while

• With task switching, the executing thread can:

– execute an already generated task (draining the “task pool”)

– execute the encountered task

95

Task switching

Task dependencies

!$omp task depend(type:list)

where type is in, out or inout and list is a list of variables.

– list may contain subarrays: OpenMP 4.0 includes a syntax for C/C++

– in: the generated task will be a dependent task of all previously

generated sibling tasks that reference at least one of the list items in

an out or inout clause

– out or inout: the generated task will be a dependent task of all

previously generated sibling tasks that reference at least one of the

list items in an in, out or inout clause

96

Task dependencies example

#pragma omp task depend (out:a)

{ ... } //writes a

#pragma omp task depend (out:b)

{ ... } //writes b

#pragma omp task depend (in:a,b)

{ ... } //reads a and b

• The first two tasks can execute in parallel

• The third task cannot start until the first two are complete

97

Controlling tasks

• Two things can happen with a task:

– included (executed now by the thread that encounters them)

– deferred (executed by some thread independently of generating task)

– undeferred (completes execution before the generating task continues)

• The task construct can take an if(expr)clause, which if the

expression evaluates to false, means the task will be

undeferred

• The task construct can take a final(expr)clause, which if

the expression evaluates to true, means any tasks generated

inside this task will be included

• The task construct can take a mergeable clause, which

indicates it can be safely executed by reusing its parent data
environment; most useful if used in conjunction with final98

99

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Prod/cons

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

100

OpenMP memory model
 OpenMP supports a shared memory model

 All threads share an address space, where variable can be stored or
retrieved:

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

 Threads maintain their own temporary view of memory as well … the
details of which are not defined in OpenMP but this temporary view
typically resides in caches, registers, write-buffers, etc.

a

a

. . .

101

OpenMP and relaxed consistency

• OpenMP supports a relaxed-consistency

shared memory model

– Threads can maintain a temporary view of shared memory

that is not consistent with that of other threads

– These temporary views are made consistent only at certain

points in the program

– The operation that enforces consistency is called the flush operation

102

Flush operation

• Defines a sequence point at which a thread enforces a

consistent view of memory.

• For variables visible to other threads and associated with the

flush operation (the flush-set)

– The compiler can’t move loads/stores of the flush-set around a flush:

– All previous read/writes of the flush-set by this thread have completed

– No subsequent read/writes of the flush-set by this thread have occurred

– Variables in the flush set are moved from temporary storage to shared

memory.

– Reads of variables in the flush set following the flush are loaded from

shared memory.

IMPORTANT POINT: The flush makes the calling threads temporary view match the

view in shared memory. Flush by itself does not force synchronization.

103

Memory consistency: flush example

 Flush forces data to be updated in memory so other threads see the most
recent value

double A;

A = compute();

#pragma omp flush(A)

// flush to memory to make sure other

// threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

Flush without a list: flush set is all

thread visible variables

Flush with a list: flush set is the list of

variables

104

Flush and synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,

– at entry/exit of parallel regions

– at implicit and explicit barriers

– at entry/exit of critical regions

– whenever a lock is set or unset

….

(but not at entry to worksharing regions or entry/exit of master regions)

105

Example: prod_cons.c

int main()
{
double *A, sum, runtime; int flag = 0;

A = (double *) malloc(N*sizeof(double));

runtime = omp_get_wtime();

fill_rand(N, A); // Producer: fill an array of data

sum = Sum_array(N, A); // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf secs, The sum is %lf \n",runtime,sum);
}

• Parallelize a producer/consumer program

– One thread produces values that another thread consumes.

– The key is to

implement

pairwise

synchronization

between threads

– Often used with a

stream of

produced values

to implement

“pipeline

parallelism”

106

Pairwise synchronizaion in OpenMP

• OpenMP lacks synchronization constructs that work between

pairs of threads.

• When needed, you have to build it yourself.

• Pairwise synchronization

– Use a shared flag variable

– Reader spins waiting for the new flag value

– Use flushes to force updates to and from memory

107

Exercise: Producer/consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);

flag = 1;

}
#pragma omp section
{

while (flag == 0){

}

sum = Sum_array(N, A);
}

}
}

Put the flushes in the right places to

make this program race-free.

Do you need any other

synchronization constructs to make

this work?

108

Solution (try 1): Producer/consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);
#pragma omp flush
flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{

#pragma omp flush (flag)
while (flag == 0){

#pragma omp flush (flag)
}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

Use flag to Signal when the

“produced” value is ready

Flush forces refresh to memory;

guarantees that the other thread

sees the new value of A

Notice you must put the flush inside the

while loop to make sure the updated flag

variable is seen

Flush needed on both “reader” and “writer”

sides of the communication

The problem is this program technically has

a race … on the store and later load of flag

The OpenMP 3.1 atomics (1 of 2)

• Atomic was expanded to cover the full range of common scenarios

where you need to protect a memory operation so it occurs atomically:

pragma omp atomic [read | write | update | capture]

109

• Atomic can protect loads

pragma omp atomic read

v = x;

• Atomic can protect stores

pragma omp atomic write

x = expr;

• Atomic can protect updates to a storage location (this is the default

behavior … i.e. when you don’t provide a clause)

pragma omp atomic update

x++; or ++x; or x--; or –x; or

x binop= expr; or x = x binop expr;

This is the

original OpenMP

atomic

The OpenMP 3.1 atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an

associated update operation:

pragma omp atomic capture

statement or structured block

110

• Where the statement is one of the following forms:

v = x++; v = ++x; v = x--; v = –x; v = x binop expr;

• Where the structured block is one of the following forms:

{v = x; x binop = expr;} {x binop = expr; v = x;}

{v=x; x=x binop expr;} {X = x binop expr; v = x;}

{v = x; x++;} {v=x; ++x:}

{++x; v=x:} {x++; v = x;}

{v = x; x--;} {v= x; --x;}

{--x; v = x;} {x--; v = x;}

The capture semantics in atomic were added to map onto common hardware

supported atomic operations and to support modern lock free algorithms

Atomics and synchronization flags

111

int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{ fill_rand(N, A);

#pragma omp flush
#pragma omp atomic write

flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{ while (1){

#pragma omp flush(flag)
#pragma omp atomic read

flg_tmp= flag;
if (flg_tmp==1) break;

}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

This program is truly race

free … the reads and

writes of flag are

protected so the two

threads cannot conflict

Still painful and error

prone due to all of the

flushes that are required

OpenMP 4.0 Atomic: Sequential consistency

• Sequential consistency:

– The order of loads and stores in a race-free program appear in some

interleaved order and all threads in the team see this same order.

• OpenMP 4.0 added an optional clause to atomics

– #pragma omp atomic [read | write | update | capture] [seq_cst]

• In more pragmatic terms:

– If the seq_cst clause is included, OpenMP adds a flush without an

argument list to the atomic operation so you don’t need to.

• In terms of the C++’11 memory model:

– Use of the seq_cst clause makes atomics follow the sequentially

consistent memory order.

– Leaving off the seq_cst clause makes the atomics relaxed.

112

4.0

Advice to programmers: save yourself a world of hurt … let OpenMP take

care of your flushes for you whenever possible … use seq_cst

Atomics and synchronization flags (4.0)

113

int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{ fill_rand(N, A);

#pragma omp atomic write seq_cst
flag = 1;

}
#pragma omp section
{ while (1){

#pragma omp atomic read seq_cst
flg_tmp= flag;

if (flg_tmp==1) break;
}

sum = Sum_array(N, A);
}

}
}

This program is truly race

free … the reads and

writes of flag are protected

so the two threads cannot

conflict – and you do not

use any explicit flush

constructs (OpenMP does

them for you)

114

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Prod/cons

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

115

Data sharing: Threadprivate

• Makes global data private to a thread

– Fortran: COMMON blocks

– C: File scope and static variables, static class members

• Different from making them PRIVATE

– with PRIVATE global variables are masked.

– THREADPRIVATE preserves global scope within each thread

• Threadprivate variables can be initialized using COPYIN

or at time of definition (using language-defined
initialization capabilities)

116

A threadprivate example (C)

int counter = 0;

#pragma omp threadprivate(counter)

int increment_counter()

{

counter++;

return (counter);

}

Use threadprivate to create a counter for each thread.

117

Data copying: Copyin

parameter (N=1000)

common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

C Initialize the A array

call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialized

… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin

clause.

118

Data copying: Copyprivate

#include <omp.h>

void input_parameters (int, int); // fetch values of input parameters

void do_work(int, int);

void main()

{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)

{

#pragma omp single copyprivate (Nsize, choice)

input_parameters (*Nsize, *choice);

do_work(Nsize, choice);

}

}

Used with a single region to broadcast values of privates from one member of a

team to the rest of the team

119

Exercise: Monte Carlo calculations
Using random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

• Example: Computing π with a digital dart board:

 Throw darts at the circle/square.

 Chance of falling in circle is
proportional to ratio of areas:

Ac = r2 * π

As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4

 Compute π by randomly
choosing points; π is four times
the fraction that falls in the circle

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

120

Exercise: Monte Carlo pi (cont)

• We provide three files for this exercise
– pi_mc.c: the Monte Carlo method pi program

– random.c: a simple random number generator

– random.h: include file for random number generator

• Create a parallel version of this program without changing
the interfaces to functions in random.c
– This is an exercise in modular software … why should a user of your

parallel random number generator have to know any details of the
generator or make any changes to how the generator is called?

– The random number generator must be thread-safe.

• Extra Credit:
– Make your random number generator numerically correct (non-

overlapping sequences of pseudo-random numbers).

121

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

Hardware Diversity: Basic Building Blocks

ICache

Scheduler

CPU Core: one or more hardware threads sharing

an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.

Vector registers/instructions with 128 to 512 bits so a

single stream of instructions drives multiple data

elements.

SIMT: Single Instruction Multiple Threads.

A single stream of instructions drives many threads. More

threads than functional units. Over subscription to hide

latencies. Optimized for throughput.

Hardware Diversity: Combining building

blocks to construct nodes

LLC

L
L
C

LLC

LLC

Multicore CPU

Heterogeneous: CPU+GPU

Heterogeneous:

Integrated CPU+GPU

Heterogeneous:

CPU+manycore CPU

Manycore CPU

Hardware diversity: CPUs
Intel® Xeon® processor

E7 v3 series (Haswell or HSW)

• 18 cores

• 36 Hardware threads

• 256 bit wide vector units

Intel® Xeon Phi™ coprocessor

(Knights Corner)

• 61 cores

• 244 Hardware threads

• 512 bit wide vector units

PCIe

Client

Logic
L2 L2 L2 L2

TD TD TD TD

L2L2L2L2

TDTDTDTD

GDDR MC

GDDR MC

GDDR MC

GDDR MC

Hardware diversity: GPUs

• Nvidia® GPUs are a collection of “Streaming Multiprocessors” (SM)
– Each SM is analogous to a core of a Multi-Core CPU

• Each SM is a collection of SIMD execution pipelines that share
control logic, register file, and L1 Cache#

#Source: UC Berkeley, CS194,

Fall’2014, Kurt Keutzer and Tim Mattson

For example: an NVIDIA

Tesla C2050 (Fermi) GPU

with 3GB of memory and

14 streaming

multiprocessor cores*.

*Source: http://www.nersc.gov/users/computational-systems/dirac/node-and-gpu-configuration/

Third party names are the property of their owners.

Hardware Diversity: programming models

OpenMP, OpenCL, pthreads, MPI, TBB, Cilk, C++’11…

OpenMP, OpenCL, CUDA, OpenACC

OpenMP, OpenCL,

OpenMP, OpenCL, pthreads, TBB, Cilk, C++’11…

Do you notice a

trend?

Third party names are the property of their owners.

Hardware Diversity: programming models

OpenMP, OpenCL, pthreads, MPI, TBB, Cilk, C++’11…

OpenMP, OpenCL, CUDA, OpenACC

OpenMP, OpenCL,

OpenMP, OpenCL, pthreads, TBB, Cilk, C++’11…

If you want to support the

diversity of nodes in HPC

from a single source-

code base, you have only

two choices: OpenMP

and OpenCL

Third party names are the property of their owners.

Hardware Diversity: Basic Building Blocks

ICache

Scheduler

CPU Core: one or more hardware threads sharing

an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.

Vector registers/instructions with 128 to 512 bits so a

single stream of instructions drives multiple data

elements.

SIMT: Single Instruction Multiple Threads.

A single stream of instructions drives many threads. More

threads than functional units. Over subscription to hide

latencies. Optimized for throughput.

Let’s start with the SIMD construct

for dealing with vector units

Evolution of Hardware (Intel)

Images not intended to reflect actual die sizes

64-bit Intel®

Xeon®

processor

Intel® Xeon®

processor

5100 series

Intel® Xeon®

processor

5500 series

Intel® Xeon®

processor

5600 series

Intel® Xeon®

processor

E5-2600

series

Intel®

Xeon Phi™

Co-processor

5110P

Frequency 3.6GHz 3.0GHz 3.2GHz 3.3GHz 2.7GHz 1053MHz

Core(s) 1 2 4 6 8 60

Thread(s) 2 2 8 12 16 240

SIMD width
128

(2 clock)

128

(1 clock)

128

(1 clock)

128

(1 clock)

256

(1 clock)

512

(1 clock)

Width of SIMD registers has been growing in the

past:

SIMD on Intel® Architecture

SSE

AVX

MIC

128 bit

256 bit

512 bit

2 x DP

4 x SP

4 x DP

8 x SP

8 x DP

16 x SP

 SIMD instructions become more powerful

One example is Intel® Xeon Phi™ Coprocessor

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7 *b7

+c7

a6 *b6

+c6

a5*b5

+c5

a4 *b4

+c4

a3 *b3

+c3

a2 *b2

+c2

a1*b1

+c1

a0 *b0

+c0

*

=

source1

source2

source1

c7 c6 c5 c4 c3 c2 c1 c0 source3

+

vfmadd213pd source1, source2, source3

 Auto vectorization only helps in some cases

Increased complexity of instructions make hard for the

compiler to select proper instructions

Code pattern needs to be recognized by the compiler

Precision requirements often inhibit SIMD code gen

 Example: Intel® Composer XE

-vec (automatically enabled with –O3)

-vec-report

-opt-report

Auto-vectorization

 Data dependencies

Other potential reasons
Alignment
Function calls in loop block
Complex control flow / conditional branches
Loop not “countable”

E.g. upper bound not a runtime constant

Mixed data types
Non-unit stride between elements
Loop body too complex (register pressure)
Vectorization seems inefficient

Many more … but less likely to occur

Why Auto-vectorizers Fail

 Suppose two statements S1 and S2

 S2 depends on S1, iff S1 must execute before S2
Control-flow dependence

Data dependence

Dependencies can be carried over between loop iterations

 Important flavors of data dependencies

FLOW ANTI
s1: a = 40 b = 40

b = 21 s1: a = b + 1

s2: c = a + 2 s2: b = 21

Data Dependencies

 Support required vendor-specific extensions
Programming models (e.g., Intel® Cilk Plus)

Compiler pragmas (e.g., #pragma vector)

Low-constructs (e.g., _mm_add_pd())

#pragma omp parallel for

#pragma vector always

#pragma ivdep

for (int i = 0; i < N; i++) {

a[i] = b[i] + ...;

}

In a Time Before OpenMP 4.0

You need to trust
your compiler to

do the “right”
thing.

 Vectorize a loop nest
Cut loop into chunks that fit a SIMD vector register

No parallelization of the loop body

 Syntax (C/C++)
#pragma omp simd [clause[[,] clause],…]

for-loops

 Syntax (Fortran)
!$omp simd [clause[[,] clause],…]

do-loops

SIMD Loop Construct

Example

void sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

vectorize

Example: threads plus SIMD

void sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp parallel for simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

multithread, then vectorize

 private(var-list):

Uninitialized vectors for variables in var-list

 firstprivate(var-list):

Initialized vectors for variables in var-list

 reduction(op:var-list):

Create private variables for var-list and apply reduction operator op at the

end of the construct

Data Sharing Clauses

42x: ? ? ? ?

42x: 42 42 42 42

42x:12 5 8 17

 safelen (length)

Maximum number of iterations that can run concurrently without

breaking a dependence

in practice, maximum vector length

 linear (list[:linear-step])

The variable’s value is in relationship with the iteration number

xi = xorig + i * linear-step

 aligned (list[:alignment])

Specifies that the list items have a given alignment

Default is alignment for the architecture

 collapse (n)

SIMD Loop Clauses

SIMD Function Vectorization

float min(float a, float b) {

return a < b ? a : b;

}

float distsq(float x, float y) {

return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {

d[i] = min(distsq(a[i], b[i]), c[i]);

} }

 Declare one or more functions to be compiled for the
target device

 Syntax (C/C++):
#pragma omp declare simd [clause[[,] clause],…]

[#pragma omp declare simd [clause[[,] clause],…]]

[…]

function-definitions-or-declaration

 Syntax (Fortran):
!$omp declare simd (proc-name-list)

SIMD Function Vectorization

#pragma omp declare simd

float min(float a, float b) {

return a < b ? a : b;

}

#pragma omp declare simd

float distsq(float x, float y) {

return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {

d[i] = min(distsq(a[i], b[i]), c[i]);

} }

SIMD Function Vectorization

vec8 min_v(vec8 a, vec8 b) {

return a < b ? a : b;

}

vec8 distsq_v(vec8 x, vec8 y) {

return (x - y) * (x - y);

}

vd = min_v(distsq_v(va, vb, vc)

 simdlen (length)
 generate function to support a given vector length

 uniform (argument-list)
 argument has a constant value between the iterations of a given loop

 inbranch
 function always called from inside an if statement

 notinbranch
 function never called from inside an if statement

 linear (argument-list[:linear-step])

 aligned (argument-list[:alignment])

 reduction (operator:list)

SIMD Function Vectorization

Same as before

inbranch & notinbranch

#pragma omp declare simd inbranch

float do_stuff(float x) {

/* do something */

return x * 2.0;

}

void example() {

#pragma omp simd

for (int i = 0; i < N; i++)

if (a[i] < 0.0)

b[i] = do_stuff(a[i]);

}

vec8 do_stuff_v(vec8 x, mask m) {

/* do something */

vmulpd x{m}, 2.0, tmp

return tmp;

}

for (int i = 0; i < N; i+=8) {

vcmp_lt &a[i], 0.0, mask

b[i] = do_stuff_v(&a[i], mask);

}

M.Klemm, A.Duran, X.Tian, H.Saito, D.Caballero, and X.Martorell. Extending OpenMP with
Vector Constructs for Modern Multicore SIMD Architectures. In Proc. of the Intl. Workshop on
OpenMP, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

SIMD Constructs & Performance

3.66x

2.04x
2.13x

4.34x

1.47x

2.40x

0.00x

0.50x

1.00x

1.50x

2.00x

2.50x

3.00x

3.50x

4.00x

4.50x

5.00x

Mandelbrot Volume
Rendering

BlackScholes Fast Walsh Perlin Noise SGpp

re
la

ti
v
e
 s

p
e
e
d
-u

p
(h

ig
h
e
r

is
 b

e
tt

e
r)

ICC auto-vec

ICC SIMD directive

Hardware Diversity: Basic Building Blocks

ICache

Scheduler

CPU Core: one or more hardware threads sharing

an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.

Vector registers/instructions with 128 to 512 bits so a

single stream of instructions drives multiple data

elements.

SIMT: Single Instruction Multiple Threads.

A single stream of instructions drives many threads. More

threads than functional units. Over subscription to hide

latencies. Optimized for throughput.

How to program a GPU with

OpenMP

OpenMP basic definitions: Target solution stack

Supported (since OpenMP

4.0) with target, teams,

distribute, and other

constructs

Target Device: Intel® Xeon Phi™

processor

Host

Target Device: GPU
Third party names are the property of their owners.

151

The OpenMP device programming model

#include <omp.h>

#include <stdio.h>

int main()

{

printf(“There are %d devices\n”,

omp_get_num_devices());

}

• OpenMP uses a host/device model

• The host is where the initial thread of the program begins execution

• Zero or more devices are connected to the host

Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Target directive
• The target construct offloads a code region to a device.

#pragma omp target

{….} // a structured block of code

• An initial thread running on the device executes the

code in the code block.

#pragma omp target

{

#pragma omp parallel for

{do lots of stuf}

}

Target directive
• The target construct offloads a code region to a device.

#pragma omp target device(1)

{….} // a structured block of code

• An initial thread running on the device executes the

code in the code block.

#pragma omp target

{

#pragma omp parallel for

{do lots of stuf}

}

Optional clause to

select some device

other than the

default device.

The target data environment
• The target clause creates a data environment on the

device:

• Originals variables copied into corresponding variables

before the initial thread begins execution on the device.

• Corresponding variables copied into original variables when

the target code region completes

int i, a[N], b[N], c[N];

#pragma omp target

Original variables on the host:

N, i, a, b, c …

Are mapped onto the

corresponding variables on

the device: N, i, a, b, c …

#pragma omp parallel for private(i)

for(i=0;i<N;i++){

c[i]+=a[i]+b[i];

}

Controlling data movement

• The various forms of the map clause

– map(to:list): read-only data on the device. Variables in the list are

initialized on the device using the original values from the host.

– map(from:list): write-only data on the device: initial value of the

variable is not initialized. At the end of the target region, the values

from variables in the list are copied into the original variables.

– map(tofrom:list): the effect of both a map-to and a map-from

– map(alloc:list): data is allocated and uninitialized on the device.

– map(list): equivalent to map(tofrom:list).

• For pointers you must use array notation ..

– Map(to:a[0:N])

int i, a[N], b[N], c[N];

#pragma omp target map(to:a,b) map(tofrom:c)

Data movement

can be explicitly

controlled with

the map clause

Exercise

• Start with the provided serial Jacobi solver.

• Use the target data construct to create a data region.

Manage data movement with map clauses to minimize

data movement.

– #pragma omp target

– #pragma omp target data

– #pragma omp target map(to:list) map(from:list) map(tofrom:list)

– int omp_get_num_devices();

– #pragma omp parallel for reduction(+:var) private(list)

Jacobi Solver (serial 1/2)

while((conv > TOL) && (iters<MAX_ITERS))

{

iters++;

xtmp = xnew; // don't copy arrays.

xnew = xold; // just swap pointers.

xold = xtmp;

for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){

if(i!=j)

xnew[i]+= A[i*Ndim + j]*xold[j];

}

xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

Jacobi Solver (serial 2/2)

//

// test convergence

//

conv = 0.0;

for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];

conv += tmp*tmp;

}

conv = sqrt((double)conv);

} \\ end while loop

Jacobi Solver (Par Targ, 1/2)

while((conv > TOL) && (iters<MAX_ITERS))

{

iters++;

xtmp = xnew; // don't copy arrays.

xnew = xold; // just swap pointers.

xold = xtmp;

#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \

map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)

#pragma omp parallel for private(i,j)

for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){

if(i!=j)

xnew[i]+= A[i*Ndim + j]*xold[j];

}

xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

Jacobi Solver (Par Targ, 2/2)
//

// test convergence

//

conv = 0.0;

#pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \

map(to:Ndim) map(tofrom:conv)

#pragma omp parallel for private(i,tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];

conv += tmp*tmp;

}

conv = sqrt((double)conv);

} \\ end while loop

Jacobi Solver (Par Targ, 2/2)
//

// test convergence

//

conv = 0.0;

#pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \

map(to:Ndim) map(tofrom:conv)

#pragma omp parallel for private(i,tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];

conv += tmp*tmp;

}

conv = sqrt((double)conv);

} \\ end while loop

This worked but the

performance was awful. Why?

System Implementation Ndim = 1000 Ndim = 4096

Intel® Xeon

Phi™ co-

processor

(knights

corner)

Target dir per

loop

134 seconds Did not

finish

(> 40

minutes)

Native OMP 3.2 seconds 5.3 seconds

Data movement dominates!!!
while((conv > TOLERANCE) && (iters<MAX_ITERS))

{ iters++;

xtmp = xnew; // don't copy arrays.

xnew = xold; // just swap pointers.

xold = xtmp;

#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \

map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)

#pragma omp parallel for private(i,j)

for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){

if(i!=j)

xnew[i]+= A[i*Ndim + j]*xold[j];

}

xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

// test convergence

conv = 0.0;

#pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \

map(to:Ndim) map(tofrom:conv)

#pragma omp parallel for private(i,tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];

conv += tmp*tmp;

}

conv = sqrt((double)conv);

}

Typically over 4000 iterations!

For each iteration, copy to device

(3*Ndim+Ndim2)*sizeof(TYPE) bytes

For each iteration, copy from device

2*Ndim*sizeof(TYPE) bytes

For each iteration, copy to device

2*Ndim*sizeof(TYPE) bytes

Target data directive
• The target data construct creates a target data region.

• You use the map clauses for explicit data management

#pragma omp target data map(to: A,B) map(from: C)

{….} // a structured block of code

• Data copied into the device data environment at the

beginning of the directive and at the end

• Inside the target data region, multiple target regions

can work with the single data region

#pragma omp target data map(to: A,B) map(from: C)

{

#pragma omp target

{do lots of stuff with A, B and C}

{do something on the host}

#pragma omp target

{do lots of stuff with A, B, and C}

}

Target update directive
• You can update data between target regions with the

target update directive.

#pragma omp target data map(to: A,B) map(from: C)

{

#pragma omp target

{do lots of stuf with A, B and C}

#pragma omp update from(A)

host_do_something_with(A)

#pragma omp update to(A)

#pragma omp target

{do lots of stuff with A, B, and C}

}

Copy A from the

device onto the

host.

Copy A on the

host to A on the

device. t

Jacobi Solver (Par Targ Data, 1/2)
#pragma omp target data map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \

map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)

while((conv > TOL) && (iters<MAX_ITERS))

{ iters++;

xtmp = xnew; // don't copy arrays.

xnew = xold; // just swap pointers.

xold = xtmp;

#pragma update to(xnew[0:Ndim], xold[0:Ndim])

#pragma omp target

#pragma omp parallel for private(i,j)

for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){

if(i!=j)

xnew[i]+= A[i*Ndim + j]*xold[j];

}

xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

Jacobi Solver (Par Targ Data, 2/2)

//

// test convergence

//

conv = 0.0;

#pragma omp update to(conv)

#pragma omp target

#pragma omp parallel for private(i,tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];

conv += tmp*tmp;

}

#pragma omp update from (conv)

conv = sqrt((double)conv);

} \\ end while loop

Jacobi Solver Results: summary

System Implementat

ion

Ndim = 1024 Ndim = 4096

Intel®

Xeon™

processor

parfor 0.55 seconds 21 seconds

par_for 0.36 seconds 21 seconds

Intel® Xeon

Phi™ co-

processor

(knights

corner)

Target dir

per loop

134 seconds Did not

finish

(> 40

minutes)

Data region

+ target per

loop

3.4 seconds 12.2 seconds

Native

par_for

3.2 seconds 5.3 seconds

OpenCL Best 0.97 seconds 9.8 seconds

Source: Tom Deakin and James Prices, University of Bristol, UK. All results with the

Intel icc compiler. Compiler options -03.

Mapping onto more complex

devices

• So far, we have just “off-loaded” OpenMP

code onto a general purpose CPU device

that supports OpenMP multithreaded

parallelism.

• How would we map OpenMP 4.0 onto a

more specialized, throughput oriented

device such as a GPU?

OpenCL Platform Model

• One Host and one or more OpenCL Devices

– Each OpenCL Device is composed of one or more
Compute Units

• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing

Element

OpenCL Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

*the name OpenCL is the property of the Khronos Group

OpenCL Platform Model and OpenMP

Processing

Element

OpenCL Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target

construct to

get onto a

device

Teams construct to create a

league of teams with one team of

threads on each compute unit.

Distribute clause to assign

work-groups to teams.

Parallel for simd

to run on

processing

elements + vector

units

Consider the familiar VADD

example
#include<omp.h>

#include<stdio.h>

#define N 1024

int main()

{

float a[N], b[N], c[N];

int i;

// initialize a, b and c ….

for(i=0;i<N;i++)

c[i] += a[i] + b[i];

// Test results, report results …

}

We will explore how to map

this code onto Many-core

processors (GPU and CPU)

using the OpenMP constructs:

• target

• teams

• distribute

2 Constructs to control devices

• teams construct creates a league of thread teams:

#pragma omp teams

• Supports the clauses:

– num_teams(int) … the number of teams in the league

– thread_limit(int) … max number of threads per team

– Plus private(), firstprivate() and reduction()

• distribute construct distributes iterations of following loops to the master
thread of each team in a league:

#pragma omp distribute

//immediately following for loop(s)

• Supports the clauses:

– dist_schedule(static [, chunk] … the number of teams in the league.

– collapse(int) … combine n closely nested loop into one before distributing.

– Plus private(), firstprivate() and reduction()

Vadd: OpenMP to OpenCL connection

#pragma omp target map(to:a,b) map(tofrom:c)

#pragma omp teams num_teams(NCU) thread_limit(NPE)

#pragma omp distribute

for (ib=0;ib<N; ib=ib+wrk_grp_sz)

#pragma omp parallel for simd

for (i=ib; i<ib+wrk_grp_sz; i++)

c[i] += a[i] + b[i];

Distribute work-

groups to

compute units

Offload to a device.

The body of this loop

are the Individual

work-items in a work-

group

Describe a

device …

NCU

compute

units & NPE

proc.

elements per

compute unit

Vadd: OpenMP to OpenCL connection

int blksz=32, ib, Nblk;

Nblk = N/blksz;

#pragma omp target map(to:a,b) map(tofrom:c)

#pragma omp teams num_teams(NCU) thread_limit(NPE)

#pragma omp distribute

for (ib=0;ib<Nblk;ib++){

int ibeg=ib*blksz;

int iend=(ib+1)*blksz;

if(ib==(Nblk-1))iend=N;

#pragma omp parallel for simd

for (i=ibeg; i<iend; i++)

c[i] += a[i] + b[i];

}

You can include any work-group wide

code you want .. For example to explicitly

control how iterations map onto work

items in a work-group.

Vadd: OpenMP to OpenCL connection

// A more compact way to write the VADD code, letting the runtime

// worry about work-group details

#pragma omp target map(to:a,b) map(tofrom:c)

#pragma omp teams distribute parallel for

for (i=0; i<N; i++)

c[i] += a[i] + b[i];

In many cases, you might be better off to just

distribute the parallel loops to the league of teams

and leave it to the runtime system to manage the

details. This would be more portable code as well.

What about OpenACC?

• OpenACC is an Nvidia owned and driven solution
to pragma driven programming of GPUs (not Open
in the way OpenMP is).

• It started inside the OpenMP effort, but they
pulled out and created their own competing
standard (not a nice thing to do).

• It is focused on the GPU alone … ignoring the fact
that what one really needs is a single source code
base that handles CPU, GPU and Xeon-Phi-like
manycore processors

Jacobi iteration: OpenACC (GPU)

#pragma acc data copy(A), create(Anew)

while (err>tol && iter < iter_max){

err = 0.0;

#pragma acc parallel loop reduction(max:err)

for(int j=1; j< n-1; j++){

for(int i=1; i<M-1; i++){

Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

A[j-1][i] + A[j+1][i]);

err = max(err,abs(Anew[j][i] – A[j][i]));

}

}

#pragma acc parallel loop

for(int j=1; j< n-1; j++){

for(int i=1; i<M-1; i++){

A[j][i] = Anew[j]i];

}

}

iter ++;

}

Create a data region
on the GPU. Copy A
once onto the GPU,
and create Anew on
the device (no copy

from host)

Copy A back out to host

… but only once

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012
The name “OpenACC” is the property of Nvidia.

Jacobi iteration: OpenMP accelerator

directives
#pragma omp target data map(A, Anew)

while (err>tol && iter < iter_max){

err = 0.0;

#pragma target

#pragma omp parallel for reduction(max:err)

for(int j=1; j< n-1; j++){

for(int i=1; i<M-1; i++){

Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

A[j-1][i] + A[j+1][i]);

err = max(err,abs(Anew[j][i] – A[j][i]));

}

}

#pragma omp target

#pragma omp parallel for

for(int j=1; j< n-1; j++){

for(int i=1; i<M-1; i++){

A[j][i] = Anew[j]i];

}

}

iter ++;

}

Create a data region

on the GPU. Map A

and Anew onto the

target device

Copy A back out to host

… but only once

Uses existing OpenMP

constructs such as

parallel and for

OpenMP vs. OpenACC

• Ignore the misinformation you hear “out
there”.

• The two approach have shared roots (based
on pioneering work of Michael Wolf … then
of PGI)

• You can construct exceptions, but for the
most part, if you can express something in
OpenACC, you can do so with OpenMP.

• So why not go with the open Standard that
truely works across platforms?

The name “OpenACC” is the property of Nvidia.

183

Plan

Module Concepts Exercises

OpenMP core

concepts

• Intro to OpenMP

• Creating threads

• Hello_world

• Pi_spmd

Working with

threads

• Synchronization

• Parallel loops

• Single, master, and more

• Pi_spmd_final

• Pi_loop

Managing data and

tasks

• Data Environment

• tasks

• Mandelbrot set

area

• Racy tasks

• Recursive pi

Understanding

shared memory

• Memory Model

• Threadprivate

• Monte Carlo pi

OpenMP beyond

SMP

• SIMD

• Devices and OpenMP

• Jaobi Solver

10 AM

Break

… Plus a set of “challenge problems” for the evening program.

Noon

Lunch

3 PM

Break

8:30

10:30

1:00

3:30

Challenge problems

• Long term retention of acquired skills is best supported by

“random practice”.

– i.e., a set of exercises where you must draw on multiple facets of the

skills you are learning.

• To support “Random Practice” we have assembled a set of

“challenge problems”

1. Parallel molecular dynamics

2. Optimizing matrix multiplication

3. Traversing linked lists in different ways

4. Recursive matrix multiplication algorithms

184

185

Challenge 1: Molecular dynamics

• The code supplied is a simple molecular dynamics

simulation of the melting of solid argon

• Computation is dominated by the calculation of force pairs in
subroutine forces (in forces.c)

• Parallelise this routine using a parallel for construct and

atomics; think carefully about which variables should be

SHARED, PRIVATE or REDUCTION variables

• Experiment with different schedule kinds

186

Challenge 1: MD (cont.)

• Once you have a working version, move the parallel region
out to encompass the iteration loop in main.c
– Code other than the forces loop must be executed by a single thread

(or workshared).

– How does the data sharing change?

• The atomics are a bottleneck on most systems.
– This can be avoided by introducing a temporary array for the force

accumulation, with an extra dimension indexed by thread number

– Which thread(s) should do the final accumulation into f?

187

Challenge 1 MD: (cont.)

• Another option is to use locks
– Declare an array of locks

– Associate each lock with some subset of the particles

– Any thread that updates the force on a particle must hold the
corresponding lock

– Try to avoid unnecessary acquires/releases

– What is the best number of particles per lock?

188

Challenge 2: Matrix multiplication

• Parallelize the matrix multiplication program in the file

matmul.c

• Can you optimize the program by playing with how the loops

are scheduled?

• Try the following and see how they interact with the

constructs in OpenMP

– Alignment

– Cache blocking

– Loop unrolling

– Vectorization

• Goal: Can you approach the peak performance of the

computer?

189

Challenge 3: Traversing linked lists

• Consider the program linked.c

– Traverses a linked list, computing a sequence of Fibonacci numbers

at each node

• Parallelize this program two different ways

1. Use OpenMP tasks

2. Use anything you choose in OpenMP other than tasks.

• The second approach (no tasks) can be difficult and may

take considerable creativity in how you approach the

problem (why its such a pedagogically valuable problem)

190

Challenge 4: Recursive matrix multiplication

• The following three slides explain how to use a recursive

algorithm to multiply a pair of matrices

• Source code implementing this algorithm is provided in the

file matmul_recur.c

• Parallelize this program using OpenMP tasks

Challenge 4: Recursive matrix multiplication

• Quarter each input matrix and output matrix

• Treat each submatrix as a single element and multiply

• 8 submatrix multiplications, 4 additions

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

191

Challenge 4: Recursive matrix multiplication

How to multiply submatrices?

• Use the same routine that is computing the full matrix

multiplication

– Quarter each input submatrix and output submatrix

– Treat each sub-submatrix as a single element and multiply

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C111,1 = A111,1·B111,1 + A111,2·B112,1 +

A121,1·B211,1 + A121,2·B212,1

C1,1 = A1,1·B1,1 + A1,2·B2,1

192

A1,1

A111,1 A111,2

A112,1 A112,2

B1,1

B111,1 B111,2

B112,1 B112,2

C1,1

C111,1 C111,2

C112,1 C112,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

Challenge 4: Recursive matrix multiplication

Recursively multiply submatrices

• Also need stopping criteria for recursion
193

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,

double **A, double **B, double **C)

{// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

// C11 += A11*B11

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A,B,C);

// C11 += A12*B21

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A,B,C);

. . .

}

 Need range of indices to define each submatrix to be used

194

Conclusion

• We have now covered the core features of the OpenMP
specification
– We’ve left off some minor details, but we’ve covered all major topics

… remaining content you can pick up on your own

• Download the spec to learn more … the spec is filled with
examples to support your continuing education
– www.openmp.org

• Get involved:
– Get your organization to join the OpenMP ARB

– Work with us through cOMPunity

195

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

196

OpenMP organizations

• OpenMP architecture review board URL, the

“owner” of the OpenMP specification:

www.openmp.org

• OpenMP User’s Group (cOMPunity) URL:

www.compunity.org

Get involved, join cOMPunity and help

define the future of OpenMP

197

Books about OpenMP

• A book about OpenMP by a

team of authors at the forefront

of OpenMP’s evolution.

 A book about how to “think
parallel” with examples in
OpenMP, MPI and java

Background references

198

A great book that explores key

patterns with Cilk, TBB,

OpenCL, and OpenMP (by

McCool, Robison, and Reinders)

An excellent introduction and

overview of multithreaded

programming in general (by Clay

Breshears)

199

OpenMP Papers

• Sosa CP, Scalmani C, Gomperts R, Frisch MJ. Ab initio quantum chemistry on a
ccNUMA architecture using OpenMP. III. Parallel Computing, vol.26, no.7-8, July
2000, pp.843-56. Publisher: Elsevier, Netherlands.

• Couturier R, Chipot C. Parallel molecular dynamics using OPENMP on a shared
memory machine. Computer Physics Communications, vol.124, no.1, Jan. 2000,
pp.49-59. Publisher: Elsevier, Netherlands.

• Bentz J., Kendall R., “Parallelization of General Matrix Multiply Routines Using
OpenMP”, Shared Memory Parallel Programming with OpenMP, Lecture notes in
Computer Science, Vol. 3349, P. 1, 2005

• Bova SW, Breshearsz CP, Cuicchi CE, Demirbilek Z, Gabb HA. Dual-level parallel
analysis of harbor wave response using MPI and OpenMP. International Journal of
High Performance Computing Applications, vol.14, no.1, Spring 2000, pp.49-64.
Publisher: Sage Science Press, USA.

• Ayguade E, Martorell X, Labarta J, Gonzalez M, Navarro N. Exploiting multiple
levels of parallelism in OpenMP: a case study. Proceedings of the 1999
International Conference on Parallel Processing. IEEE Comput. Soc. 1999, pp.172-
80. Los Alamitos, CA, USA.

• Bova SW, Breshears CP, Cuicchi C, Demirbilek Z, Gabb H. Nesting OpenMP in an
MPI application. Proceedings of the ISCA 12th International Conference. Parallel
and Distributed Systems. ISCA. 1999, pp.566-71. Cary, NC, USA.

200

OpenMP Papers (continued)

• Jost G., Labarta J., Gimenez J., What Multilevel Parallel Programs do when you are
not watching: a Performance analysis case study comparing MPI/OpenMP, MLP, and
Nested OpenMP, Shared Memory Parallel Programming with OpenMP, Lecture notes
in Computer Science, Vol. 3349, P. 29, 2005

• Gonzalez M, Serra A, Martorell X, Oliver J, Ayguade E, Labarta J, Navarro N.
Applying interposition techniques for performance analysis of OPENMP parallel
applications. Proceedings 14th International Parallel and Distributed Processing
Symposium. IPDPS 2000. IEEE Comput. Soc. 2000, pp.235-40.

• Chapman B, Mehrotra P, Zima H. Enhancing OpenMP with features for locality
control. Proceedings of Eighth ECMWF Workshop on the Use of Parallel Processors
in Meteorology. Towards Teracomputing. World Scientific Publishing. 1999, pp.301-
13. Singapore.

• Steve W. Bova, Clay P. Breshears, Henry Gabb, Rudolf Eigenmann, Greg Gaertner,
Bob Kuhn, Bill Magro, Stefano Salvini. Parallel Programming with Message Passing
and Directives; SIAM News, Volume 32, No 9, Nov. 1999.

• Cappello F, Richard O, Etiemble D. Performance of the NAS benchmarks on a cluster
of SMP PCs using a parallelization of the MPI programs with OpenMP. Lecture Notes
in Computer Science Vol.1662. Springer-Verlag. 1999, pp.339-50.

• Liu Z., Huang L., Chapman B., Weng T., Efficient Implementationi of OpenMP for
Clusters with Implicit Data Distribution, Shared Memory Parallel Programming with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 121, 2005

201

OpenMP Papers (continued)

• B. Chapman, F. Bregier, A. Patil, A. Prabhakar, “Achieving performance
under OpenMP on ccNUMA and software distributed shared memory
systems,” Concurrency and Computation: Practice and Experience. 14(8-
9): 713-739, 2002.

• J. M. Bull and M. E. Kambites. JOMP: an OpenMP-like interface for Java.
Proceedings of the ACM 2000 conference on Java Grande, 2000, Pages
44 - 53.

• L. Adhianto and B. Chapman, “Performance modeling of communication
and computation in hybrid MPI and OpenMP applications, Simulation
Modeling Practice and Theory, vol 15, p. 481-491, 2007.

• Shah S, Haab G, Petersen P, Throop J. Flexible control structures for
parallelism in OpenMP; Concurrency: Practice and Experience, 2000;
12:1219-1239. Publisher John Wiley & Sons, Ltd.

• Mattson, T.G., How Good is OpenMP? Scientific Programming, Vol. 11,
Number 2, p.81-93, 2003.

• Duran A., Silvera R., Corbalan J., Labarta J., “Runtime Adjustment of
Parallel Nested Loops”, Shared Memory Parallel Programming with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 137, 2005

202

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Exercise 1: hello world

– Exercise 2: Simple SPMD pi program

– Exercise 3: SPMD pi without false sharing

– Exercise 4: Loop level pi

– Exercise 5: Mandelbrot Set area

– Exercise 6: Recursive pi program

• Challenge Problems

– Challenge 1: Molecular dynamics

– Challenge 2: Monte Carlo pi and random numbers

– Challenge 3: Matrix multiplication

– Challenge 4: Linked lists

– Challenge 5: Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

203

OpenMP pre-history

• OpenMP based upon SMP directive standardization efforts

PCF and aborted ANSI X3H5 – late 80’s

– Nobody fully implemented either standard

– Only a couple of partial implementations

• Vendors considered proprietary API’s to be a competitive

feature:

– Every vendor had proprietary directives sets

– Even KAP, a “portable” multi-platform parallelization tool used

different directives on each platform

PCF – Parallel computing forum KAP – parallelization tool from KAI.

204

History of OpenMP

SGI

Cray

Merged,

needed

commonality

across

products

KAI ISV - needed

larger market

was tired of

recoding for

SMPs. Urged

vendors to

standardize.

ASCI

Wrote a

rough draft

straw man

SMP API

DEC

IBM

Intel

HP

Other vendors

invited to join

1997

205

OpenMP Release History

Tasking, runtime control over loop

schedules, explicit control over nested

parallel regions, refined control over

resources

Expanded atomics, refined tasking, and more

control over nested parallel regions

GPGPU support,

user defined

reductions, and

more

And OpenMP 4.5 in November 2015

206

OpenMP 4.0 ratified July 2013

• End of a long road? A brief rest stop along the way…

• Addresses several major open issues for OpenMP

• Do not break existing code unnecessarily

• Includes 106 passed tickets

– Focused on major tickets initially

– Builds on two comment drafts (“RC1” and “RC2”)

– Many small tickets after RC2, a few large ones

207

Overview of major 4.0 additions

• Device constructs

• SIMD constructs

• Cancellation

• Task dependences and task groups

• Thread affinity control

• User-defined reductions

• Initial support for Fortran 2003

• Support for array sections (including in C and C++)

• Sequentially consistent atomics

• Display of initial OpenMP internal control variables

208

OpenMP 4.0 provides support

for a wide range of devices
• Use target directive to offload a region

• Creates new data environment from enclosing device data

environment

• Clauses support data movement and conditional offloading

– device supports offload to a device other than default

– Does not assume copies are made – memory may be shared with

host

– Does not copy if present in enclosing device data environment

– if supports running on host if amount of work is small

• Other constructs support device data environment

– target data places map list items in device data environment

– target update ensures variable is consistent in host and device

#pragma omp target [clause [[,] clause] …]

209

Several other device constructs

support full-featured code
• Use target declare directive to create device versions

– Can be applied to functions and global variables

– Required for UDRs that use functions and execute on device

• teams directive creates multiple teams in a target region

– Work across teams only synchronized at end of target region

– Useful for GPUs (corresponds to thread blocks)

• Use distribute directive to run loop across multiple teams

• Several combined/composite constructs simplify device use

#pragma omp declare target

#pragma omp teams [clause [[,] clause] …]

#pragma omp distribute [clause [[,] clause] …]

Example: OpenMP support for devices
Jacobi iteration

#pragma omp target data map(A, Anew)

while (err>tol && iter < iter_max){

err = 0.0;

#pragma omp target teams distribute parallel for reduction(max:err)

for(int j=1; j< n-1; j++){

for(int i=1; i<M-1; i++){

Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

A[j-1][i] + A[j+1][i]);

err = max(err,abs(Anew[j][i] – A[j][i]));

}

}

#pragma omp target teams distribute parallel for

for(int j=1; j< n-1; j++){

for(int i=1; i<M-1; i++){

A[j][i] = Anew[j]i];

}

}

iter ++;

}

Create a data region on the

device. Map A and Anew

onto the target device

Copy A back out to host

… but only once

The "target teams”

construct tells the

compiler to pick the

number of teams …

which translates to

thread blocks for

CUDA.

211

OpenMP 4.0 provides

portable SIMD constructs
• Use simd directive to indicate a loop should be SIMDized

• Execute iterations of following loop in SIMD chunks

– Region binds to the current task, so loop is not divided across threads

– SIMD chunk is set of iterations executed concurrently by a SIMD lanes

• Creates a new data environment

• Clauses control data environment, how loop is partitioned

– safelen(length) limits the number of iterations in a SIMD chunk

– linear lists variables with a linear relationship to the iteration space

– aligned specifies byte alignments of a list of variables

– private, lastprivate, reduction, collapse - usual meanings

#pragma omp simd [clause [[,] clause] …]

212

The declare simd construct

generates SIMD functions

• Compile library and use functions in a SIMD loop

– Creates implicit tasks of parallel region

– Divides loop into SIMD chunks

– Schedules SIMD chunks across implicit tasks

– Loop is fully SIMDized by using SIMD versions of functions

#pragma omp declare simd notinbranch

float min (float a, float b) {

return a < b ? a : b; }

#pragma omp declare simd notinbranch

float distsq (float x, float y) {

return (x − y) ∗ (x − y); }

void minex (float *a, float *b, float *c, float *d) {

#pragma omp parallel for simd

for (i = 0; i < N; i++)

d[i] = min (distsq(a[i], b[i]), c[i]);

}

Notinbranch tells the

compiler you can

assume this function

will not be called inside

a branch statement ..

i.e. all vector lanes will

execute this function

213

A simple UDR example

• Declare the reduction operator

• Use the reduction operator in a reduction clause

• Private copies created for a reduction are initialized to the
identity that was specified for the operator and type
– Default identity defined if identity clause not present

• Compiler uses combiner to combine private copies
– omp_out refers to private copy that holds combined value

– omp_in refers to the other private copy

#pragma omp declare reduction (merge : std::vector<int> :

omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))

void schedule (std::vector<int> &v, std::vector<int> &filtered) {

#pragma omp parallel for reduction (merge : filtered)

for (std:vector<int>::iterator it = v.begin(); it < v.end();

it++)

if (filter(*it)) filtered.push_back(*it);

}

214

OpenMP 4.0 includes initial

support for Fortran 2003
• Added to list of base language versions

• Have a list of unsupported Fortran 2003 features

– List initially included 24 items (some big, some small)

– List has been reduced to 14 items

– List in specification reflects approximate OpenMP Next priority

– Priorities determined by importance and difficulty

• Plan: Reduce list and ideally provide full support in 5.0

– Many small changes throughout; Support:

– Procedure pointers

– Renaming operators on the USE statement

– ASSOCIATE construct

– VOLATILE attribute

– Structure constructors

– Will support Fortran 2003 object-oriented features next

– The biggest issue

– Considering concurrent reexamination of C++ support

215

Plan for OpenMP specifications
• OpenMP Tools Interface Technical Report

– Released in March 2014

– Working towards adoption in 5.0

• TR3: Initial OpenMP 4.5 Comment Draft
– Changes adopted in time frame of SC14

– Provided clear guidance to begin 4.1 implementations

• Final OpenMP 4.5 Comment Draft: Released Late Last Month

• OpenMP 4.5
– Clarifications, refinements and minor extensions to existing

specification

– Major focus is device construct refinements

– Do not break existing code

– Released by SC15

• OpenMP 5.0
– Address several major open issues for OpenMP

– Expect less significant advance than 4.0 from 3.1/3.0

– Do not break existing code unnecessarily

– Targeting release for SC15 (somewhat ambitious)

216

OpenMP 4.5 included many

refinements

• 92 tickets have been passed

– Many refinements to device support

– Reflects improved efficiency due to LaTex conversion

• Many clarifications and minor enhancements

– Handled several items from Fortran 2003 list

– SIMD and tasking extensions and refinements

– Reductions for C/C++ arrays and templates

– Runtime routines to support cancelation and affinity

• Some new features are being added

– Support for DOACROSS loops

– Can divide loop into tasks with taskloop construct

217

TR3 (initial OpenMP 4.1 comment

draft) refines device constructs

• Adds flush to several device constructs

• Supports unstructured data movement

• Can now require update/assignment for map (always)

• Improves asynchronous execution

– In 4.0, could have a task region with only a target region

– target and other device regions are now tasks

– By default, undeferred

– Can use nowait and depend clauses

• Many clarifications and minor corrections

218

Final OpenMP 4.1 comment draft

further refines device constructs
•memcpy API to support manual mapping

• Device pointers (provides interoperability with CUDA and

OpenCL libraries)

• Mapping structure elements

• Tweaks to device environment support, including:

– Default for scalar variables: firstprivate

– link clause for declare target construct

• New combined constructs

• Other miscellaneous usability features

219

More significant topics are being

considered for OpenMP 5.0

• Updates to support latest C/C++ standards

• More tasking advances (support for event loops)

• General error model

• Continued improvements to device support

• Performance and debugging tools support

• Interoperability and composability

• Locality and affinity

• Transactional memory

• Additional looping constructs and refinements

220

Appendices
• Sources for Additional information

• OpenMP History

• Solutions to exercises

– Exercise 1: hello world

– Exercise 2: Simple SPMD Pi program

– Exercise 3: SPMD Pi without false sharing

– Exercise 4: Loop level Pi

– Exercise 5: Mandelbrot Set area

– Exercise 6: Recursive pi program

• Challenge Problems

– Challenge 1: Molecular dynamics

– Challenge 2: Monte Carlo pi and random numbers

– Challenge 3: Matrix multiplication

– Challenge 4: linked lists

– Challenge 5: Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler Notes

221

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

222

Hello world Exercise: Solution
A multi-threaded “Hello world” program

• Write a multithreaded program where each thread prints

“hello world”.

#include “omp.h”

void main()

{

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

}

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with default

number of threads

Runtime library function to

return a thread ID.End of the Parallel region

223

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

224

The SPMD pattern

• The most common approach for parallel algorithms is the
SPMD or Single Program Multiple Data pattern.

• Each thread runs the same program (Single Program), but
using the thread ID, they operate on different data (Multiple
Data) or take slightly different paths through the code.

• In OpenMP this means:
– A parallel region “near the top of the code”.

– Pick up thread ID and num_threads.

– Use them to split up loops and select different blocks of data to work on.

225

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id,nthrds;

double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

sum[id] += 4.0/(1.0+x*x);

}

}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;

}

Solution: A simple SPMD pi program

Promote scalar to an array

dimensioned by number of

threads to avoid race

condition.

This is a common trick in

SPMD programs to create a

cyclic distribution of loop

iterations

Only one thread should copy the

number of threads to the global

value to make sure multiple threads

writing to the same address don’t

conflict.

226

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

227

False sharing

• If independent data elements happen to sit on the same

cache line, each update will cause the cache lines to “slosh

back and forth” between threads.

– This is called “false sharing”.

• If you promote scalars to an array to support creation of an

SPMD program, the array elements are contiguous in

memory and hence share cache lines.

– Result … poor scalability

• Solution:

– When updates to an item are frequent, work with local copies of data

instead of an array indexed by the thread ID.

– Pad arrays so elements you use are on distinct cache lines.

228

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ double pi; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id,nthrds; double x, sum;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for (i=id, sum=0.0;i< num_steps; i=i+nthrds){

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

#pragma omp critical

pi += sum * step;

}

}

Solution: SPMD pi without false sharing

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi in a critical region so

updates don’t conflict

No array, so

no false

sharing.

Create a scalar local to

each thread to

accumulate partial

sums.

229

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

230

Loopy Pi: Solution

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel

{

double x;

#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

}

pi = step * sum;

}

231

Loopy pi: Solution

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

Note: we created a parallel

program without changing

any code and by adding 2

simple lines of text!

i private by

default

For good OpenMP

implementations,

reduction is more

scalable than critical.

232

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

Solution: The Mandelbrot area program
#include <omp.h>

define NPOINTS 1000

define MXITR 1000

void testpoint(void);

struct d_complex{

double r; double i;

};

struct d_complex c;

int numoutside = 0;

int main(){

int i, j;

double area, error, eps = 1.0e-5;

#pragma omp parallel for default(shared) \

private(c,eps)

for (i=0; i<NPOINTS; i++) {

for (j=0; j<NPOINTS; j++) {

c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

testpoint();

}

}

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);

error=area/(double)NPOINTS;

} 233

void testpoint(void){

struct d_complex z;

int iter;

double temp;

z=c;

for (iter=0; iter<MXITR; iter++){

temp = (z.r*z.r)-(z.i*z.i)+c.r;

z.i = z.r*z.i*2+c.i;

z.r = temp;

if ((z.r*z.r+z.i*z.i)>4.0) {

numoutside++;

break;

}

}

} When I run this

program, I get a

different incorrect

answer each time I

run it … there is a

race condition!!!!

Solution: Area of a Mandelbrot set

• Solution is in the file mandel_par.c

• Errors:

– Eps is private but uninitialized. Two solutions

– It’s read-only so you can make it shared.

– Make it firstprivate

– The loop index variable j is shared by default; make it private

– The variable c has global scope so “testpoint” may pick up the global

value rather than the private value in the loop; solution … pass c as

an arg to testpoint

– Updates to “numoutside” are a race; protect with an atomic.

234

Debugging parallel programs

• Find tools that work with your environment and learn to use

them; a good parallel debugger can make a huge difference

• But parallel debuggers are not portable and you will

assuredly need to debug “by hand” at some point

• There are tricks to help you; the most important is to use the

default(none) pragma

235

#pragma omp parallel for default(none) private(c, eps)

for (i=0; i<NPOINTS; i++) {

for (j=0; j<NPOINTS; j++) {

c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

testpoint();

}

}

}

Using

default(none)

generates a

compiler

error that j is

unspecified.

Solution: The Mandelbrot area program
#include <omp.h>

define NPOINTS 1000

define MXITR 1000

struct d_complex{

double r; double i;

};

void testpoint(struct d_complex);

struct d_complex c;

int numoutside = 0;

int main(){

int i, j;

double area, error, eps = 1.0e-5;

#pragma omp parallel for default(shared) private(c, j) \

firstpriivate(eps)

for (i=0; i<NPOINTS; i++) {

for (j=0; j<NPOINTS; j++) {

c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

testpoint(c);

}

}

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);

error=area/(double)NPOINTS;

} 236

void testpoint(struct d_complex c){

struct d_complex z;

int iter;

double temp;

z=c;

for (iter=0; iter<MXITR; iter++){

temp = (z.r*z.r)-(z.i*z.i)+c.r;

z.i = z.r*z.i*2+c.i;

z.r = temp;

if ((z.r*z.r+z.i*z.i)>4.0) {

#pragma omp atomic

numoutside++;

break;

}

}

}

Other errors found using a

debugger or by inspection:

• eps was not initialized

• Protect updates of numoutside

• Which value of c die testpoint()

see? Global or private?

237

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

Racy Tasks
#include <stdio.h>

#include <omp.h>

int main() {

printf("I think");

#pragma omp parallel

{

#pragma omp single

{

#pragma omp task

printf(" car");

#pragma omp task

printf(" race");

}

}

printf("s");

printf(" are fun!\n");

}

238

Create a team of threads

One thread creates task, others wait at the

corresponding barrier … ready to execute tasks

All tasks complete before moving past the

barrier associated with the single

239

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

Divide and conquer pattern

• Use when:

–A problem includes a method to divide into subproblems
and a way to recombine solutions of subproblems into a
global solution

• Solution

–Define a split operation

–Continue to split the problem until subproblems are small
enough to solve directly

–Recombine solutions to subproblems to solve original
global problem

• Note:

–Computing may occur at each phase (split, leaves,
recombine)

Divide and conquer

• Split the problem into smaller sub-problems; continue until
the sub-problems can be solve directly

 3 Options:

 Do work as you split

into sub-problems

 Do work only at the

leaves

 Do work as you

recombine

Program: OpenMP tasks (divide and conquer pattern)
#include <omp.h>

static long num_steps = 100000000;

#define MIN_BLK 10000000

double pi_comp(int Nstart,int Nfinish,double step)

{ int i,iblk;

double x, sum = 0.0,sum1, sum2;

if (Nfinish-Nstart < MIN_BLK){

for (i=Nstart;i< Nfinish; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

}

else{

iblk = Nfinish-Nstart;

#pragma omp task shared(sum1)

sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);

#pragma omp task shared(sum2)

sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);

#pragma omp taskwait

sum = sum1 + sum2;

}return sum;

} 242

int main ()

{

int i;

double step, pi, sum;

step = 1.0/(double) num_steps;

#pragma omp parallel

{

#pragma omp single

sum =

pi_comp(0,num_steps,step);

}

pi = step * sum;

}

Results*: pi with tasks

243

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st SPMD SPMD

critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

244

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

245

Computers and random numbers

• We use “dice” to make random numbers:
– Given previous values, you cannot predict the next value.

– There are no patterns in the series … and it goes on forever.

• Computers are deterministic machines … set an initial state,
run a sequence of predefined instructions, and you get a
deterministic answer
– By design, computers are not random and cannot produce random

numbers.

• However, with some very clever programming, we can make
“pseudo random” numbers that are as random as you need
them to be … but only if you are very careful.

• Why do I care? Random numbers drive statistical methods
used in countless applications:
– Sample a large space of alternatives to find statistically good answers

(Monte Carlo methods).

246

Monte Carlo Calculations
Using Random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

• Example: Computing π with a digital dart board:

 Throw darts at the circle/square.

 Chance of falling in circle is
proportional to ratio of areas:

Ac = r2 * π

As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4

 Compute π by randomly
choosing points, count the
fraction that falls in the circle,
compute pi.

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

247

Parallel Programmers love Monte Carlo

algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{

long i; long Ncirc = 0; double pi, x, y;
double r = 1.0; // radius of circle. Side of squrare is 2*r
seed(0,-r, r); // The circle and square are centered at the origin
#pragma omp parallel for private (x, y) reduction (+:Ncirc)
for(i=0;i<num_trials; i++)
{

x = random(); y = random();
if (x*x + y*y) <= r*r) Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_trials, pi);

}

Embarrassingly parallel: the
parallelism is so easy its
embarrassing.

Add two lines and you have a
parallel program.

248

Linear Congruential Generator (LCG)

• LCG: Easy to write, cheap to compute, portable, OK quality

 If you pick the multiplier and addend correctly, LCG has a period of
PMOD.

 Picking good LCG parameters is complicated, so look it up
(Numerical Recipes is a good source). I used the following:

 MULTIPLIER = 1366

 ADDEND = 150889

 PMOD = 714025

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;

random_last = random_next;

249

LCG code

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
double random ()
{

long random_next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

Seed the pseudo random

sequence by setting

random_last

250

Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,

trail 1

LCG 4 threads,

trial 2

LCG, 4 threads,

trial 3

L
o

g
 1

0
R

e
la

tiv
e

 e
rro

r

Log10 number of samples

Run the same

program the

same way and

get different

answers!

That is not

acceptable!

Issue: my LCG

generator is not

threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel

T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.

251

LCG code: threadsafe version

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{

long random_next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

random_last carries state

between random number

computations,

To make the generator

threadsafe, make

random_last threadprivate

so each thread has its

own copy.

252

Thread safe random number generators

L
o

g
1

0
R

e
la

tiv
e

 e
rro

r

Log10 number of samples
Thread safe

version gives the

same answer each

time you run the

program.

But for large

number of

samples, its

quality is lower

than the one

thread result!

Why?

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 LCG - one

thread

LCG 4 threads,

trial 1

LCT 4 threads,

trial 2

LCG 4 threads,

trial 3

LCG 4 threads,

thread safe

253

Pseudo Random Sequences
• Random number Generators (RNGs) define a sequence of pseudo-random

numbers of length equal to the period of the RNG

 In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

 Grab arbitrary seeds and you may generate overlapping sequences

 E.g. three sequences … last one wraps at the end of the RNG period.

 Overlapping sequences = over-sampling and bad statistics … lower quality or
even wrong answers!

Thread 1

Thread 2

Thread 3

254

Parallel random number generators

• Multiple threads cooperate to generate and use random
numbers.

• Solutions:
– Replicate and Pray
– Give each thread a separate, independent generator
– Have one thread generate all the numbers.
– Leapfrog … deal out sequence values “round robin”

as if dealing a deck of cards.
– Block method … pick your seed so each threads gets

a distinct contiguous block.
• Other than “replicate and pray”, these are difficult to

implement. Be smart … buy a math library that does it
right.

If done right, can

generate the

same sequence

regardless of the

number of

threads …

Nice for

debugging, but

not really needed

scientifically.

Intel’s Math kernel Library supports all of these

methods.

255

MKL Random number generators (RNG)

#define BLOCK 100

double buff[BLOCK];

VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,

BLOCK, buff, low, hi)

vslDeleteStream(&stream);

 MKL includes several families of RNGs in its vector statistics library.

 Specialized to efficiently generate vectors of random numbers

Initialize a

stream or

pseudo

random

numbers

Select type of RNG

and set seed

Fill buff with BLOCK pseudo rand.

nums, uniformly distributed with values

between lo and hi.

Delete the stream when you are done

256

Wichmann-Hill generators (WH)

• WH is a family of 273 parameter sets each defining a non-

overlapping and independent RNG.

• Easy to use, just make each stream threadprivate and initiate RNG

stream so each thread gets a unique WG RNG.

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

…

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);

257

Independent Generator for each thread

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6

WH one

thread

WH, 2

threads

WH, 4

threads

L
o

g
1

0
R

e
la

tiv
e

 e
rro

r

Log10 number of samples

Notice that once

you get beyond

the high error,

small sample

count range,

adding threads

doesn’t

decrease quality

of random

sampling.

258

#pragma omp single

{ nthreads = omp_get_num_threads();

iseed = PMOD/MULTIPLIER; // just pick a seed

pseed[0] = iseed;

mult_n = MULTIPLIER;

for (i = 1; i < nthreads; ++i)

{

iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);

pseed[i] = iseed;

mult_n = (mult_n * MULTIPLIER) % PMOD;

}

}

random_last = (unsigned long long) pseed[id];

Leap Frog method
• Interleave samples in the sequence of pseudo random numbers:

– Thread i starts at the ith number in the sequence

– Stride through sequence, stride length = number of threads.

• Result … the same sequence of values regardless of the number of

threads.

One thread

computes offsets

and strided

multiplier

LCG with Addend = 0 just

to keep things simple

Each thread stores offset starting

point into its threadprivate “last

random” value

259

Same sequence with many threads.

• We can use the leapfrog method to generate the same

answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for the

y values (WH+1). Also used the leapfrog method to deal out iterations among threads.

260

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

261

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

Molecular dynamics: Solution

#pragma omp parallel for default (none) \

shared(x,f,npart,rcoff,side) \

reduction(+:epot,vir) \

schedule (static,32)

for (int i=0; i<npart*3; i+=3) {

……… Loop is not well load

balanced: best

schedule has to be

found by experiment.

Compiler will warn you

if you have missed

some variables

........

#pragma omp atomic

f[j] -= forcex;

#pragma omp atomic

f[j+1] -= forcey;

#pragma omp atomic

f[j+2] -= forcez;

}

}

#pragma omp atomic

f[i] += fxi;

#pragma omp atomic

f[i+1] += fyi;

#pragma omp atomic

f[i+2] += fzi;

}

}

All updates to f must be

atomic

Molecular dynamics : Solution (cont.)

Molecular dynamics : With orphaning

#pragma omp single

{

vir = 0.0;

epot = 0.0;

}

#pragma omp for reduction(+:epot,vir) schedule (static,32)

for (int i=0; i<npart*3; i+=3) {

………
All variables which used to

be shared here are now

implicitly determined

Implicit barrier needed to avoid race

condition with update of reduction variables

at end of the for construct

Molecular dynamics : With array reduction

ftemp[myid][j] -= forcex;

ftemp[myid][j+1] -= forcey;

ftemp[myid][j+2] -= forcez;

}

}

ftemp[myid][i] += fxi;

ftemp[myid][i+1] += fyi;

ftemp[myid][i+2] += fzi;

}

Replace atomics with

accumulation into array

with extra dimension

Molecular dynamics : With array reduction

….

#pragma omp for

for(int i=0;i<(npart*3);i++){

for(int id=0;id<nthreads;id++){

f[i] += ftemp[id][i];

ftemp[id][i] = 0.0;

}

}

Reduction can be done

in parallel

Zero ftemp for next time

round

267

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

268

Challenge: Matrix Multiplication

• Parallelize the matrix multiplication program in the file

matmul.c

• Can you optimize the program by playing with how the loops

are scheduled?

• Try the following and see how they interact with the

constructs in OpenMP

– Cache blocking

– Loop unrolling

– Vectorization

• Goal: Can you approach the peak performance of the

computer?

269

Matrix multiplication

#pragma omp parallel for private(tmp, i, j, k)
for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){
tmp = 0.0;
for(k=0;k<Pdim;k++){

/* C(i,j) = sum(over k) A(i,k) * B(k,j) */
tmp += *(A+(i*Ndim+k)) * *(B+(k*Pdim+j));

}
*(C+(i*Ndim+j)) = tmp;

}
}

•On a dual core laptop

•13.2 seconds 153 Mflops one thread

•7.5 seconds 270 Mflops two threads

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

There is much more that can be

done. This is really just the first

and most simple step

270

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

271

Exercise: traversing linked lists

• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at

each node.

• Parallelize this program two different ways

1. Use OpenMP tasks

2. Use anything you choose in OpenMP other than tasks.

• The second approach (no tasks) can be difficult and may

take considerable creativity in how you approach the

problem (hence why its such a pedagogically valuable

problem).

272

Linked lists with tasks
• See the file Linked_omp3_tasks.c

#pragma omp parallel

{

#pragma omp single

{

p=head;

while (p) {

#pragma omp task firstprivate(p)

processwork(p);

p = p->next;

}

}

}

Creates a task with its own

copy of “p” initialized to the

value of “p” when the task is

defined

273

Exercise: traversing linked lists

• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at

each node.

• Parallelize this program two different ways

1. Use OpenMP tasks

2. Use anything you choose in OpenMP other than tasks.

• The second approach (no tasks) can be difficult and may

take considerable creativity in how you approach the

problem (hence why its such a pedagogically valuable

problem).

274

Linked lists without tasks
• See the file Linked_omp25.c

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for(i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel

{

#pragma omp for schedule(static,1)

for(i=0; i<count; i++)

processwork(parr[i]);

}

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1

One Thread 48 seconds 45 seconds

Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

275

Linked lists without tasks: C++ STL
• See the file Linked_cpp.cpp

std::vector<node *> nodelist;

for (p = head; p != NULL; p = p->next)

nodelist.push_back(p);

int j = (int)nodelist.size();

#pragma omp parallel for schedule(static,1)

for (int i = 0; i < j; ++i)

processwork(nodelist[i]);

C++, default sched. C++, (static,1) C, (static,1)

One Thread 37 seconds 49 seconds 45 seconds

Two Threads 47 seconds 32 seconds 28 seconds

Copy pointer to each node into an array

Count number of items in the linked list

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

276

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

#define THRESHOLD 32768 // product size below which simple matmult code is called

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,
double **A, double **B, double **C)

// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

{
if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)

matmult (mf, ml, nf, nl, pf, pl, A, B, C);
else
{

#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C11 += A11*B11
matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C11 += A12*B21

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C12 += A11*B12
matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C12 += A12*B22

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C21 += A21*B11
matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C21 += A22*B21

}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{

matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C22 += A21*B12
matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C22 += A22*B22

}
#pragma omp taskwait

}
}

Recursive matrix multiplication

277

• Could be executed in parallel as 4 tasks

– Each task executes the two calls for the same output submatrix of C

• However, the same number of multiplication operations needed

278

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

Fortran and OpenMP

• We were careful to design the OpenMP constructs so they

cleanly map onto C, C++ and Fortran.

• There are a few syntactic differences that once understood,

will allow you to move back and forth between languages.

• In the specification, language specific notes are included

when each construct is defined.

279

OpenMP:
Some syntax details for Fortran programmers

• Most of the constructs in OpenMP are compiler directives.
– For Fortran, the directives take one of the forms:

C$OMP construct [clause [clause]…]

!$OMP construct [clause [clause]…]

*$OMP construct [clause [clause]…]

• The OpenMP include file and lib module
use omp_lib

Include omp_lib.h

OpenMP:
Structured blocks (Fortran)

C$OMP PARALLEL

10 wrk(id) = garbage(id)

res(id) = wrk(id)**2

if(conv(res(id)) goto 10

C$OMP END PARALLEL

print *,id

–Most OpenMP constructs apply to structured blocks.

–Structured block: a block of code with one point of
entry at the top and one point of exit at the bottom.

–The only “branches” allowed are STOP statements
in Fortran and exit() in C/C++.

C$OMP PARALLEL

10 wrk(id) = garbage(id)

30 res(id)=wrk(id)**2

if(conv(res(id))goto 20

go to 10

C$OMP END PARALLEL

if(not_DONE) goto 30

20 print *, id

A structured block Not A structured block

OpenMP:
Structured Block Boundaries

 In Fortran: a block is a single statement or a group of statements between
directive/end-directive pairs.

C$OMP PARALLEL

10 wrk(id) = garbage(id)

res(id) = wrk(id)**2

if(conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL DO

do I=1,N

res(I)=bigComp(I)

end do

C$OMP END PARALLEL DO

 The “construct/end construct” pairs is done anywhere a structured block
appears in Fortran. Some examples:

 DO … END DO

 PARALLEL … END PARREL

 CRICITAL … END CRITICAL

 SECTION … END SECTION

 SECTIONS … END SECTIONS

 SINGLE … END SINGLE

 MASTER … END MASTER

Runtime library routines

• The include file or module defines parameters

– Integer parameter omp_locl_kind

– Integer parameter omp_nest_lock_kind

– Integer parameter omp_sched_kind

– Integer parameter openmp_version

– With value that matches C’s _OPEMMP macro

• Fortran interfaces are similar to those used with C

– Subroutine omp_set_num_threads (num_threads)

– Integer function omp_get_num_threads()

– Integer function omp_get_thread_num()\

– Subroutine omp_init_lock(svar)

– Integer(kind=omp_lock_kind) svar

– Subroutine omp_destroy_lock(svar)

– Subroutine omp_set_lock(svar)

– Subroutine omp_unset_lock(svar)

283

284

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

285

How do people mix MPI and OpenMP?

Replicate the program.

Add glue code

Break up the data

A sequential program

working on a data set

•Create the MPI program

with its data

decomposition.

• Use OpenMP inside each

MPI process.

286

Pi program with MPI and OpenMP

#include <mpi.h>

#include “omp.h”

void main (int argc, char *argv[])

{

int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;

step = 1.0/(double) num_steps ;

MPI_Init(&argc, &argv) ;

MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;

MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;

my_steps = num_steps/numprocs ;

#pragma omp parallel for reduction(+:sum) private(x)

for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++)

{

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

sum *= step ;

MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD) ;

}

Get the MPI

part done

first, then add

OpenMP

pragma

where it

makes sense

to do so

287

Key issues when mixing OpenMP and MPI

1. Messages are sent to a process not to a particular thread.

– Not all MPIs are threadsafe. MPI 2.0 defines threading modes:

– MPI_Thread_Single: no support for multiple threads

– MPI_Thread_Funneled: Mult threads, only master calls MPI

– MPI_Thread_Serialized: Mult threads each calling MPI, but they
do it one at a time.

– MPI_Thread_Multiple: Multiple threads without any restrictions

– Request and test thread modes with the function:

MPI_init_thread(desired_mode, delivered_mode, ierr)

2. Environment variables are not propagated by mpirun. You’ll
need to broadcast OpenMP parameters and set them with
the library routines.

288

Dangerous Mixing of MPI and OpenMP

• The following will work only if MPI_Thread_Multiple is supported … a

level of support I wouldn’t depend on.

MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;
#pragma omp parallel
{

int tag, swap_neigh, stat, omp_id = omp_thread_num();
long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
big_ugly_calc1(omp_id, mpi_id, buffer);

// Finds MPI id and tag so
neighbor(omp_id, mpi_id, &swap_neigh, &tag); // messages don’t conflict

MPI_Send (buffer, BUFF_SIZE, MPI_LONG, swap_neigh,
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical

consume(buffer, omp_id, mpi_id);
}

289

Messages and threads
• Keep message passing and threaded sections of your

program separate:

– Setup message passing outside OpenMP parallel regions
(MPI_Thread_funneled)

– Surround with appropriate directives (e.g. critical section or master)
(MPI_Thread_Serialized)

– For certain applications depending on how it is designed it may not
matter which thread handles a message. (MPI_Thread_Multiple)

– Beware of race conditions though if two threads are probing on the same
message and then racing to receive it.

290

Safe Mixing of MPI and OpenMP
Put MPI in sequential regions

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel for
for (I=0;I<N;I++) {

U[I] = big_calc(I);
}

MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

#pragma omp parallel for
for (I=0;I<N;I++) {

U[I] = other_big_calc(I, incoming);
}

consume(U, mpi_id);

Technically Requires

MPI_Thread_funneled, but I

have never had a problem with

this approach … even with pre-

MPI-2.0 libraries.

291

Safe Mixing of MPI and OpenMP
Protect MPI calls inside a parallel region

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel
{
#pragma omp for

for (I=0;I<N;I++) U[I] = big_calc(I);

#pragma master
{

MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD);
MPI_Recv (incoming, count, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD,

&stat);
}
#pragma omp barrier
#pragma omp for

for (I=0;I<N;I++) U[I] = other_big_calc(I, incoming);

#pragma omp master
consume(U, mpi_id);

}

Technically Requires

MPI_Thread_funneled, but I

have never had a problem with

this approach … even with pre-

MPI-2.0 libraries.

292

Hybrid OpenMP/MPI works, but is it worth it?

• Literature* is mixed on the hybrid model: sometimes its better, sometimes

MPI alone is best.

• There is potential for benefit to the hybrid model

– MPI algorithms often require replicated data making them less memory

efficient.

– Fewer total MPI communicating agents means fewer messages and less

overhead from message conflicts.

– Algorithms with good cache efficiency should benefit from shared caches of

multi-threaded programs.

– The model maps perfectly with clusters of SMP nodes.

• But really, it’s a case by case basis and to large extent depends on the

particular application.

*L. Adhianto and Chapman, 2007

293

Appendices
• Sources for additional information

• OpenMP History

• Solutions to exercises

– Hello world

– Simple SPMD Pi program

– SPMD Pi without false sharing

– Loop level Pi

– Mandelbrot Set area

– Racy tasks

– Recursive pi program

– Exercise: Monte Carlo pi and random numbers

– Jacobi solver

• Challenge Problems

– Molecular dynamics

– Matrix multiplication

– Linked lists

– Recursive matrix multiplication

• Fortran and OpenMP

• Mixing OpenMP and MPI

• Compiler notes

294

Compiler notes: Intel on Windows

• Intel compiler:
– Launch SW dev environment … on my laptop I use:

– start/intel software development tools/intel C++ compiler 11.0/C+ build
environment for 32 bit apps

– cd to the directory that holds your source code

– Build software for program foo.c
– icl /Qopenmp foo.c

– Set number of threads environment variable
– set OMP_NUM_THREADS=4

– Run your program
– foo.exe

To get rid of the pwd on the prompt, type

prompt = %

295

Compiler notes: Visual Studio

• Start “new project”

• Select win 32 console project

– Set name and path

– On the next panel, Click “next” instead of finish so you can select an

empty project on the following panel.

– Drag and drop your source file into the source folder on the visual

studio solution explorer

– Activate OpenMP

– Go to project properties/configuration properties/C.C++/language

… and activate OpenMP

• Set number of threads inside the program

• Build the project

• Run “without debug” from the debug menu.

296

Compiler notes: OSX and Linux

• OSX and icc:
> icc -qopenmp foo.c

> export OMP_NUM_THREADS=4

> ./a.out

> -Fa to generate assembly,

> -qopemp-simd … to use vectors but not threads (hence no threads overhead)

• Linux and OS X with gcc:
> gcc -fopenmp foo.c

> export OMP_NUM_THREADS=4

> ./a.out

• Linux and OS X with PGI:
> pgcc -mp foo.c

> export OMP_NUM_THREADS=4

> ./a.out

for the Bash shell

297

Gnu compilers on Apple laptops

• The default compilers on apple systems (included with xcode) based on

clang do not always support OpenMP.

• The gnu compilers closely track the latest OpenMP standards. To load

them onto an apple laptop (example shown for gcc5):

– Download xcode with command line tools (from Apple) and macports (from

macports.org)

– sudo port install gcc5

– sudo port select –set gcc mp-gcc5

– gcc –fopenmp <<file names>>

• A copy of the OpenMP exercises are on github

– git clone https://github.com/tgmattso/OpenMP_Exercises.git

298

OpenMP constructs

• #pragma omp parallel

• #pragma omp for

• #pragma omp critical

• #pragma omp atomic

• #pragma omp barrier

• Data environment clauses
– private (variable_list)

– firstprivate (variable_list)

– lastprivate (variable_list)

– reduction(+:variable_list)

• Tasks (remember … private data is made firstprivate by default)
– pragma omp task

– pragma omp taskwait

• #pragma threadprivate(variable_list)

Where variable list is a comma

separated list of variables

Print the value of the macro

_OPENMP

And its value will be

yyyymm

For the year and month of the

spec the implementation used

