
MPI for Scalable Computing
(continued from yesterday)

Bill	Gropp,	University	of	Illinois	at	Urbana-Champaign

Rusty	Lusk,	Argonne	National	Laboratory

Rajeev	Thakur,	Argonne	National	Laboratory



Topology Mapping and Neighborhood Collectives

86



Topology Mapping Basics

§ First	type:	Allocation	mapping
– Up-front	specification	of	communication	pattern

– Batch	system	picks	good	set	of	nodes	for	given	topology

§ Properties:
– Not		widely	supported	by	current	batch	systems

– Either	predefined	allocation	(BG/P),	random	allocation,	or	“global	
bandwidth	maximation”

– Also	problematic	to	specify	communication	pattern	upfront,	not	
always	possible	(or	static)

87



Topology Mapping Basics

§ Rank	reordering	
– Change	numbering	in	a	given	allocation	to	reduce	congestion	or	

dilation

– Sometimes	automatic	(early	IBM	SP	machines)

§ Properties
– Always	possible,	but	effect	may	be	limited	(e.g.,	in	a	bad	allocation)

– Portable	way:	MPI	process	topologies
• Network	topology	 is	not	exposed

– Manual	data	shuffling	after	remapping	step

88



On-Node Reordering

Naïve	Mapping Optimized	Mapping

Topomap

Gottschling and	Hoefler:	Productive	Parallel	Linear	Algebra	Programming	with	Unstructured	 Topology	
Adaption 89



Off-Node (Network) Reordering

Application	Topology Network	Topology

Naïve	Mapping Optimal	Mapping

Topomap

90



MPI Topology Intro

§ Convenience	functions	(in	MPI-1)
– Create	a	graph	and	query	it,	nothing	else

– Useful	especially	for	Cartesian	topologies
• Query	neighbors	 in	n-dimensional	 space

– Graph	topology:	each	rank	specifies	full	graph	L

§ Scalable	Graph	topology	(MPI-2.2)
– Graph	topology:	each	rank	specifies	its	neighbors	or an	arbitrary	

subset	of	the	graph

§ Neighborhood	collectives	(MPI-3.0)
– Adding	communication	functions	defined	on	graph	topologies	

(neighborhood	of	distance	one)

91



MPI_Cart_create

§ Specify	ndims-dimensional	topology
– Optionally	periodic	in	each	dimension	(Torus)

§ Some	processes	may	return	MPI_COMM_NULL
– Product	of	dims	must	be	≤	P

§ Reorder	argument	allows	for	topology	mapping
– Each	calling	process	may	have	a	new	rank	in	the	created	communicator

– Data	has	to	be	remapped	manually

MPI_Cart_create(MPI_Comm comm_old, int ndims, 
const int *dims, const int *periods, int reorder, 
MPI_Comm *comm_cart)

92



MPI_Cart_create Example

§ Creates	logical	3-d	Torus	of	size	5x5x5

§ But	we’re	starting	MPI	processes	with	a	one-dimensional	
argument	(-p	X)
– User	has	to	determine	size	of	each	dimension

– Often	as	“square”	as	possible,	MPI	can	help!

int dims[3] = {5,5,5};
int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

93



MPI_Dims_create

§ Create	dims	array	for	Cart_create with	nnodes and	ndims
– Dimensions	are	as	close	as	possible	(well,	in	theory)

§ Non-zero	entries	in	dims	will	not	be	changed
– nnodesmust	be	multiple	of	all	non-zeroes	in	dims

MPI_Dims_create(int nnodes, int ndims, int *dims)

94



MPI_Dims_create Example

§ Makes	life	a	little	bit	easier
– Some	problems	may	be	better	with	a	non-square	layout	though

int p;
int dims[3] = {0,0,0};
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

95



Cartesian Query Functions

§ Library	support	and	convenience!

§ MPI_Cartdim_get()
– Gets	dimensions	of	a	Cartesian	communicator

§ MPI_Cart_get()
– Gets	size	of	dimensions

§ MPI_Cart_rank()
– Translate	coordinates	to	rank

§ MPI_Cart_coords()
– Translate	rank	to	coordinates

96



Cartesian Communication Helpers

§ Shift	in	one	dimension
– Dimensions	are	numbered	from	0	to	ndims-1

– Displacement	indicates	neighbor	distance	(-1,	1,	…)

– May	return	MPI_PROC_NULL

§ Very	convenient,	all	you	need	for	nearest	neighbor	
communication

MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

97



MPI_Graph_create

§ Don’t	use!	Use	one	of	the	Dist_graph functions	instead

§ nnodes is	the	total	number	of	nodes
§ index	i stores	the	total	number	of	neighbors	for	the	first	i

nodes	(sum)
– Acts	as	offset	into	edges	array

§ edges	stores	the	edge	list	for	all	processes
– Edge	list	for	process	j	starts	at	index[j]	in	edges
– Process	j	has	index[j+1]-index[j]	edges

MPI_Graph_create(MPI_Comm comm_old, int nnodes, 
const int *index, const int *edges, int reorder, 
MPI_Comm *comm_graph)

98



Distributed graph constructor

§ MPI_Graph_create is	discouraged
– Not	scalable

– Not	deprecated	yet	but	hopefully	soon

§ New	distributed	interface:
– Scalable,	allows	distributed	graph	specification

• Either	local	neighbors	 or any	edge	 in	the	graph

– Specify	edge	weights
• Meaning	undefined	 but	optimization	 opportunity	 for	vendors!

– Info	arguments
• Communicate	assertions	of	semantics	to	the	MPI	library

• E.g.,	semantics	of	edge	weights

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2 99



MPI_Dist_graph_create_adjacent

§ indegree,	sources,	sourceweights – source	proc.	spec.

§ outdegree,	destinations,	destweights – dest.	proc.	spec.

§ info,	reorder,	comm_dist_graph – as	usual

§ directed	graph

§ Each	edge	is	specified	twice,	once	as	out-edge	(at	the	source)	
and	once	as	in-edge	(at	the	dest)

MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree, 
const int sources[], const int sourceweights[], int outdegree, 
const int destinations[], const int destweights[], 
MPI_Info info, int reorder, MPI_Comm *comm_dist_graph)

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2 100



MPI_Dist_graph_create_adjacent

§ Process	0:
– Indegree:	0

– Outdegree:	2

– Dests:	{3,1}

§ Process	1:
– Indegree:	3

– Outdegree:	2

– Sources:	{4,0,2}

– Dests:	{3,4}

§ …

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2 101



MPI_Dist_graph_create

§ n	– number	of	source	nodes
§ sources	– n	source	nodes	
§ degrees	– number	of	edges	for	each	source
§ destinations,	weights	– dest.	process	specification
§ info,	reorder	– as	usual
§ More	flexible	and	convenient	

– Requires	global	communication
– Slightly	more	expensive	than	adjacent	specification

MPI_Dist_graph_create(MPI_Comm comm_old, int n, 
const int sources[], const int degrees[], 
const int destinations[], const int weights[], 
MPI_Info info, int reorder, 
MPI_Comm *comm_dist_graph)

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2 102



MPI_Dist_graph_create

§ Process	0:
– N:	2

– Sources:	{0,1}

– Degrees:	{2,2}

– Dests:		{3,1,4,3}

§ Process	1:
– N:	2

– Sources:	{2,3}

– Degrees:	{1,1} *

– Dests:	{1,2}

§ …

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2 103

*	Note	that	in	this	example,	process	 1	specifies	 only	 one	of	the	two	outgoing	edges
of	process	 3;	the	second	outgoing	edge	needs	to	be	specified	 by	another	process



Distributed Graph Neighbor Queries

§ MPI_Dist_graph_neighbors_count()

– Query	the	number	of	neighbors	of	calling	process

– Returns	indegree and	outdegree!

– Also	info	if	weighted

§ MPI_Dist_graph_neighbors()
– Query	the	neighbor	list	of	calling	process

– Optionally	return	weights

MPI_Dist_graph_neighbors_count(MPI_Comm comm,
int *indegree, int *outdegree, int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm comm, 
int maxindegree, int sources[], int sourceweights[], 
int maxoutdegree, int destinations[],int destweights[])

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2 104



Further Graph Queries

§ Status	is	either:
– MPI_GRAPH

– MPI_CART

– MPI_DIST_GRAPH

– MPI_UNDEFINED	(no	topology)

§ Enables	to	write	libraries	on	top	of	MPI	topologies!

MPI_Topo_test(MPI_Comm comm, int *status)

105



Algorithms and Topology

§ Complex	hierarchy:
– Multiple	chips	per	node;	

different	 access	to	local	memory	
and	to	interconnect;	multiple	
cores	per	chip

– Mesh	has	different	 bandwidths	
in	different	directions

– Allocation	of	nodes	may	not	be	
regular	(you	are	unlikely	 to	get	a	
compact	brick	of	nodes)

– Some	nodes	have	GPUs

§ Most	algorithms	designed	for	
simple	hierarchies	and	ignore	
network	issues

106

14

15

16

17

18

1818.51919.52020.52121.52222.523
0

5

10

15

20

25

Recent	work	on	general	topology	
mapping	e.g.,	

Generic	Topology	Mapping	Strategies	for	
Large-scale	Parallel	Architectures,	
Hoefler and	Snir



Dynamic Workloads Require New, More Integrated 
Approaches

§ Performance	irregularities	mean	that	classic	approaches	to	
decomposition	are	increasingly	ineffective
– Irregularities	come	from	OS,	runtime,	process/thread	placement,	

memory,	heterogeneous	nodes,	power/clock	frequency	management

§ Static	partitioning	tools	can	lead	to	persistent	load	imbalances
– Mesh	partitioners	have	incorrect	cost	models,	no	feedback	

mechanism

– “Regrid	when	things	get	bad”	won’t	work	if	the	cost	model	is	
incorrect;	also	costly

§ Basic	building	blocks	must	be	more	dynamic	without	
introducing	too	much	overhead

107



Communication Cost Includes More than 
Latency and Bandwidth

§ Communication	does	not	
happen	in	isolation

§ Effective	bandwidth	on	shared	
link	is	½	point-to-point	
bandwidth

§ Real	patterns	can	involve	many	
more	(integer	factors)

§ Loosely	synchronous	algorithms	
ensure	communication	cost	is	
worst	case

108



Halo Exchange on BG/Q and Cray XE6

BG/Q 8	Neighbors

Irecv/Send Irecv/Isend

World 662 1167

Even/Odd 711 1452

1 sender 2873

• 2048	doubles	to	each	neighbor
• Rate	is	MB/sec	(for	all	tables)

Cray XE6 8	Neighbors

Irecv/Send Irecv/Isend

World 352 348

Even/Odd 338 324

1 sender 5507

109



Discovering Performance Opportunities

§ Lets	look	at	a	single	process	sending	to	its	neighbors.	

§ Based	on	our	performance	model,	we	expect	the	rate	to	be	roughly	twice	
that	for	the	halo	(since	this	test	is	only	sending,	not	sending	and	
receiving)

System 4 neighbors 8 Neighbors
Periodic Periodic

BG/L 488 490 389 389

BG/P 1139 1136 892 892
BG/Q 2873
XT3 1005 1007 1053 1045
XT4 1634 1620 1773 1770
XE6 5507

110



Discovering Performance Opportunities

§ Ratios	of	a	single	sender	to	all	processes	sending	(in	rate)

§ Expect a	factor	of	roughly	2	(since	processes	must	also	receive)

System 4 neighbors 8 Neighbors
Periodic Periodic

BG/L 2.24 2.01

BG/P 3.8 2.2
BG/Q 1.98
XT3 7.5 8.1 9.08 9.41
XT4 10.7 10.7 13.0 13.7
XE6 15.6 15.9

§ BG	gives	roughly	double	the	halo	rate.		XTn and	XE6	are	much	higher.

§ It	should	be	possible	to	improve	the	halo	exchange	on	the	XT	by	scheduling	the	communication

§ Or	improving	the	MPI	implementation
111



Neighborhood Collectives

112



Neighborhood Collectives 

§ Topologies	implement	no	communication!
– Just	helper	functions

§ Collective	communications	only	cover	some	patterns
– E.g.,	no	stencil	pattern

§ Several	requests	for	“build	your	own	collective”	functionality	in	
MPI
– Neighborhood	collectives	are	a	simplified	version

– Cf.	Datatypes	for	communication	patterns!

113



Cartesian Neighborhood Collectives

§ Communicate	with	direct	neighbors	in	Cartesian	topology
– Corresponds	to	cart_shift with	disp=1

– Collective	(all	processes	in	commmust	call	it,	including	processes	
without	neighbors)

– Buffers	are	laid	out	as	neighbor	sequence:
• Defined	by	order	of	dimensions,	 first	negative,	then	positive

• 2*ndims sources	and	destinations

• Processes	at	borders	 	(MPI_PROC_NULL)	leave	holes	in	buffers	 (will	not	
be	updated	or	communicated)!

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI 114



Cartesian Neighborhood Collectives

§ Allgather

§ Buffer	ordering	example:

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI 115



Graph Neighborhood Collectives

§ Collective	Communication	along	arbitrary	neighborhoods
– Order	is	determined	by	order	of	neighbors	as	returned	by	

(dist_)graph_neighbors.

– Distributed	graph	is	directed,	may	have	different	numbers	of	
send/recv neighbors

– Can	express	dense	collective	operations	J

– Any	persistent	communication	pattern!

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI 116



MPI_Neighbor_allgather

§ Sends	the	same	message	to	all	neighbors

§ Receives	indegree distinct	messages

§ Similar	to	MPI_Gather
– The	all	prefix	expresses	that	each	process	is	a	“root”	of	his	

neighborhood

§ Also	a	vector	“v”	version	for	full	flexibility

MPI_Neighbor_allgather(const void* sendbuf, int sendcount, 
MPI_Datatype sendtype, void* recvbuf, int recvcount, 
MPI_Datatype recvtype, MPI_Comm comm)

117



MPI_Neighbor_alltoall

§ Sends	outdegree distinct	messages

§ Received	indegree distinct	messages

§ Similar	to	MPI_Alltoall
– Neighborhood	specifies	full	communication	relationship

§ Vector	and	w	versions	for	full	flexibility

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount, 
MPI_Datatype sendtype, void* recvbuf, int recvcount, 
MPI_Datatype recvtype, MPI_Comm comm)

118



Nonblocking Neighborhood Collectives

§ Very	similar	to	nonblockingcollectives

§ Collective	invocation

§ Matching	in-order	(no	tags)
– No	wild	tricks	with	neighborhoods!	In	order	matching	per	

communicator!

MPI_Ineighbor_allgather(…, MPI_Request *req); 
MPI_Ineighbor_alltoall(…, MPI_Request *req);

119



Topology Summary

§ Topology	functions	allow	users	to	specify	application	
communication	patterns/topology
– Convenience	functions	(e.g.,	Cartesian)

– Storing	neighborhood	relations	(Graph)

§ Enables	topology	mapping	(reorder=1)
– Not	widely	implemented	yet

– May	requires	manual	data	re-distribution	(according	to	new	rank	
order)

§ MPI	does	not	expose	information	about	the	network	topology	
(would	be	very	complex)

120



Neighborhood Collectives Summary

§ Neighborhood	collectives	add	communication	functions	to	
process	topologies
– Collective	optimization	potential!

§ Allgather
– One	item	to	all	neighbors

§ Alltoall
– Personalized	item	to	each	neighbor

§ High	optimization	potential	(similar	to	collective	operations)
– Interface	encourages	use	of	topology	mapping!

121



Acknowledgments

§ Thanks	to	Torsten Hoefler and	Pavan Balaji for	some	of	the	
slides	in	this	tutorial

122


