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One-Sided Communication
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One-Sided Communication

§ The	basic	idea	of	one-sided	communication	models	is	to	
decouple	data	movement	with	process	synchronization
– Should	be	able	to	move	data	without	requiring	that	the	remote	

process	synchronize

– Each	process	exposes	a	part	of	its	memory	to	other	processes

– Other	processes	can	directly	read	from	or	write	to	this	memory
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Comparing One-sided and Two-sided Programming
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Advantages of RMA Operations

§ Can	do	multiple	data	transfers	with	a	single	synchronization	
operation
– like	BSP	model

§ Bypass	tag	matching
– effectively	precomputed	as	part	of	remote	offset

§ Some	irregular	communication	patterns	can	be	more	
economically	expressed

§ Can	be	significantly	faster	than	send/receive	on	systems	with	
hardware	support	for	remote	memory	access,	such	as	shared	
memory	systems
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Irregular Communication Patterns with RMA

§ If	communication	pattern	is	not	known	a	priori,	the	send-
recv model	requires	an	extra	step	to	determine	how	many	
sends-recvs to	issue

§ RMA,	however,	can	handle	it	easily	because	only	the	origin	
or	target	process	needs	to	issue	the	put	or	get	call

§ This	makes	dynamic	communication	easier	to	code	in	RMA
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What we need to know in MPI RMA

§ How	to	create	remote	accessible	memory?

§ Reading,	Writing	and	Updating	remote	memory

§ Data	Synchronization

§ Memory	Model
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Creating Public Memory

§ Any	memory	created	by	a	process	is,	by	default,	only	locally	
accessible
– X	=	malloc(100);

§ Once	the	memory	is	created,	the	user	has	to	make	an	explicit	
MPI	call	to	declare	a	memory	region	as	remotely	accessible
– MPI	terminology	for	remotely	accessible	memory	is	a	“window”

– A	group	of	processes	collectively	create	a	“window”

§ Once	a	memory	region	is	declared	as	remotely	accessible,	all	
processes	in	the	window	can	read/write	data	to	this	memory	
without	explicitly	synchronizing	with	the	target	process
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Remote Memory Access Windows and Window 
Objects
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Basic RMA Functions for Communication 

§ MPI_Win_create exposes	local	memory	to	RMA	operation	by	other	
processes	in	a	communicator
– Collective	operation	
– Creates	window	object

§ MPI_Win_free deallocateswindow	object

§ MPI_Put moves	data	from	local	memory	to	remote	memory
§ MPI_Get retrieves	data	from	remote	memory	into	local	memory
§ MPI_Accumulate updates	remote	memory	using	local	values
§ Data	movement	operations	are	non-blocking
§ Subsequent	synchronization	on	window	object	needed	to	ensure	

operation	is	complete
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Window creation models

§ Four	models	exist
– MPI_WIN_CREATE

• You	already	have	an	allocated	buffer	 that	you	would	 like	to	make	
remotely	accessible

– MPI_WIN_ALLOCATE
• You	want	to	create	a	buffer	and	directly	make	it	remotely	accessible

– MPI_WIN_CREATE_DYNAMIC
• You	don’t	have	a	buffer	 yet,	but	will	have	one	in	the	future

– MPI_WIN_ALLOCATE_SHARED
• You	want	multiple	processes	on	the	same	node	share	a	buffer

• We	will	not	cover	this	model	 today
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MPI_WIN_CREATE

§ Expose	a	region	of	memory	in	an	RMA	window
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– base - pointer	to	local	data	to	expose

– size - size	of	local	data	in	bytes	(nonnegative	integer)

– disp_unit - local	unit	size	for	displacements,	in	bytes	(positive	integer)

– info - info	argument	(handle)

– comm - communicator	(handle)

int MPI_Win_create(void *base, MPI_Aint size, 
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)
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Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
a = (void *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1;  a[1] = 2;

/* collectively declare memory as remotely accessible */
MPI_Win_create(a, 1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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MPI_WIN_ALLOCATE

§ Create	a	remotely	accessible	memory	region	in	an	RMA	window
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– size - size	of	local	data	in	bytes	(nonnegative	integer)

– disp_unit - local	unit	size	for	displacements,	in	bytes	(positive	integer)

– info - info	argument	(handle)

– comm - communicator	(handle)

– baseptr - pointer	to	exposed	local	data

int MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI_Info info,
MPI_Comm comm, void *baseptr, MPI_Win *win)
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Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remotely accessible memory in the 
window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int), 

MPI_INFO_NULL,
MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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MPI_WIN_CREATE_DYNAMIC

§ Create	an	RMA	window,	to	which	data	can	later	be	attached
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops

§ Application	can	dynamically	attach	memory	to	this	window

§ Application	can	access	data	on	this	window	only	after	a	
memory	region	has	been	attached

int MPI_Win_create_dynamic(…, MPI_Comm comm, MPI_Win *win)
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Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (void *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1;  a[1] = 2;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/*Array ‘a’ is now accessibly by all processes in MPI_COMM_WORLD*/

/* undeclare public memory */
MPI_Win_detach(win, a);
MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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Data movement

§ MPI	provides	ability	to	read,	write	and	atomically	modify	data	
in	remotely	accessible	memory	regions
– MPI_GET

– MPI_PUT

– MPI_ACCUMULATE

– MPI_GET_ACCUMULATE

– MPI_COMPARE_AND_SWAP

– MPI_FETCH_AND_OP
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Data movement: Get

§ Move	data	to origin,	from target

§ Separate	data	description	triples	for	origin	and	target
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MPI_Get(origin_addr, origin_count, origin_datatype,
target_rank, target_disp, target_count, 

target_datatype,
win)



Data movement: Put

§ Move	data	from origin,	to target

§ Same	arguments	as	MPI_Get
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Data aggregation: Accumulate

§ Like	MPI_Put,	but	applies	an	MPI_Op instead
– Predefined	ops	only,	no	user-defined!

§ Result	ends	up	at	target	buffer

§ Different	data	layouts	between	target/origin	OK,	basic	type	
elements	must	match

§ Put-like	behavior	with	MPI_REPLACE	(implements	f(a,b)=b)
– Per	element	atomic	PUT Target	Process
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Data aggregation: Get Accumulate

§ Like	MPI_Get,	but	applies	an	MPI_Op instead
– Predefined	ops	only,	no	user-defined!

§ Result	at	target	buffer;	original	data	comes	to	the	source

§ Different	data	layouts	between	target/origin	OK,	basic	type	
elements	must	match

§ Get-like	behavior	with	MPI_NO_OP
– Per	element	atomic	GET Target	Process
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Ordering of Operations in MPI RMA

§ For	Put/Get	operations,	ordering	does	not	matter
– If	you	do	two	concurrent	PUTs to	the	same	location,	the	result	can	be	

garbage

§ Two	accumulate	operations	to	the	same	location	are	valid
– If	you	want	“atomic	PUTs”,	you	can	do	accumulates	with	

MPI_REPLACE

§ All	accumulate	operations	are	ordered	by	default
– User	can	tell	the	MPI	implementation	that	(s)he	does	not	require	

ordering	as	optimization	hints

– You	can	ask	for	“read-after-write”	ordering,	“write-after-write”	
ordering,	or	“read-after-read”	ordering
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Additional Atomic Operations

§ Compare-and-swap
– Compare	the	target	value	with	an	input	value;	if	they	are	the	same,	

replace	the	target	with	some	other	value

– Useful	for	linked	list	creations	– if	next	pointer	is	NULL,	do	something

§ Fetch-and-Op
– Special	case	of	Get	accumulate	for	predefined	datatypes – (probably)	

faster	for	the	hardware	to	implement
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RMA Synchronization Models

§ RMA	data	visibility
– When	is	a	process	allowed	to	read/write	from	remotely	accessible	

memory?
– How	do	I	know	when	data	written	by	process	X	is	available	for	process	Y	

to	read?
– RMA	synchronization	models	provide	these	capabilities

§ MPI	RMA	model	allows	data	to	be	accessed	only	within	an	
“epoch”
– Three	types	of	epochs	possible:

• Fence	(active	target)
• Post-start-complete-wait	(active	target)
• Lock/Unlock	(passive	target)

§ Data	visibility	is	managed	using	RMA	synchronization	primitives
– MPI_WIN_FLUSH,	MPI_WIN_FLUSH_ALL
– Epochs	also	perform	synchronization
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Fence Synchronization

§ MPI_Win_fence(assert, win)
§ Collective	synchronization	model	-- assume	it	

synchronizes	like	a	barrier

§ Starts	and ends	access	&	exposure	epochs	
(usually)

§ Everyone	does	an	MPI_WIN_FENCE	to	open	an	
epoch

§ Everyone	issues	PUT/GET	operations	to	
read/write	data

§ Everyone	does	an	MPI_WIN_FENCE	to	close	
the	epoch
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PSCW Synchronization

§ Target:	Exposure	epoch
– Opened	with	MPI_Win_post

– Closed	by	MPI_Win_wait

§ Origin:	Access	epoch
– Opened	by	MPI_Win_start

– Closed	by	MPI_Win_compete

§ All	may	block,	to	enforce	P-S/C-W	
ordering
– Processes	can	be	both	origins	and	

targets

§ Like	FENCE,	but	the	target	may	allow	
a	smaller	group	of	processes	to	access	
its	data
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Lock/Unlock Synchronization

§ Passive	mode:	One-sided,	asynchronous communication

– Target	does	not	participate	in	communication	operation

§ Shared	memory	like	model
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Passive Target Synchronization

§ Begin/end	passive	mode	epoch
– Doesn’t	function	like	a	mutex,	name	can	be	confusing

– Communication	operations	within	epoch	are	all	nonblocking

§ Lock	type
– SHARED:	Other	processes	using	shared	can	access	concurrently

– EXCLUSIVE:	No	other	processes	can	access	concurrently

int MPI_Win_lock(int lock_type, int rank, int assert, 
MPI_Win win)

int MPI_Win_unlock(int rank, MPI_Win win)
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When should I use passive mode?

§ RMA	performance	advantages	from	low	protocol	overheads
– Two-sided:	Matching,	queuing,	buffering,	unexpected	receives,	etc…

– Direct	support	from	high-speed	interconnects	(e.g.	InfiniBand)

§ Passive	mode:	asynchronous one-sided	communication
– Data	characteristics:

• Big	data	analysis	requiring	memory	aggregation

• Asynchronous	 data	exchange

• Data-dependent	access	pattern

– Computation	characteristics:
• Adaptive	methods	 (e.g.	AMR,	MADNESS)

• Asynchronous	 dynamic	load	balancing

§ Common	structure:	shared	arrays
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