MPI for Scalable Computing
(continued from yesterday)

Bill Gropp, University of lllinoisat Urbana-Champaign
Rusty Lusk, Argonne National Laboratory

Rajeev Thakur, Argonne National Laboratory

&R, U.S. DEPARTMENT OF
“Ys ENERG

Costs of Unintended Synchronization

Unexpected Hot Spots

= Even simple operations can give surprising performance
behavior.

= Examples arise even in common grid exchange patterns

= Message passing illustrates problems present even in shared
memory

— Blocking operations may cause unavoidable stalls

Mesh Exchange

= Exchange data on a mesh

Sample Code

* Doi=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL,&
nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Recv(edge(1,i), len, MPI_REAL,&
nbr(i), tag, comm, status, ierr)
Enddo

Deadlocks!

= All of the sends may block, waiting for a matching receive (will
for large enough messages)

* The variation of
if (has down nbr) then
Call MPI_Send(... down ...)
endif
if (has up nbr) then
Call MPI_Recv(... up ...)
endif

sequentializes (all except the bottom process blocks)

Sequentialization

Start
Send

Send

Start
Send

Send

Recv

Start
Send

Send

Recv

Start
Send

Send

Recv

Start
Send

Send

Recv

Start
Send
Send

Recv

Send

Recv

Recv

Fix 1: Use Irecv

= Doi=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

= Does not perform well in practice. Why?

Understanding the Behavior: Timing Model

= Sendsinterleave

= Sends block (data larger than buffering will allow)
= Sends control timing

= Receives do not interfere with Sends

= Exchange can be done in 4 steps (down, right, up, left)

Mesh Exchange - Step 1

= Exchange data on a mesh

10

Mesh Exchange - Step 2

= Exchange data on a mesh

Mesh Exchange - Step 3

= Exchange data on a mesh

Mesh Exchange - Step 4

= Exchange data on a mesh

Mesh Exchange - Step 5

= Exchange data on a mesh

Mesh Exchange - Step 6

= Exchange data on a mesh

Timeline from IBM SP

Logllle Title: M=

-!AFIFIIEE -Iﬂlt'tl ::b!kb :'AI.MTALL

0.01 %3 0.0170 0.017S 0.01%0 0.01m3 o.o0190 0.013% 0.0200 o0.0205 g.0210 0.0213

Note that process 1 finishes last, as predicted

16

Distribution of Sends

‘SEND’' state length distribution

pooco2 0.0003 0.0004

(in seconds)
68 states of 86 (70%)

0.0005

0.0006

0.0007

0.oo008

0.0008

17

Why Six Steps?

= Ordering of Sends introduces delays when there is contention
at the receiver

= Takes roughly twice as longas it should
= Bandwidthis being wasted

= Same thing would happen if using memcpy and shared
memory

18

Fix 2: Use Isend and Irecv

= Doi=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&
comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(n_neighbors+i), ierr)
Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)

19

Mesh Exchange - Steps 1-4

= Fourinterleaved steps

Timeline from IBM SP

oqfile Title: [
-BMIHIEH :]IHECV -ISEHD :WAITALL

M

'mk

'HIE

f
!

il

0.3555 03560 0.3565 0.3570 03575 0.3580 03585 03590 03595 03600 0.3605

Note processes 5 and 6 are the only interior processors; these
perform more communication than the other processors

21

Lesson: Defer Synchronization

= Send-receive accomplishes two things:
— Data transfer

— Synchronization

" |n many cases, there is more synchronization than required

= Use nonblockingoperationsand MPI_Waitall to defer
synchronization

22

