
SuperLU and STRUMPACK 
Sparse Direct Solver and Preconditioner 

X. Sherry Li	
xsli@lbl.gov	

http://crd.lbl.gov/~xiaoye/SuperLU	
http://portal.nersc.gov/project/sparse/strumpack/	

	
Argonne Training Program on Extreme-Scale Computing 

(ATPESC)	
August 6, 2016	

	



SuperLU tutorial 2 

Acknowledgements 

§ Supports from DOE, NSF, DARPA	
§  FASTMath (Frameworks, Algorithms and Scalable Technologies for 

Mathematics)	
§  TOPS (Towards Optimal Petascale Simulations)	
§  CACHE (Communication Avoiding and Communication Hiding at Extreme 

Scales)	
§  CEMM (Center for Extended MHD Modeling)	

§ Developers	
§  SuperLU: 	

•  Sherry Li, Meiyue Shao, LBNL	
•  James Demmel, UC Berkeley	
•  John Gilbert, UC Santa Barbara	
•  Laura Grigori, INRIA, France	
•  Piyush Sao, Gerogia Tech	
•  Ichitaro Yamazaki, Univ. of Tennessee	

§  STRUMPACK:	
•  Pieter Ghysels, Francois-Henry Rouet, Sherry Li, LBNL	

	



SuperLU 

3 



SuperLU tutorial 4 

Quick installation 

§ Download site  http://crd.lbl.gov/~xiaoye/SuperLU	
§  Users’ Guide,  HTML code documentation	

§ Gunzip, untar	
§ Follow README at top level directory	

Two ways of building:	
1.  CMake build system.	
2.  Edit make.inc for your platform (compilers, optimizations, 

libraries, ...)	
Link with a fast BLAS library	
•  The one under CBLAS/ is functional, but not optimized	
•  Vendor, OpenBLAS, ATLAS, … 	



SuperLU tutorial 5 

Outline of Tutorial 

§ Functionality	
§ Sparse matrix data structure, distribution, and user interface	
§ Background of the algorithms	

§  Differences between sequential and parallel solvers	
§ Examples, Fortran 90 interface	

§ Hands on exercises	



Solve sparse Ax=b : lots of zeros in matrix 

"   fluid dynamics, structural mechanics, chemical process simulation, 
circuit simulation, electromagnetic fields, magneto-hydrodynamics, 
seismic-imaging, economic modeling,  optimization, data analysis, 
statistics, . . . 

"   Example: A of dimension 106,   10~100 nonzeros per row 
"   Matlab:  > spy(A) 

6 

Mallya/lhr01 (chemical eng.) Boeing/msc00726 (structural eng.) 



SuperLU tutorial 

Strategies of sparse linear solvers 

7 

§ Solving a system of linear equations Ax = b	
•  Sparse:  many zeros in A;  worth special treatment	

§ Iterative methods: (e.g., Krylov, multigrid, …)	
§  A is not changed (read-only)	
§  Key kernel: sparse matrix-vector multiply	
•  Easier to optimize and parallelize	
§  Low algorithmic complexity, but may not converge	

§ Direct methods	
§  A is modified (factorized)	
•  Harder to optimize and parallelize	
§  Numerically robust, but higher algorithmic complexity	

§ Often use direct method to precondition iterative method	
§  Solve an easy system: M-1Ax = M-1b	



SuperLU tutorial 

Available direct solvers 

§ Survey of different types of factorization codes	
	http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf	
§  LLT (s.p.d.) 	
§  LDLT (symmetric indefinite) 	
§  LU (nonsymmetric)	
§  QR (least squares)	
§  Sequential, shared-memory (multicore), distributed-memory, out-of-

core,  few are GPU-enabled … 	

§ Distributed-memory codes: 	
§  SuperLU_DIST [Li/Demmel/Grigori/Yamazaki]	

•  accessible from PETSc, Trilinos, . . .	
§  MUMPS, PasTiX, WSMP, . . .	

8 



SuperLU tutorial 9 

SuperLU Functionality 

§ LU decomposition, triangular solution	
§ Incomplete LU (ILU) preconditioner (serial SuperLU 4.0 up)	
§ Transposed system, multiple RHS	
§ Sparsity-preserving  ordering	

§  Minimum degree ordering applied to ATA or AT+A [MMD, Liu `85] 	
§  ‘Nested-dissection’ applied to ATA or AT+A [(Par)Metis, (PT)-Scotch]	

§ User-controllable pivoting	
§  Pre-assigned row and/or column permutations	
§  Partial pivoting with threshold	

§ Equilibration: 	
§ Condition number estimation	
§ Iterative refinement	
§ Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]	

cr ADD



SuperLU tutorial 10 

Software Status 

§  Available from PETSc, Trilinos	
§  Fortran interfaces	
§  SuperLU_MT similar to SuperLU both numerically and in usage	

SuperLU	 SuperLU_MT	 SuperLU_DIST	

Platform	 Serial	 SMP,  multicore	 Distributed	
memory	

Language	 C	 C + Pthreads	
or OpenMP	

C + MPI + 
OpenMP + 
CUDA	

Data type	 Real/complex,	
Single/double	

Real/complex,	
Single/double	

Real/complex,	
Double	

Data structure	 CCS / CRS	 CCS / CRS	 Distributed CRS	
	



SuperLU tutorial 11 

Data structure: Compressed Row Storage (CRS) 

§ Store nonzeros row by row contiguously	
§ Example: N = 7,  NNZ = 19	
§ 3 arrays:	

§  Storage: NNZ reals,  NNZ+N+1 integers	

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

7
6

5
4

3
2

1

lk
jih
g

fe
dc

b
a

nzval    1  a   2  b    c  d  3   e  4  f   5  g   h  i  6  j   k  l  7 

 colind    1  4    2  5   1  2  3   2  4 5   5  7   4  5 6 7  3  5  7 

rowptr   1  3  5  8  11  13  17  20 

1            3             5                 8                11         13                 17              20 

Many other data structures:  “Templates for the Solution of Linear Systems: 
Building Blocks for Iterative  Methods”,  R. Barrett et al.	



SuperLU tutorial 12 

SuperLU_DIST: Distributed input interface 

§  Matrices involved:	
§  A, B (turned into X) – input, users manipulate them	
§  L, U – output, users do not need to see them	

§  A (sparse) and B (dense) are distributed by block rows	

	 	 	 	 	 		
	 	 	 	 	 	Local A stored in	
	 	 	 	 	 	Compressed Row Format	

	

§  Natural for users, and consistent with other popular packages: e.g. 
PETSc	

A	 B	
x     x      x     x 

x     x      x 

x      x           x 

x      x           x 

P0 

P1 

P2 



SuperLU tutorial 13 

Distributed input interface 

§ Each process has a structure to store local part of A 	
	Distributed Compressed Row Storage	
		
		

    typedef struct {	
	    int_t   nnz_loc;  // number of nonzeros in the local submatrix	
	    int_t   m_loc;     // number of rows local to this processor	
	    int_t   fst_row;   // global index of the first row	

        void   *nzval;     // pointer to array of nonzero values, packed by row	
	    int_t   *colind;    // pointer to array of column indices of the nonzeros	
	    int_t   *rowptr;   // pointer to array of beginning of rows in nzval[]and colind[]	
	}  NRformat_loc;	
	



SuperLU tutorial 14 

Distributed Compressed Row Storage 

§  Processor P0 data structure:	
§  nnz_loc = 5	
§  m_loc = 2	
§  fst_row = 0    // 0-based indexing 	
§  nzval  = { s,  u,  u,  l,  u }	
§  colind = { 0,  2,  4,  0,  1 }	
§  rowptr = { 0, 3, 5 }	

§  Processor P1 data structure:	
§  nnz_loc = 7	
§  m_loc    = 3	
§  fst_row  = 2     // 0-based indexing	
§  nzval   = { l,  p,  e,  u,  l,  l,  r }	
§  colind  = { 1, 2,  3,  4,  0, 1, 4 }	
§  rowptr = { 0, 2, 4, 7 }	

u	
s	 u	 u	
l	

p	
e	

l	 l	 r	

P0	

P1	
l	

A is distributed on 2 processors:	

u	



SuperLU tutorial 

§  2D block cyclic layout – specified by user	
§ Process grid should be as square as possible. Or,  set the row 

dimension (nprow) slightly smaller than the column dimension 
(npcol). 	
§  For example: 2x3, 2x4, 4x4, 4x8, etc.	

	

15 

Internal : distributed L & U factored matrices 

0	  2	

3	  4	

1	

 5	

Process mesh	2	

3	 4	

1	

5	

0	 2	

3	  4	

1	

5	

0	

2	
3	 4	

1	
5	

0	

2	

3	 4	

1	

5	

0	

2	1	0	

2	
3	 4	

1	
5	

0	

2	

3	 4	

1	

5	

0	

2	1	0	

3	

0	

3	
0	

3	

0	

0	

Matrix	

ACTIVE	



SuperLU tutorial 16 

Process grid and MPI communicator 

§ Example:  Solving a preconditioned linear system 		
	    M-1A x = M-1 b	

 	    M = diag(A11, A22, A33)	
	
	à use SuperLU_DIST for	
	     each diagonal block	
	
	
§ Create 3 process grids, same logical ranks (0:3),	
	but different physical ranks	
§ Each grid has its own MPI communicator	

A22 

A33 

A11 0 1 
2 3 

4 5 
6 7 

8 9 
10 11 



SuperLU tutorial 17 

Two ways to create a process grid 

§ superlu_gridinit( MPI_Comm Bcomm, int nprow, 	
	 	 	 	int npcol, gridinfo_t *grid );	
§  Maps the first {nprow, npcol} processes in the MPI communicator 

Bcomm to SuperLU 2D grid	

§ superlu_gridmap( MPI_Comm Bcomm, int nprow, 	
	    int npcol, int usermap[], int ldumap, gridinfo_t *grid );	
§  Maps an arbitrary set of  {nprow, npcol } processes in the MPI 

communicator Bcomm to SuperLU 2D grid.  The ranks of the selected 
MPI processes are given in usermap[] array. 	
	For example:	

11	 12	 13	
14	 15	 16	

0       1      2 
0 

1 



Sparse factorization 
"   Store A explicitly …  many sparse compressed formats 
"   “Fill-in” . . . new nonzeros in L & U 

"   Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems 
"   Graph algorithms: directed/undirected graphs, bipartite graphs, 

paths, elimination trees, depth-first search, heuristics for NP-hard 
problems, cliques, graph partitioning, . . . 

"   Unfriendly to high performance, parallel computing 
"   Irregular memory access, indirect addressing, strong task/data 

dependency 

18 

1 
2 

3 
4 

6 
7 

5 L 

U
1 

6 

9 

3 

7 8 

4 5 2 1 

9 

3 2 

4 
5 

6 7 
8 



Algorithmic phases in sparse GE 

1.  Minimize number of fill-ins, maximize parallelism  (~10% time) 
"   Sparsity structure of L & U depends on that of A, which can be changed by 

row/column permutations (vertex re-labeling of the underlying graph) 
"   Ordering (combinatorial algorithms; “NP-complete” to find optimum 

[Yannakis ’83]; use heuristics) 

2.  Predict the fill-in positions in L & U  (~10% time) 
"   Symbolic factorization (combinatorial algorithms) 

3.  Design efficient data structure for storage and quick retrieval of the 
nonzeros 
"   Compressed storage schemes 

4.  Perform factorization and triangular solutions  (~80% time) 
"   Numerical algorithms (F.P. operations only on nonzeros) 
"   Usually dominate the total runtime 

"   For sparse Cholesky and QR, the steps can be separate; 
       For sparse LU with pivoting, steps 2 and 4 my be interleaved. 

19 



SuperLU tutorial 

General Sparse Solver 

§ Use (blocked) CRS or CCS, and any ordering method	
§  Leave room for fill-ins !  (symbolic factorization)	

§ Exploit “supernode” (dense) structures in the factors	
§  Can use Level 3 BLAS	
§  Reduce inefficient indirect addressing (scatter/gather)	
§  Reduce graph traversal time using a coarser graph	

20	



SuperLU tutorial 21 

Performance of larger matrices 

v  Sparsity ordering: MeTis applied to structure of A’+A	

Name Application Data 
type 

N |A| / N 
Sparsity 

|L\U| 
(10^6) 

Fill-ratio 

matrix211 Fusion, 
MHD eqns 
(M3D-C1) 

Real 801,378 161 1276.0 9.9 

cc_linear2 
 

Fusion, 
MHD eqns 
(NIMROD) 

Complex 259,203 109 199.7 7.1 

matick Circuit sim. 
MNA method 
(IBM) 

Complex 16,019 4005 64.3 1.0 

cage13 DNA 
electrophoresis 

Real 445,315 17 4550.9 608.5 



SuperLU tutorial 22 

Strong scaling (fixed size): Cray XE6 (hopper@nersc) 

v  Up to 1.4 Tflops factorization rate	

§  2 x 12-core AMD 'MagnyCours’ per node, 2.1 GHz processor	



Multicore / GPU-acceleration 

"   New hybrid programming code: MPI+OpenMP+CUDA, able to use 
all the CPUs and GPUs on manycore computers. 
"   SuperLU_DIST_4.0 release, Aug. 2014. 

"   Algorithmic changes:   
"   Aggregate small BLAS operations into larger ones. 
"   CPU multithreading Scatter/Gather operations. 
"   Hide long-latency operations. 

"   Results: using 100 nodes GPU clusters, up to 2.7x faster,  2x-5x 
memory saving.  

23 



CPU + GPU algorithm 

24 

�

�

�
� � ��

①  Aggregate small blocks 	
②  GEMM of large blocks	
③  Scatter 	

GPU acceleration: 	
Software pipelining to 
overlap GPU execution 
with CPU Scatter, data 
transfer.  	



How to use multicore, GPU 

"   Instructions in top-level README. 

"   To use OpenMP parallelism: 
setenv OMP_NUM_THREADS <##> 

"   To enable Nvidia GPU access, need to take the following 2 step: 
1)  set the following Linux environment variable: 
         setenv ACC GPU 

       2) Add the CUDA library location in make.inc: (see sample make.inc) 
  ifeq "${ACC}" "GPU" 

                   CUDA_FLAGS = -DGPU_ACC 
                   INCS += -I<CUDA directory>/include 
                   LIBS += -L<CUDA directory>/lib64 -lcublas -lcudart 
                endif 

25 



Strong scaling on 1024 cores + 64 GPUs (Titan @ olcf) 
"   Each node: 16 core AMD Opteron + 1 Tesla K20X GPU. 

"    MPI(2) + OpenMP(8) 
"   Compiler gcc 4.8.2,  CUDA 5.5,  Cray-libsci-13.0 for BLAS. 

26 

2.3x

2.4x
2.3x

1.8x 1.5x 1.3x

16 32 64 128 256 512

0

20

40

60

80

100

120

140

160

MPI(p
)+O

MP(q)

MPI(p
)+O

MP(q)
+M

IC

MPI(p
)+O

MP(q)

MPI(p
)+O

MP(q)
+M

IC

MPI(p
)+O

MP(q)

MPI(p
)+O

MP(q)
+M

IC

MPI(p
)+O

MP(q)

MPI(p
)+O

MP(q)
+M

IC

MPI(p
)+O

MP(q)

MPI(p
)+O

MP(q)
+M

IC

MPI(p
)+O

MP(q)

MPI(p
)+O

MP(q)
+M

IC

Fa
ct

or
iz

at
io

n 
Ti

m
e

Panel factorization Schur-Complement Update

Low
er is Better

MPI(p
)+

OMP(q)

MPI(p
)+

OMP(q)
+M

IC

nlpkkt80.rb	
•  n=1062400	
•  nnz=14883536	



SuperLU tutorial 

ILU Interface 

§ Available in serial SuperLU 4.0, June 2009	
§ Similar to ILUTP [Saad]: “T” = threshold, “P” = pivoting 

§  among the most sophisticated, more robust than structure-
based dropping (e.g., level-of-fill)	

§ ILU driver: SRC/dgsisx.c	
	ILU factorization routine: SRC/dgsitrf.c	
	GMRES driver: EXAMPLE/ditersol.c	
§ Parameters:	

§  ilu_set_default_options ( &options )	

•  options.ILU_DropTol – numerical threshold ( τ )	
•  options.ILU_FillFactor – bound on the fill-ratio ( γ  ) 

27 



SuperLU tutorial 

Result of Supernodal ILU  (S-ILU) 

§ New dropping rules S-ILU(τ, γ) 
§  supernode-based thresholding (τ ) 
§  adaptive strategy to meet user-desired 

 fill-ratio upper bound ( γ ) 
 

§ Performance of S-ILU 
§  For 232 test matrices, S-ILU + GMRES converges with 138  

cases (~60% success rate) 
§  S-ILU + GMRES is 1.6x faster than scalar ILU + GMRES 

i	



SuperLU tutorial 29 

Tips for Debugging Performance 

§ Check sparsity ordering	
§ Diagonal pivoting is preferable	

§  E.g., matrix is diagonally dominant, . . .	

§ Need good BLAS library (vendor, ATLAS, GOTO, . . .)	
§  May need adjust block size for each architecture	
	( Parameters modifiable in routine sp_ienv() )	

•  Larger blocks better for uniprocessor	
•  Smaller blocks better for parallellism and load balance	

§  Open problem: automatic tuning for block size?	



SuperLU tutorial 

Exercises of SuperLU_DIST 

30 

§  Instruction	
https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/
ATPESC_2016/Exercises/superlu/README.html	
	
§ On vesta:	
/projects/FASTMath/ATPESC-2016/examples/superlu	
/projects/FASTMath/ATPESC-2016/install/superlu	

     	
	
	



SuperLU tutorial 31 

Examples in EXAMPLE/ 

§ pddrive.c: Solve one linear system	
§ pddrive1.c: Solve the systems with same A but different right-

hand side at different times	
§  Reuse the factored form of A	

§ pddrive2.c: Solve the systems with the same pattern as A	
§  Reuse the sparsity ordering	

§ pddrive3.c: Solve the systems with the same sparsity pattern 
and similar values	
§  Reuse the sparsity ordering and symbolic factorization	

§ pddrive4.c: Divide the processes into two subgroups (two 
grids) such that each subgroup solves a linear system 
independently from the other.	



SuperLU tutorial 32 

SuperLU_DIST Example Program 

§  EXAMPLE/pddrive.c	

§  Five basic steps	
1.  Initialize the MPI environment and SuperLU process grid	
2.  Set up the input matrices A and B	
3.  Set the options argument (can modify the default)	
4.  Call SuperLU routine PDGSSVX	
5.  Release the process grid, deallocate memory,  and terminate the MPI 

environment	



SuperLU tutorial 33 

Fortran 90 Interface in FORTRAN/ 

§ All SuperLU objects (e.g., LU structure) are opaque for F90	
§  They are allocated, deallocated and operated in the C side and not 

directly accessible from Fortran side.	
§ C objects are accessed via handles that exist in Fortran’s user 

space	
§ In Fortran, all handles are of type INTEGER	
§ Example:  FORTRAN/f_5x5.f90	

0.12,0.18,0.5,0.16,0.21,0.19  , ======

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= lrepus

rll
ue

pl
ul

uus

A



STRUMPACK – STRUctured Matrices PACKage 
 

34 



Overview 

"   http://portal.nersc.gov/project/sparse/strumpack/ 
" Cmake build system. 
"   C++, OpenMP, MPI 
"   Support both real & complex datatypes, single & double precision 

(via template), and 64-bit indexing. 
"   Available from PETSc. 
"   Input interfaces 

"   Dense matrix in standard format. 
"   Matrix-free – user provides matvec multiplication routine, and routine 

for selecting some matrix entries. 
"   Sparse matrix in distributed CSR format. 

"   Two components: 
"   Dense – applicable to Toeplitz, Cauchy, BEM, integral equations, etc. 
"   Sparse –  aim at matrices discretized from PDEs. 

"   Functions: 
"   HSS construction, HSS-vector product, ULV factorization, Solution. 

35 



Build instruction in README 

Dependency:  ParMetis or PT-Scotch, SCALAPACK 
 
> export METISDIR=/path/to/metis 
> export PARMETISDIR=/path/to/parmetis 
> export SCOTCHDIR=/path/to/scotch 
> cmake ../strumpack-sparse -DCMAKE_BUILD_TYPE=Release \ 
    -DCMAKE_INSTALL_PREFIX=/path/to/install \ 
    -DCMAKE_CXX_COMPILER=<C++ (MPI) compiler> \ 
    -DCMAKE_C_COMPILER=<C (MPI) compiler> \ 
    -DCMAKE_Fortran_COMPILER=<Fortran77 (MPI) compiler> \ 
    -DSCALAPACK_LIBRARIES="/path/to/scalapack/libscalapack.a;/path/to/blacs/libblacs.a" \ 
    -DMETIS_INCLUDES=/path/to/metis/incluce \ 
    -DMETIS_LIBRARIES=/path/to/metis/libmetis.a \ 
    -DPARMETIS_INCLUDES=/path/to/parmetis/include \ 
    -DPARMETIS_LIBRARIES=/path/to/parmetis/libparmetis.a \ 
    -DSCOTCH_INCLUDES=/path/to/scotch/include \ 
    -DSCOTCH_LIBRARIES="/path/to/ptscotch/libscotch.a;...libscotcherr.a;...libptscotch.a;...libpts\ 
cotcherr.a” 
 
> make 
> make examples  #optional 
> make install 
 
 

36 



Use through PETSc 
./configure \ 
    --with-shared-libraries=0 \ 
    --download-strumpack \ 
    --with-openmp \ 
    --with-cxx-dialect=C++11 \ 
    --download-scalapack \ 
    --download-parmetis \ 
    --download-metis \ 
    --download-ptscotch \ 
 
make PETSC_DIR=<petsc-dir>  PETSC_ARCH=<petsc-arch-dir> all 
 
make PETSC_DIR=<...> PETSC_ARCH=<...> test 
 
export PETSC_DIR=<...> 
export PETSC_ARCH=<...> 
cd src/ksp/ksp/examples/tutorials 
make ex52 
 
## use as direct solver 
OMP_NUM_THREADS=1 mpirun -n 2 ./ex52 -pc_type lu -pc_factor_mat_solver_package strumpack -
mat_strumpack_verbose 1 
 
## use as approximate factorization preconditioner 
OMP_NUM_THREADS=1 mpirun -n 2 ./ex52 -pc_type ilu -pc_factor_mat_solver_package strumpack -
mat_strumpack_verbose 1 

37 



Hierarchical matrix approximation 

"   Algebraic generalization to FMM, independent of Green’s function. 
"   Matrix multiplication, factorization, inversion, etc. 

"   Applications: 
"   Integral equations, BEM, statistics, acoustic and electromagnetic 

scattering theory, rational interpolation, … 
"   General discretized PDEs 

"   Exploit low-rank submatrices. 
"   If A has numerical low rank k (called epsilon-rank): 
 

"   Algorithms 
•  Truncated SVD 
•  Rank-revealing QR (RRQR) 
•  Randomized sampling ( + Interpolative Decomposition (ID) via 

RRQR) 

38 

A =UΣVT ≈ Ak :=UΣkV
T , Σ = diag(σ1,...,σ k,σ k+1,…,σ n )

Σk = diag(σ1,...,σ k, 0,..., 0), with σ k > ε



HSS factorization 

"   Dense (but data-sparse): hierarchically semi-separable structure 
"   Off-diagonal blocks are rank deficient: BEMs, Integral equations, PDEs 

with smooth kernels, kernel matrices in ML. 
"   Recursion leads to hierarchical partitioning 
"   Key to low complexity: nested bases 
 
 
 
 

 

HSS tree	

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36 T

D1

D2

D4

D5

V2

U5
V4

U4
V5



HSS-embedded sparse multifrontal factorization 

"   Frontal matrices are dense, can be approximated by HSS 
"   Only for top levels (ls) in the elimination tree, with largest frontal 

matrices. 
"   ULV factorization of HSS matrix 
"   Low-rank Schur complement update 

40 

HSS
dense



SuperLU tutorial 41 

Examples in examples/ 

§ testPoisson2d: A double precision C++ example, solving the 2D 
Poisson problem with the sequential or multithreaded solver.	

§ testPoisson2dMPIDist: A double precision C++ example, solving 
the 2D Poisson problem with the fully distributed MPI solver.	

§ testMMdoubleMPIDist: A double precision C++ example, 
solving a linear system with a matrix given in a file in the matrix-
market format, using the fully distributed MPI solver.	

§ testMMdoubleMPIDist64: A double precision C++ example 
using 64 bit integers for the sparse matrix.	

§ {s,d,c,z}example: examples to use C interface.	

§ Fortran interface will be built in the future.	



STRUMPACK-dense: parallel weak scaling 

"   Root node of the multifrontal factorization of a discretized Helmholtz 
problem (frequency domain, PML boundary, 10Hz). 

"   For many PDEs on mesh KxKxK, max. off-diagonal rank O(K). 

42 

K (mesh: K3) 100 200 300 400 500 

Matrix size K2 10,000 40,000 90,000 160,000 250,000 
MPI tasks 64 256 1,024 4,096 8,192 
Max. rank  313 638 903 1289 1625 
Speedup over 
ScaLAPACK 
LU 

 
1.8 

 
4.0 

 
5.4 

 
4.8 

 
3.9 



Sparse preconditioning – ML_Geer matrix 
"   Structural poroelastic problem  

"   N = 1,504,002; nnz = 110,686,677 
"   GMRES(30) from PETSc 
"   Elementary tuning of preconditioners 

43 



Sparse preconditioning – Senera matrix 
"   Gas resevoir simulation for CO2 sequestration 

"   N = 1,391,349; nnz = 64,131,971 
"   GMRES(30) from PETSc 
"   Elementary tuning of preconditioners 

44 



EXTRA SLIDES 

45 



46 

Numerical Pivoting 

"   Goal of pivoting is to control element growth in L & U for stability	
–  For sparse factorizations, often relax the pivoting rule to trade with better 

sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)	

"   Partial pivoting used in sequential SuperLU  and SuperLU_MT (GEPP) 	
–  Can force diagonal pivoting (controlled by diagonal	
	threshold)	

–  Hard to implement scalably for sparse factorization	

"   Static pivoting used in SuperLU_DIST (GESP)	
–  Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’	
–  During factor A’ = LU, replace tiny pivots by           , without changing data 

structures for L & U	
–  If needed, use a few steps of iterative refinement after the first solution	
è  quite stable in practice	

Aε

b 

s x x 

x   x    x 

x 



47 

Ordering : Minimum Degree 
Local greedy: minimize upper bound on fill-in	

Eliminate 1	

 1 

i

j

k 

Eliminate 1	

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

x

x

x

x

xxxxx
i     j     k     l	

1	
i	

j	

k	

l	 ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

••••

••••

••••

••••

x

x

x

x

xxxxx
i     j     k     l	

1	

i	

j	

k	

l	

l 

i

k 

j

l 



48 

Ordering : Nested Dissection  

"   Model problem: discretized system Ax = b from certain PDEs, e.g., 5-
point stencil on  n x n  grid,  N = n2	
–  Factorization flops: O( n3 ) = O( N3/2 )	

"   Theorem: ND ordering gives optimal complexity in exact arithmetic 
[George ’73, Hoffman/Martin/Rose]	



49 

ND Ordering 

"   Generalized nested dissection [Lipton/Rose/Tarjan ’79]	
–  Global graph partitioning: top-down, divide-and-conqure		
–  Best for largest problems	
–  Parallel codes available: ParMetis, PT-Scotch	
–  First level	

–  Recurse on A and B	
"   Goal: find the smallest possible separator S at each level	

–  Multilevel schemes: 	
•  Chaco [Hendrickson/Leland `94],  Metis [Karypis/Kumar `95]	

–  Spectral bisection [Simon et al. `90-`95]	
–  Geometric and spectral bisection [Chan/Gilbert/Teng `94]	

A B S 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Sxx
xB
xA

0
0



50 

ND Ordering 

2D mesh 	 A,  with row-wise ordering	

A,  with ND ordering	 L &U factors	



51 

Ordering for LU (unsymmetric) 

§  Can use a symmetric ordering on a symmetrized matrix	
•  Case of partial pivoting (serial SuperLU, SuperLU_MT):	
	 	Use ordering based on AT*A	
•  Case of static pivoting (SuperLU_DIST): 	
	 	Use ordering based on AT+A	
	

§  Can find better ordering based solely on A, without symmetrization 	
•  Diagonal Markowitz   [Amestoy/Li/Ng `06]	

•  Similar to minimum degree, but without symmetrization	
•  Hypergraph partition   [Boman, Grigori, et al. `08]	

•  Similar to ND on ATA, but no need to compute ATA	



52 

Ordering Interface in SuperLU 

"   Library contains the following routines:	
–  Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis], (Par)METIS 

[G. Karypis etc.]	
–  Utility routines: form AT+A , ATA 	

"   Users may input any other permutation vector (e.g., using Metis, Chaco, 
etc. )	

       . . .	
      set_default_options_dist ( &options );	
      options.ColPerm = MY_PERMC;    // modify default option	
      ScalePermstructInit ( m, n, &ScalePermstruct );	
      METIS (  . . . , &ScalePermstruct.perm_c );	
      . . .	
      pdgssvx ( &options, . . . , &ScalePermstruct, . . . );	
       . . .	



53 

Symbolic Factorization 

"   Cholesky [George/Liu `81 book]	
–  Use elimination graph of L and its transitive reduction (elimination tree)	
–  Complexity linear in output: O(nnz(L))	

"   LU	
–  Use elimination graphs of L & U and their transitive reductions 

(elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]	
–  Improved by symmetric structure pruning [Eisenstat/Liu `92]	
–  Improved by supernodes	
–  Complexity greater than nnz(L+U), but much smaller than flops(LU)	



SuperLU tutorial 54 

Summary 

§ Sparse LU, ILU are important kernels for science and engineering 
applications, used in practice on a regular basis	

§ Performance more sensitive to latency than dense case	
§  Continuing developments funded by DOE SciDAC projects	

§  Integrate into more applications 	
§  Hybrid model of parallelism for multicore/vector nodes, differentiate 

intra-node and inter-node parallelism	
§  Hybrid programming models,  hybrid algorithms	

§  Parallel HSS precondtioners	
§  Parallel hybrid direct-iterative solver based on domain decomposition	

	


