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Introduction to Datatypes in MPI

§ Datatypes allow	users	to	serialize	arbitrary data	layouts	into	a	
message	stream
– Networks	provide	serial	channels

– Same	for	block	devices	and	I/O

§ Several	constructors	allow	arbitrary	layouts
– Recursive	specification	possible

– Declarative specification	of	data-layout
• “what”	and	not	“how”,	leaves	optimization	 to	implementation	 (many
unexplored possibilities!)

– Choosing	the	right	constructors	is	not	always	simple
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Derived Datatype Example
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MPI’s Intrinsic Datatypes

§ Why	intrinsic	types?
– Heterogeneity,	nice	to	send	a	Boolean	from	C	to	Fortran

– Conversion	rules	are	complex,	not	discussed	here	

– Length	matches	to	language	types	
• No	sizeof(int)	 mess

§ Users	should	generally	use	intrinsic	types	as	basic	types	for	
communication	and	type	construction!
– MPI_BYTE	should	be	avoided	at	all	cost

§ MPI-2.2	added	some	missing	C	types
– E.g.,	unsigned	long	long	
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MPI_Type_contiguous

§ Contiguous	array	of	oldtype

§ Should	not	be	used	as	last	type	(can	be	replaced	by	count)

MPI_Type_contiguous(int count, MPI_Datatype
oldtype, MPI_Datatype *newtype)
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MPI_Type_vector

§ Specify	strided blocks	of	data	of	oldtype

§ Very	useful	for	Cartesian	arrays

MPI_Type_vector(int count, int blocklength, int stride, 
MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_create_hvector

§ Create	non-unit	strided vectors

§ Useful	for	composition,	e.g.,	vector	of	structs

MPI_Type_create_hvector(int count, int blocklength, MPI_Aint
stride, MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_indexed

§ Pulling	irregular	subsets	of	data	from	a	single	array	(cf.	vector	
collectives)
– Dynamic	codes	with	index	lists,	expensive	though!

– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)
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MPI_Type_create_indexed_block

§ Like	Create_indexed but	blocklength is	the	same

– blen=2

– displs={0,5,9,13,18}

MPI_Type_create_indexed_block(int count, int blocklength,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)
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MPI_Type_create_hindexed

§ Indexed	with	non-unit	displacements,	e.g.,	pulling	types	out	
of	different	arrays

MPI_Type_create_hindexed(int count, int *arr_of_blocklengths, 
MPI_Aint *arr_of_displacements, MPI_Datatype oldtype, 
MPI_Datatype *newtype)
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MPI_Type_create_struct

§ Most	general	constructor,	allows	different	types	and	arbitrary	
arrays	(also	most	costly)

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[], MPI_Datatype
array_of_types[], MPI_Datatype *newtype)
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MPI_Type_create_subarray

§ Specify	subarray of	n-dimensional	array	(sizes)	by	start	(starts)	
and	size	(subsize)

MPI_Type_create_subarray(int ndims, int array_of_sizes[],
int array_of_subsizes[], int array_of_starts[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_create_darray

§ Create	distributed	array,	supports	block,	cyclic	and	no	
distribution	for	each	dimension
– Very	useful	for	I/O

MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_BOTTOM and MPI_Get_address

§ MPI_BOTTOM	is	the	absolute	zero	address
– Portability	(e.g.,	may	be	non-zero	in	globally	shared	memory)

§ MPI_Get_address
– Returns		address	relative	to	MPI_BOTTOM

– Portability	(do	not	use	“&”	operator	in	C!)

§ Very	important	when	
– Building	struct datatypes

– Data	spans	multiple	arrays
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Commit, Free, and Dup

§ Types	must	be	committed	before	use
– Only	the	ones	that	are	used!

– MPI_Type_commit may	perform	heavy	optimizations	(and	will	
hopefully)

§ MPI_Type_free
– Free	MPI	resources	of	datatypes

– Does	not	affect	types	built	from	it

§ MPI_Type_dup
– Duplicates	a	type

– Library	abstraction	(composability)
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Other Datatype Functions

§ Pack/Unpack
– Mainly	for	compatibility	to	legacy	libraries

– Avoid	using	it	yourself

§ Get_envelope/contents
– Only	for	expert	library	developers

– Libraries	like	MPITypes1 make	this	easier

§ MPI_Type_create_resized
– Change	extent	and	size	(dangerous	but	useful)

http://www.mcs.anl.gov/mpitypes/
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Datatype Selection Order

§ Simple	and	effective	performance	model:
– More	parameters	==	slower

§ contig <	vector	<	index_block <	index	<	struct

§ Some	(most)	MPIs	are	inconsistent	
– But	this	rule	is	portable

W.	Gropp et	al.:	Performance	Expectations	and	Guidelines	for	MPI	Derived	Datatypes
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Collectives and Nonblocking Collectives
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Introduction to Collective Operations in MPI

§ Collective	operations	are	called	by	all	processes	in	a	
communicator.

§ MPI_BCAST distributes	data	from	one	process	(the	root)	to	all	
others	in	a	communicator.

§ MPI_REDUCE combines	data	from	all	processes	in	the	
communicator	and	returns	it	to	one	process.

§ In	many	numerical	algorithms,	SEND/RECV can	be	replaced	by	
BCAST/REDUCE,	improving	both	simplicity	and	efficiency.
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MPI Collective Communication

§ Communication	and	computation	is	coordinated	among	a	
group	of	processes	in	a	communicator

§ Tags	are	not	used;	different	communicators	deliver	similar	
functionality

§ Non-blocking	collective	operations	in	MPI-3

§ Three	classes	of	operations:	synchronization,	data	movement,	
collective	computation
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Synchronization

§ MPI_BARRIER(comm)

– Blocks	until	all	processes	in	the	group	of communicator	comm call	it
– A	process	cannot	get	out	of	the	barrier	until	all	other	processes	have	

reached	barrier

§ Note	that	a	barrier	is	rarely,	if	ever,	necessary	in	an	MPI	program
§ Adding	barriers	“just	to	be	sure”	is	a	bad	practice	and	causes	unnecessary	

synchronization.	Remove	unnecessary	barriers	from	your	code.

§ One	legitimate	use	of	a	barrier	is	before	the	first	call	to	MPI_Wtime to	
start	a	timing	measurement.	This	causes	each	process	to	start	at	
approximately the	same	time.

§ Avoid	using	barriers	other	than	for	this.
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Collective Data Movement
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More Collective Data Movement
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Collective Computation
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MPI Collective Routines

§ Many	Routines,	including:		MPI_ALLGATHER, MPI_ALLGATHERV, 
MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV, 
MPI_BCAST, MPI_EXSCAN, MPI_GATHER, MPI_GATHERV, 
MPI_REDUCE, MPI_REDUCE_SCATTER, MPI_SCAN, 
MPI_SCATTER, MPI_SCATTERV

§ “All” versions	deliver	results	to	all	participating	processes

§ “V” versions	(stands	for	vector)	allow	the chunks	to	have	different	
sizes

§ “W” versions	for	ALLTOALL	allow	the	chunks	to	have	different	sizes	
in	bytes,	rather	than	units	of	datatypes

§ MPI_ALLREDUCE,	MPI_REDUCE,	MPI_REDUCE_SCATTER,	

MPI_REDUCE_SCATTER_BLOCK,	MPI_EXSCAN,	 and	MPI_SCAN
take	both	built-in	and	user-defined	combiner	functions
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MPI Built-in Collective Computation Operations

§ MPI_MAX
§ MPI_MIN
§ MPI_PROD
§ MPI_SUM
§ MPI_LAND
§ MPI_LOR
§ MPI_LXOR
§ MPI_BAND
§ MPI_BOR
§ MPI_BXOR
§ MPI_MAXLOC
§ MPI_MINLOC
§ MPI_REPLACE, 

MPI_NO_OP

Maximum
Minimum
Product
Sum
Logical	and
Logical	or
Logical	exclusive	or
Bitwise	and
Bitwise	or
Bitwise	exclusive	or
Maximum	and	location
Minimum	and	location
Replace	and	no	operation	(RMA)
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Defining your own Collective Operations

§ Create	your	own	collective	computations	with:
MPI_OP_CREATE(user_fn, commutes, &op);
MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

§ The	user	function	should	perform:
inoutvec[i]  =  invec[i]  op  inoutvec[i];
for	i from	0	to	len-1

§ The	user	function	can	be	non-commutative,	but	must	be	
associative
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Nonblocking Collectives
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Nonblocking Collective Communication

§ Nonblocking communication
– Deadlock	avoidance

– Overlapping	communication/computation

§ Collective	communication
– Collection	of	pre-defined	optimized	routines

§ Nonblocking collective	communication
– Combines	both	advantages

– System	noise/imbalance	resiliency

– Semantic	advantages
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Nonblocking Communication

§ Semantics	are	simple:
– Function	returns	no	matter	what

– No	progress	guarantee!

§ E.g.,	MPI_Isend(<send-args>,	MPI_Request *req);

§ Nonblocking tests:
– Test,	Testany,	Testall,	Testsome

§ Blocking	wait:
– Wait,	Waitany,	Waitall,	Waitsome
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Nonblocking Collective Communication

§ Nonblocking variants	of	all	collectives
– MPI_Ibcast(<bcast args>,	MPI_Request *req);

§ Semantics:
– Function	returns	no	matter	what
– No	guaranteed	progress	(quality	of	implementation)
– Usual	completion	calls	 (wait,	test)	+	mixing
– Out-of	order	completion

§ Restrictions:
– No	tags,	in-order	matching
– Send	and	vector	buffers	may	not	be	touched		during	operation
– MPI_Cancel not	supported
– No	matching	with	blocking	collectives

Hoefler	et	al.:	Implementation	and	Performance	Analysis	of	Non-Blocking	Collective	Operations	for	MPI
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Nonblocking Collective Communication

§ Semantic	advantages:
– Enable	asynchronous	progression	(and	manual)

• Software	pipelining

– Decouple	data	transfer	and	synchronization
• Noise	resiliency!

– Allow	overlapping	communicators
• See	also	neighborhood	collectives

– Multiple	outstanding	operations	at	any	time
• Enables	pipelining	window

Hoefler	et	al.:	Implementation	and	Performance	Analysis	of	Non-Blocking	Collective	Operations	for	MPI
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A Non-Blocking Barrier?

§ What	can	that	be	good	for?	Well,	quite	a	bit!

§ Semantics:
– MPI_Ibarrier()	– calling	process	entered	the	barrier,	no

synchronization	happens

– Synchronization	may happen	asynchronously

– MPI_Test/Wait()	– synchronization	happens if	necessary

§ Uses:	
– Overlap	barrier	latency	(small	benefit)

– Use	the	split	semantics!	Processes	notify non-collectively	but	
synchronize collectively!
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Nonblocking And Collective Summary

§ Nonblockingcomm does	two	things:
– Overlap	and	relax	synchronization

§ Collective	comm does	one	thing
– Specialized	pre-optimized	routines	

– Performance	portability

– Hopefully	transparent	performance

§ They	can	be	composed
– E.g.,	software	pipelining
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