MPI for Scalable Computing
(continued from yesterday)

Bill Gropp, University of lllinoisat Urbana-Champaign
Rusty Lusk, Argonne National Laboratory

Rajeev Thakur, Argonne National Laboratory

&R, U.S. DEPARTMENT OF
“Ys ENERG



Topology Mapping and Neighborhood Collectives

86



Topology Mapping Basics

= First type: Allocation mapping
— Up-front specification of communication pattern

— Batch system picks good set of nodes for given topology

= Properties:
— Not widelysupported by current batch systems

— Either predefined allocation (BG/P), random allocation, or “global
bandwidth maximation”
— Also problematicto specify communication pattern upfront, not

always possible (or static)

87



Topology Mapping Basics

"= Rank reordering

— Changenumberingin a given allocation to reduce congestion or
dilation

— Sometimes automatic(early IBM SP machines)

= Properties
— Always possible, but effect may be limited (e.g., in a bad allocation)

— Portable way: MPI process topologies

e Network topology is not exposed

— Manual data shuffling after remappingstep

88



On-Node Reordering

Naive Mapping Optimized Mapping

node 0 node 2 node 0 node 2

Q 2442 o Q 1955 e
a e Topomap e e

144

3055 5800 1869

node 1 node 3 node 1 node 3

1869 e 651 o

Gottschling and Hoefler: Productive Parallel Linear Algebra Programming with Unstructured Topology
Adaption



Off-Node (Network) Reordering

Application Topology

Topomap

Network Topology

90



MPI Topology Intro

= Conveniencefunctions (in MPI-1)
— Create a graph and query it, nothingelse
— Useful especially for Cartesian topologies
e Query neighbors in n-dimensional space
— Graphtopology: each rank specifies full graph ®
= Scalable Graph topology (MPI-2.2)

— Graphtopology: each rankspecifies its neighborsoran arbitrary
subset of the graph

* Neighborhood collectives (MPI-3.0)

— Addingcommunication functions defined on graph topologies
(neighborhood of distance one)

91



MPIl_Cart_create

MPI|_Cart_create(MPl_Comm comm_old, int ndims,
const int *dims, const int *periods, int reorder,
MP|_Comm *comm_cart)

= Specify ndims-dimensional topology
— Optionally periodicin each dimension (Torus)

= Some processes may return MPI_COMM __NULL

— Product of dims must be<P

= Reorder argument allows for topology mapping

— Each callingprocess may have a new rank in the created communicator

— Data hasto be remapped manually

92




MPI_Cart_create Example

int dims[3] = {5,5,5};

int periods[3] = {1,1,1};

MP|_Comm topocomm,;

MPI1_Cart_create(comm, 3, dims, periods, 0, &opocomm);

= But we’re starting MPI processes with a one-dimensional
argument (-p X)
— User has to determine size of each dimension

— Often as “square” as possible, MPI can help!

93




MPIl_Dims_create

MPI_Dims_create(int nnodes, int ndims, int *dims)

= Create dims array for Cart_create with nnodes and ndims

— Dimensions are as close as possible (well, in theory)

= Non-zero entries in dims will not be changed

— nnodes must be multiple of all non-zeroesin dims

94




MPI_Dims_create Example

int p;

int dims[3] = {0,0,0};
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};
MPIl _Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

= Makes life a little bit easier

— Some problems may be better with a non-square layout though

95



Cartesian Query Functions

" Library supportand convenience!

= MPI_Cartdim_get()

— Gets dimensions of a Cartesian communicator

= MPI_Cart_get()

— Getssize of dimensions

= MPI_Cart_rank()

— Translate coordinates to rank

= MPI_Cart_coords()

— Translaterankto coordinates

96



Cartesian Communication Helpers

MPI_Cart_shift(MPl_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

= Shiftin one dimension

— Dimensions are numbered from 0 to ndims-1
— Displacementindicates neighbordistance (-1, 1, ...)

— May return MPI_PROC_NULL

= Very convenient, all you need for nearest neighbor

communication

97



MPI_Graph_create

= Don’tuse! Use one of the Dist_graph functionsinstead

MPI|_Graph_create(MPI_Comm comm_old, int nnodes,
const int *index, const int *edges, int reorder,
MPIl_Comm *comm_graph)

= nnodesis the total number of nodes

= indexistores the total number of neighbors for the first i
nodes (sum)
— Acts as offset into edges array

= edges stores the edge list for all processes

— Edge list for processj starts at index[j] in edges

— Process j hasindex[j+1]-index[j] edges

98




Distributed graph constructor

= MPI_Graph create is discouraged
— Not scalable

— Not deprecated yet but hopefully soon

"= New distributed interface:
— Scalable, allows distributed graph specification
e Either local neighbors or any edge in the graph
— Specify edge weights
e Meaning undefined but optimization opportunity for vendors!
— Info arguments

e Communicate assertions of semantics to the MPI library

e E.g., semantics of edge weights

Hoefleret al.: The Scalable Process Topology Interface of MPI 2.2

99



MPI_Dist_graph_create_adjacent

MPI_Dist_graph_create adjacent(MPl_Comm comm_old, int indegree,
const int sources[], const int sourceweightsl], int outdegree,
const int destinations[], const int destweightsf],

MPI_Info info, int reorder, MPI_Comm *comm_dist_graph)

" indegree, sources, sourceweights —source proc. spec.

= outdegree, destinations, destweights — dest. proc. spec.
= info, reorder, comm_dist_graph — as usual

= directed graph

= Each edge is specified twice, once as out-edge (at the source)
and once as in-edge (at the dest)

Hoefleretal.: The Scalable Process Topology Interface of MPIl 2.2 100



MPI_Dist_graph_create_adjacent

= Process O:
— Indegree: 0
— Qutdegree: 2
— Dests: {3,1}

= Process 1:
— Indegree: 3
— Outdegree: 2
— Sources: {4,0,2}
— Dests: {3,4}

Hoefleretal.: The Scalable Process Topology Interface of MPIl 2.2 101



MPI_Dist_graph_create

MPI|_Dist_graph create(MPl_Comm comm_old, int n,
const int sources|], const int degrees|],
const int destinations[], const int weights[],
MPI_Info info, int reorder,
MPIl_Comm *comm_dist_graph)

" n-—numberofsourcenodes

= sources—n sourcenodes

= degrees— number of edges for each source

= destinations, weights — dest. process specification
= info, reorder—as usual

= More flexible and convenient
— Requires global communication
— Slightly more expensive than adjacent specification

Hoefleret al.: The Scalable Process Topology Interface of MPIl 2.2 102



MPI_Dist_graph_create

" Process O:

" Process 1:

Hoefleretal:

N: 2

Sources: {0,1}
Degrees: {2,2}
Dests: {3,1,4,3}

N: 2

Sources: {2,3}
Degrees: {1,1}°
Dests: {1,2}

* Note that in this example, process 1 specifies only one of the two outgoing edges
of process 3; the second outgoing edge needs to be specified by another process

»The Scalable Process Topology Interface of MPI 2.2

103




Distributed Graph Neighbor Queries

= MPI_Dist_graph_neighbors_count()

MPI|_Dist_graph _neighbors count(MPl_Comm comm,
int *indegree, int *outdegree, int *weighted)

— Query the number of neighbors of calling process
— Returnsindegree and outdegree!

— Alsoinfoif weighted
= MPI_Dist_graph_neighbors()
— Query the neighbor list of calling process

— Optionally return weights

MPI_Dist_graph neighbors(MPl_Comm comm,
iInt maxindegree, int sources|], int sourceweightsi],
int maxoutdegree, int destinations|],int destweights]])

Hoefleretal.: The Scalable Process Topology Interface of MPIl 2.2 104



Further Graph Queries

MPI_Topo_test(MPl_Comm comm, int *status)

= Status is either:
— MPI_GRAPH
— MPI_CART
— MPI_DIST_GRAPH
— MPI_UNDEFINED (no topology)

= Enablesto write libraries on top of MPI topologies!

105




Algorithms and Topology

= Complexhierarchy:

— Multiple chips per node;
different access to local memory
and to interconnect; multiple 25—

00000000 -
00000000

cores per chip

— Mesh has different bandwidths
in different directions

20 —

0000000000
0000000000
O 00000000
OO00000000O0
0000000000
O 00000000

15 —

000000000
000000000

10—

0000000000000 OO0OOOO00 -
0000000000000 0O0O0OO0O0OOOO0

0000 -
0000

— Allocation of nodes may not be

00000000000 OOOOOOOOO 000

0000

0000
'©00000000000000000000 000

Q000

regular (you are unlikely to get a 51

loYeYeYeYeYeYeYeXoleYoYoYoYoYe oo Yo Yo e Yo Yo Xoko!
0000000000000 0OOOOOOOOO0OO0

0o -0

compact brick of nodes)

— Some nodes have GPUs - T WS m s w9 oes g
= Most algorithms designed for Recent work on general topology
simple hierarchiesand ignore mappmgg.g., _ _
_ Generic Topology Mapping Strategies for
network issues Large-scale Parallel Architectures,

Hoefler and Snir
106



Dynamic Workloads Require New, More Integrated
Approaches

Performance irregularities mean that classic approaches to
decomposition are increasingly ineffective

— lIrregularities come from OS, runtime, process/thread placement,
memory, heterogeneous nodes, power/clock frequency management

Static partitioningtools can lead to persistent load imbalances

— Mesh partitioners have incorrect cost models, no feedback
mechanism

— “Regrid when things get bad” won’t work if the cost model is
incorrect; also costly

Basic buildingblocks must be more dynamic without
introducingtoo much overhead

107



Communication Cost Includes More than
Latency and Bandwidth

= Communicationdoes not

happeninisolation

= Effective bandwidth on shared
link is %2 point-to-point

bandwidth

= Real patterns can involve many

more (integer factors)

= Loosely synchronous algorithms

ensure communication cost is
worst case

108




Halo Exchange on BG/Q and Cray XE6

e 2048 doublesto each neighbor
* Rateis MB/sec (forall tables)

BG/Q 8 Neighbors

lrecv/Send Irecv/lsend
World 662 1167
Even/Odd 711 1452
1 sender 2873
Cray XE6 8 Neighbors

lrecv/Send Irecv/lsend
World 352 348
Even/Odd 338 324
1 sender 5507

109



Discovering Performance Opportunities

Lets look at a single process sendingto its neighbors.

Based on our performance model, we expect the rate to be roughly twice

that for the halo (since thistest is only sending, not sendingand

receiving)

System 4 neighbors 8 Neighbors
Periodic Periodic

BGI/L 488 490 389 389
BG/P 1139 1136 892 892
BG/Q 2873
XT3 1005 1007 1053 1045
XT4 1634 1620 1773 1770
XE6 5507

110



Discovering Performance Opportunities

Ratios of a single senderto all processes sending(in rate)

Expect a factor of roughly 2 (since processes must also receive)

System 4 neighbors 8 Neighbors

Periodic Periodic
BGI/L 2.24 2.01
BG/P 3.8 2.2
BG/Q 1.98
XT3 7.5 8.1 9.08 9.41
XT4 10.7 10.7 13.0 13.7
XEG6 15.6 15.9

BG gives roughly double the halo rate. XTnand XE6 are much higher.

= |t should be possible to improve the halo exchange on the XT by scheduling the communication

= Orimproving the MPI implementation

111



Neighborhood Collectives

112




Neighborhood Collectives

" Topologiesimplement no communication!

— Just helper functions

= Collectivecommunications only cover some patterns

— E.g., nostencil pattern

= Several requests for “build your own collective” functionalityin
MPI

— Neighborhood collectives are a simplified version

— Cf. Datatypes for communication patterns!

113



Cartesian Neighborhood Collectives

= Communicate with direct neighborsin Cartesian topology
— Correspondsto cart_shift with disp=1

— Collective (all processes in comm must call it, including processes
without neighbors)
— Buffers are laid out as neighbor sequence:
e Defined by order of dimensions, first negative, then positive
e 2*ndims sources and destinations

e Processes at borders (MPlI_PROC_NULL)leave holes in buffers (will not
be updated or communicated)!

T. Hoeflerand J. L. Traeff: Sparse Collective Operations for MPI 114



Cartesian Neighborhood Collectives

= Allgather

= Buffer ordering example:

)
N

) O
0 || 1 | >| 2 |« Pr
(4 A A j
Z v v el ,
<> 4 |41 >|5 |«
C& 1 P ) K
v v v
6 |«»| 7 |<>| 8 [
C‘ / A / 4 )U

T. HoeflerandJ. L. Traeff: Sparse Collective Operations for MPI 115



Graph Neighborhood Collectives

= Collective Communicationalong arbitrary neighborhoods

— Order is determined by order of neighbors as returned by
(dist_)graph_neighbors.

— Distributed graph isdirected, may have different numbers of
send/recv neighbors

— Canexpress dense collective operations ©

— Any persistent communication pattern!

T. Hoeflerand J.- L -Traeff: Sparse Collective Operations for MPI 116



MPI_Neighbor_allgather

MPI_Neighbor_allgather(const void* sendbuf, int sendcount,
MPI|_Datatype sendtype, void* recvbuf, int recvcount,
MPI|_Datatype recvtype, MPl_Comm comm)

= Sends the same message to all neighbors
= Receivesindegree distinct messages

= Similar to MPIl_Gather

— The all prefix expresses that each process is a “root” of his
neighborhood

= Also a vector “v” version for full flexibility

117




MPI_Neighbor_alltoall

MPI_Neighbor _alltoall(const void* sendbuf, int sendcount,
MPI|_Datatype sendtype, void* recvbuf, int recvcount,
MPI|_Datatype recvtype, MPl_Comm comm)

= Sends outdegree distinct messages
= Received indegree distinct messages

= Similar to MPI_Alltoall

— Neighborhoodspecifies full communication relationship

= Vector and w versions for full flexibility

118




Nonblocking Neighborhood Collectives

MPI _Ineighbor_allgather(..., MPIl_Request *req);
MPI_Ineighbor_alltoall(..., MPI_Request *req);

= Very similar to nonblocking collectives
= Collectiveinvocation

= Matchingin-order (no tags)

— No wild tricks with neighborhoods! In order matchingper
communicator!

119



Topology Summary

* Topologyfunctions allow users to specify application
communication patterns/topology
— Convenience functions (e.g., Cartesian)

— Storing neighborhood relations (Graph)

"= Enablestopology mapping (reorder=1)
— Not widelyimplemented yet

— May requires manual data re-distribution (accordingto new rank
order)

= MPI does not expose information about the network topology
(would be very complex)

120



Neighborhood Collectives Summary

= Neighborhood collectives add communication functionsto
process topologies

— Collective optimization potential!

Allgather

— Oneitem to all neighbors

Alltoall

— Personalized item to each neighbor

High optimization potential (similar to collective operations)

— Interface encourages use of topology mapping!

121



Acknowledgments

= Thanks to Torsten Hoefler and Pavan Balaji for some of the
slides in this tutorial

122



