
MPI for Scalable Computing
(continued from yesterday)

Bill	Gropp,	University	of	Illinois	at	Urbana-Champaign

Rusty	Lusk,	Argonne	National	Laboratory

Rajeev	Thakur,	Argonne	National	Laboratory

Datatypes

23

Introduction to Datatypes in MPI

§ Datatypes allow	users	to	serialize	arbitrary data	layouts	into	a	
message	stream
– Networks	provide	serial	channels

– Same	for	block	devices	and	I/O

§ Several	constructors	allow	arbitrary	layouts
– Recursive	specification	possible

– Declarative specification	of	data-layout
• “what”	and	not	“how”,	leaves	optimization	 to	implementation	 (many
unexplored possibilities!)

– Choosing	the	right	constructors	is	not	always	simple

24

Derived Datatype Example

25

MPI’s Intrinsic Datatypes

§ Why	intrinsic	types?
– Heterogeneity,	nice	to	send	a	Boolean	from	C	to	Fortran

– Conversion	rules	are	complex,	not	discussed	here	

– Length	matches	to	language	types	
• No	sizeof(int)	 mess

§ Users	should	generally	use	intrinsic	types	as	basic	types	for	
communication	and	type	construction!
– MPI_BYTE	should	be	avoided	at	all	cost

§ MPI-2.2	added	some	missing	C	types
– E.g.,	unsigned	long	long	

26

MPI_Type_contiguous

§ Contiguous	array	of	oldtype

§ Should	not	be	used	as	last	type	(can	be	replaced	by	count)

MPI_Type_contiguous(int count, MPI_Datatype
oldtype, MPI_Datatype *newtype)

27

MPI_Type_vector

§ Specify	strided blocks	of	data	of	oldtype

§ Very	useful	for	Cartesian	arrays

MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

28

MPI_Type_create_hvector

§ Create	non-unit	strided vectors

§ Useful	for	composition,	e.g.,	vector	of	structs

MPI_Type_create_hvector(int count, int blocklength, MPI_Aint
stride, MPI_Datatype oldtype, MPI_Datatype *newtype)

29

MPI_Type_indexed

§ Pulling	irregular	subsets	of	data	from	a	single	array	(cf.	vector	
collectives)
– Dynamic	codes	with	index	lists,	expensive	though!

– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

30

MPI_Type_create_indexed_block

§ Like	Create_indexed but	blocklength is	the	same

– blen=2

– displs={0,5,9,13,18}

MPI_Type_create_indexed_block(int count, int blocklength,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

31

MPI_Type_create_hindexed

§ Indexed	with	non-unit	displacements,	e.g.,	pulling	types	out	
of	different	arrays

MPI_Type_create_hindexed(int count, int *arr_of_blocklengths,
MPI_Aint *arr_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

32

MPI_Type_create_struct

§ Most	general	constructor,	allows	different	types	and	arbitrary	
arrays	(also	most	costly)

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[], MPI_Datatype
array_of_types[], MPI_Datatype *newtype)

33

MPI_Type_create_subarray

§ Specify	subarray of	n-dimensional	array	(sizes)	by	start	(starts)	
and	size	(subsize)

MPI_Type_create_subarray(int ndims, int array_of_sizes[],
int array_of_subsizes[], int array_of_starts[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

34

MPI_Type_create_darray

§ Create	distributed	array,	supports	block,	cyclic	and	no	
distribution	for	each	dimension
– Very	useful	for	I/O

MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

35

MPI_BOTTOM and MPI_Get_address

§ MPI_BOTTOM	is	the	absolute	zero	address
– Portability	(e.g.,	may	be	non-zero	in	globally	shared	memory)

§ MPI_Get_address
– Returns		address	relative	to	MPI_BOTTOM

– Portability	(do	not	use	“&”	operator	in	C!)

§ Very	important	when	
– Building	struct datatypes

– Data	spans	multiple	arrays

36

Commit, Free, and Dup

§ Types	must	be	committed	before	use
– Only	the	ones	that	are	used!

– MPI_Type_commit may	perform	heavy	optimizations	(and	will	
hopefully)

§ MPI_Type_free
– Free	MPI	resources	of	datatypes

– Does	not	affect	types	built	from	it

§ MPI_Type_dup
– Duplicates	a	type

– Library	abstraction	(composability)

37

Other Datatype Functions

§ Pack/Unpack
– Mainly	for	compatibility	to	legacy	libraries

– Avoid	using	it	yourself

§ Get_envelope/contents
– Only	for	expert	library	developers

– Libraries	like	MPITypes1 make	this	easier

§ MPI_Type_create_resized
– Change	extent	and	size	(dangerous	but	useful)

http://www.mcs.anl.gov/mpitypes/

38

Datatype Selection Order

§ Simple	and	effective	performance	model:
– More	parameters	==	slower

§ contig <	vector	<	index_block <	index	<	struct

§ Some	(most)	MPIs	are	inconsistent	
– But	this	rule	is	portable

W.	Gropp et	al.:	Performance	Expectations	and	Guidelines	for	MPI	Derived	Datatypes

39

Collectives and Nonblocking Collectives

40

Introduction to Collective Operations in MPI

§ Collective	operations	are	called	by	all	processes	in	a	
communicator.

§ MPI_BCAST distributes	data	from	one	process	(the	root)	to	all	
others	in	a	communicator.

§ MPI_REDUCE combines	data	from	all	processes	in	the	
communicator	and	returns	it	to	one	process.

§ In	many	numerical	algorithms,	SEND/RECV can	be	replaced	by	
BCAST/REDUCE,	improving	both	simplicity	and	efficiency.

41

MPI Collective Communication

§ Communication	and	computation	is	coordinated	among	a	
group	of	processes	in	a	communicator

§ Tags	are	not	used;	different	communicators	deliver	similar	
functionality

§ Non-blocking	collective	operations	in	MPI-3

§ Three	classes	of	operations:	synchronization,	data	movement,	
collective	computation

42

Synchronization

§ MPI_BARRIER(comm)

– Blocks	until	all	processes	in	the	group	of communicator	comm call	it
– A	process	cannot	get	out	of	the	barrier	until	all	other	processes	have	

reached	barrier

§ Note	that	a	barrier	is	rarely,	if	ever,	necessary	in	an	MPI	program
§ Adding	barriers	“just	to	be	sure”	is	a	bad	practice	and	causes	unnecessary	

synchronization.	Remove	unnecessary	barriers	from	your	code.

§ One	legitimate	use	of	a	barrier	is	before	the	first	call	to	MPI_Wtime to	
start	a	timing	measurement.	This	causes	each	process	to	start	at	
approximately the	same	time.

§ Avoid	using	barriers	other	than	for	this.

43

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

44

More Collective Data Movement

A
B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

45

Collective Computation

P0
P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

ABCD

A
AB

ABC

ABCD

Reduce

Scan

46

MPI Collective Routines

§ Many	Routines,	including:		MPI_ALLGATHER, MPI_ALLGATHERV,
MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV,
MPI_BCAST, MPI_EXSCAN, MPI_GATHER, MPI_GATHERV,
MPI_REDUCE, MPI_REDUCE_SCATTER, MPI_SCAN,
MPI_SCATTER, MPI_SCATTERV

§ “All” versions	deliver	results	to	all	participating	processes

§ “V” versions	(stands	for	vector)	allow	the chunks	to	have	different	
sizes

§ “W” versions	for	ALLTOALL	allow	the	chunks	to	have	different	sizes	
in	bytes,	rather	than	units	of	datatypes

§ MPI_ALLREDUCE,	MPI_REDUCE,	MPI_REDUCE_SCATTER,	

MPI_REDUCE_SCATTER_BLOCK,	MPI_EXSCAN,	 and	MPI_SCAN
take	both	built-in	and	user-defined	combiner	functions

47

MPI Built-in Collective Computation Operations

§ MPI_MAX
§ MPI_MIN
§ MPI_PROD
§ MPI_SUM
§ MPI_LAND
§ MPI_LOR
§ MPI_LXOR
§ MPI_BAND
§ MPI_BOR
§ MPI_BXOR
§ MPI_MAXLOC
§ MPI_MINLOC
§ MPI_REPLACE,

MPI_NO_OP

Maximum
Minimum
Product
Sum
Logical	and
Logical	or
Logical	exclusive	or
Bitwise	and
Bitwise	or
Bitwise	exclusive	or
Maximum	and	location
Minimum	and	location
Replace	and	no	operation	(RMA)

48

Defining your own Collective Operations

§ Create	your	own	collective	computations	with:
MPI_OP_CREATE(user_fn, commutes, &op);
MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

§ The	user	function	should	perform:
inoutvec[i] = invec[i] op inoutvec[i];
for	i from	0	to	len-1

§ The	user	function	can	be	non-commutative,	but	must	be	
associative

49

Nonblocking Collectives

50

Nonblocking Collective Communication

§ Nonblocking communication
– Deadlock	avoidance

– Overlapping	communication/computation

§ Collective	communication
– Collection	of	pre-defined	optimized	routines

§ Nonblocking collective	communication
– Combines	both	advantages

– System	noise/imbalance	resiliency

– Semantic	advantages

51

Nonblocking Communication

§ Semantics	are	simple:
– Function	returns	no	matter	what

– No	progress	guarantee!

§ E.g.,	MPI_Isend(<send-args>,	MPI_Request *req);

§ Nonblocking tests:
– Test,	Testany,	Testall,	Testsome

§ Blocking	wait:
– Wait,	Waitany,	Waitall,	Waitsome

52

Nonblocking Collective Communication

§ Nonblocking variants	of	all	collectives
– MPI_Ibcast(<bcast args>,	MPI_Request *req);

§ Semantics:
– Function	returns	no	matter	what
– No	guaranteed	progress	(quality	of	implementation)
– Usual	completion	calls	 (wait,	test)	+	mixing
– Out-of	order	completion

§ Restrictions:
– No	tags,	in-order	matching
– Send	and	vector	buffers	may	not	be	touched		during	operation
– MPI_Cancel not	supported
– No	matching	with	blocking	collectives

Hoefler	et	al.:	Implementation	and	Performance	Analysis	of	Non-Blocking	Collective	Operations	for	MPI
53

Nonblocking Collective Communication

§ Semantic	advantages:
– Enable	asynchronous	progression	(and	manual)

• Software	pipelining

– Decouple	data	transfer	and	synchronization
• Noise	resiliency!

– Allow	overlapping	communicators
• See	also	neighborhood	collectives

– Multiple	outstanding	operations	at	any	time
• Enables	pipelining	window

Hoefler	et	al.:	Implementation	and	Performance	Analysis	of	Non-Blocking	Collective	Operations	for	MPI
54

A Non-Blocking Barrier?

§ What	can	that	be	good	for?	Well,	quite	a	bit!

§ Semantics:
– MPI_Ibarrier()	– calling	process	entered	the	barrier,	no

synchronization	happens

– Synchronization	may happen	asynchronously

– MPI_Test/Wait()	– synchronization	happens if	necessary

§ Uses:	
– Overlap	barrier	latency	(small	benefit)

– Use	the	split	semantics!	Processes	notify non-collectively	but	
synchronize collectively!

55

Nonblocking And Collective Summary

§ Nonblockingcomm does	two	things:
– Overlap	and	relax	synchronization

§ Collective	comm does	one	thing
– Specialized	pre-optimized	routines	

– Performance	portability

– Hopefully	transparent	performance

§ They	can	be	composed
– E.g.,	software	pipelining

56

