
GOOD SCIENTIFIC PROCESS

REQUIRES

SOFTWARE ENGINEERING PRACTICES

OBJECTIVES

§ To bring knowledge of useful software engineering practices to HPC
scientific code developers
– Not to prescribe any set of practices as must use

• Be informative about practices that have worked for some projects
• Emphasis on adoption of practices that help productivity rather than

put unsustainable burden
–Make it easier to get trusted science done

• Customization as needed – based on information made available

§ Community codes are valuable and case studies
– Even if you are not developing a community code, they are open

examples of process
• Lessons relevant across all domains

5

SOFTWARE ENGINEERING OF SCIENTIFIC
APPLICATIONS

§Systematic approach to the application process
– Design/Architecture
– Development
– Testing/Verification and Validation
– Maintenance
– Provenance

§Systematic
– Just a fixed plan, system, method, etc
– This plan can be of any scale

6

Engineering practices will be required for funding

SCIENTIFIC APPLICATIONS ARE COMPLEX

§ Domain Problem

§ Applied Mathematics

§ Computer Science

§ I/O

§ Data

§ Verification

§ Validation

§ Provenance

§ Software Architecture
& Engineering

§ Performance

§ Hardware awareness

7

Using the largest computer systems pushes the
boundaries of all of these

HEROIC PROGRAMMING

Usually a pejorative term, is used to describe the expenditure of huge
amounts of (coding) effort by talented people to overcome shortcomings
in process, project management, scheduling, architecture or any other
shortfalls in the execution of a software development project in order to
complete it. Heroic Programming is often the only course of action left
when poor planning, insufficient funds, and impractical schedules leave a
project stranded and unlikely to complete successfully.

From http://c2.com/cgi/wiki?HeroicProgramming

Science teams often resemble heroic programming

Many do not see anything wrong with that approach

8

WHAT IS WRONG WITH HEROIC PROGRAMMING

Scientific results that could be obtained with heroic programming have run their
course, because:

It is not possible for a single person to take on all these roles

9

Better scientific
understanding

Different
roles
and
responsi-
bilities

More complex
software

Math model

Numerics

Verification

Performance

IN EXTREME-SCALE SCIENCE

§ Codes aiming for higher fidelity modeling
– More complex codes, simulations and analysis
– Numerous models, more moving parts that need to interoperate
– Larger cost of the work
– Variety of expertise needed – the only tractable development model

is through separation of concerns
– It is more difficult to work on the same software in different

roles without a software engineering process

§ Onset of higher platform heterogeneity
– Requirements are unfolding, not known apriori
– The only safeguard is investing in flexible design and robust

software engineering process

10

OTHER REASONS

Accretion leads to unmanageable software

§ Increases cost of maintenance

§ Parts of software may become unusable over time

§ Inadequately verified software produces questionable results

§ Increases ramp-on time for new developers

§ Reduces software and science productivity due to technical debt

11

Consequence of Choices
Quick and dirty incurs technical debt, collects interest which means

more effort required to add features.

TECHNICAL DEBT

§ “By deferring issues such as code readability and maintainability, a debt is
created that someone in the future might have to pay, in the extra effort needed
to re-run or modify the code. Debt is not bad per se. After all, we frequently incur
debt to obtain something of immediate value, for example, using a mortgage to
buy a house. The point is that such debts have to be managed carefully, to
prevent them spiraling out of control.”

http://dx.doi.org/10.1038/ngeo2283

“Open code for open science?”

Steve M. Easterbrook

Nature Geoscience

The long term consequences of process

12

COLLABORATION IS HARD WITHOUT PROCESS

§Modern scientific computing is no longer a solo effort
– Should not be a solo effort
– Most interesting modeling questions that could be simulated by the

heroic individual programming scientist have already been
investigated

– “Productivity languages” have not delivered yet
– Coding is complicated and requires division of roles and

responsibilities.

§Working on a common code is difficult unless there is a
software process

§Even if solo
– Code will live longer than expected
– You need to trust results

13

CONSIDER THE HPC ECOSYSTEM

§ Developing code exclusively for a small cluster is not the same as developing
code for HPC

§ You can develop HPC code that will work well on your cluster and your laptop

§ In HPC, the trade-off with design and performance is omnipresent

§ Have reached a complexity point that code reuse & design is very important

14

C"
14"

C++"
22"

F"
30"

Python
2"

Charm
++"
1"

Languages
Code
Availability

Open 52%

Closed 26%

Fuzzy 22%

Quick glimpse of some
stats on Mira applications.
100% MPI, 65% threaded

SCIENTIFIC SOFTWARE IS DIFFERENT

MANY CHOICES FOR CODES AND TRADE-OFFS

S
p

e
e

d
 t

o

s
c

ie
n

c
e

S
p

e
e

d
 o

f
C

h
a

n
g

e

F
e

a
tu

re
s

C
o

n
tr

o
l

M
e

th
o

d
s

 &

A
c

c
u

ra
c

y

C
o

m
p

le
x

it
y

o

f
u

s
e

V
a

li
d

a
ti

o
n

V
e

ri
fi

c
a

ti
o

n

Blackbox user Fast Slow ?? None Depends High High

Alter existing
code base

Med Fast Depend
s

Partial Med to
High

Med/
Low

Med/
Low

Use of libraries Dep. Med High Partial to
Low

Med Med Med

Use of
framework

Med Med High Partial to
High

High Shared Shared

Development of
new code

Slow Slow Low High Depends All you All you

15Assuming best case scenarios

MUCH MATTERS AND IT ALL IMPACTS

§ Besides science..

16

Software Engineering and HPC
Efficiency vs. Other Quality Metrics

Source:!
Code Complete!
Steve McConnell!

www.anl.gov

GOOD SCIENTIFIC PROCESS

REQUIRES

GOOD SOFTWARE ENGINEERING

Argonne Training Program on Extreme-Scale Computing

LDRD Project Number
• Place your current

year project number
here

Community Codes and Software Engineering – Track 4

Introduction to the Sessions

MONDAY, August 8

Time Title of presentation Lecturer

9:30 am Introduction to the Session – Software Engineering Anshu Dubey, ANL

9:35 am Overview and Objectives
Katherine Riley and Anshu Dubey,
ANL

10:30 am Break

11:00 am Repo, Continuous Integration Jeff Johnson, LBNL

12:00 pm Lunch and Hands-on Exercises

1:00 pm IDE/Config/Build/Deploy Barry Smith, ANL

2:00 pm Documentation Alicia Klinvex, SNL

2:30 pm Break

3:00 pm Testing Alicia Klinvex, SNL

3:45 pm Software Refactoring Anshu Dubey, ANL

4:30 pm Putting it All Together: Example Glenn Hammond, SNL

+ Hands-on

OBJECTIVES

§ To bring knowledge of useful software engineering practices to HPC
scientific code developers
– Not to prescribe any set of practices as must use

• Be informative about practices that have worked for some projects
• Emphasis on adoption of practices that help productivity rather than

put unsustainable burden
–Make it easier to get trusted science done

• Customization as needed – based on information made available

§ Community codes are valuable and case studies
– Even if you are not developing a community code, they are open

examples of process
• Lessons relevant across all domains

19

www.anl.gov

STRIVE FOR A BETTER PROCESS

20

