
MPI for Scalable Computing
(continued from yesterday)

Bill	Gropp,	University	of	Illinois	at	Urbana-Champaign

Rusty	Lusk,	Argonne	National	Laboratory

Rajeev	Thakur,	Argonne	National	Laboratory



Costs of Unintended Synchronization

2



Unexpected Hot Spots

§ Even	simple	operations	can	give	surprising	performance	
behavior.

§ Examples	arise	even	in	common	grid	exchange	patterns

§ Message	passing	illustrates	problems	present	even	in	shared	
memory
– Blocking	operations	may	cause	unavoidable	stalls

3



Mesh Exchange

§ Exchange	data	on	a	mesh

4



Sample Code

§ Do	i=1,n_neighbors
Call	MPI_Send(edge(1,i),	len,	MPI_REAL,&

nbr(i),	tag,comm,	ierr)
Enddo
Do	i=1,n_neighbors
Call	MPI_Recv(edge(1,i),	len,	MPI_REAL,&

nbr(i),	tag,	comm,	status,	ierr)
Enddo

5



Deadlocks!

§ All	of	the	sends	may	block,	waiting	for	a	matching	receive	(will	
for	large	enough	messages)

§ The	variation	of
if	(has	down	nbr)	then
Call	MPI_Send(	…	down	…	)

endif
if	(has	up	nbr)	then
Call	MPI_Recv(	…	up	…	)

endif
…
sequentializes (all	except	the	bottom	process	blocks)

6



Sequentialization

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

7



Fix 1: Use Irecv

§ Do	i=1,n_neighbors
Call	MPI_Irecv(inedge(1,i),	len,	MPI_REAL,	nbr(i),	tag,&

comm,	requests(i),	ierr)
Enddo
Do	i=1,n_neighbors
Call	MPI_Send(edge(1,i),	len,	MPI_REAL,	nbr(i),	tag,&

comm,	ierr)
Enddo
Call	MPI_Waitall(n_neighbors,	requests,	statuses,	ierr)

§ Does	not	perform	well	in	practice.		Why?

8



Understanding the Behavior: Timing Model

§ Sends	interleave

§ Sends	block	(data	larger	than	buffering	will	allow)

§ Sends	control	timing

§ Receives	do	not	interfere	with	Sends

§ Exchange	can	be	done	in	4	steps	(down,	right,	up,	left)

9



Mesh Exchange - Step 1

§ Exchange	data	on	a	mesh

10



Mesh Exchange - Step 2

§ Exchange	data	on	a	mesh

11



Mesh Exchange - Step 3

§ Exchange	data	on	a	mesh

12



Mesh Exchange - Step 4

§ Exchange	data	on	a	mesh

13



Mesh Exchange - Step 5

§ Exchange	data	on	a	mesh

14



Mesh Exchange - Step 6

§ Exchange	data	on	a	mesh

15



Timeline from IBM SP

• Note	that	process	1	finishes	last,	as	predicted

16



Distribution of Sends

17



Why Six Steps?

§ Ordering	of	Sends	introduces	delays	when	there	is	contention	
at	the	receiver

§ Takes	roughly	twice	as	long	as	it	should

§ Bandwidth	is	being	wasted

§ Same	thing	would	happen	if	using	memcpy	and	shared	
memory

18



Fix 2: Use Isend and Irecv

§ Do	i=1,n_neighbors
Call	MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&

comm,	requests(i),ierr)
Enddo
Do	i=1,n_neighbors
Call	MPI_Isend(edge(1,i),	len,	MPI_REAL,	nbr(i),	tag,&	

comm,	requests(n_neighbors+i),	ierr)
Enddo
Call	MPI_Waitall(2*n_neighbors,	requests,	statuses,	ierr)

19



Mesh Exchange - Steps 1-4

§ Four	interleaved	steps

20



Timeline from IBM SP

Note	processes	5	and	6	are	the	only	interior	processors;	these	
perform	more	communication	than	the	other	processors

21



Lesson: Defer Synchronization

§ Send-receive	accomplishes	two	things:
– Data	transfer

– Synchronization

§ In	many	cases,	there	is	more	synchronization	than	required

§ Use	nonblocking	operations	and	MPI_Waitall	to	defer	
synchronization

22


