MPI for Scalable Computing
(continued from yesterday)

Bill Gropp, University of lllinoisat Urbana-Champaign
Rusty Lusk, Argonne National Laboratory

Rajeev Thakur, Argonne National Laboratory

&R, U.S. DEPARTMENT OF
“Ys ENERG



Costs of Unintended Synchronization



Unexpected Hot Spots

= Even simple operations can give surprising performance
behavior.

= Examples arise even in common grid exchange patterns

= Message passing illustrates problems present even in shared
memory

— Blocking operations may cause unavoidable stalls



Mesh Exchange

= Exchange data on a mesh




Sample Code

* Doi=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL,&
nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Recv(edge(1,i), len, MPI_REAL,&
nbr(i), tag, comm, status, ierr)
Enddo



Deadlocks!

= All of the sends may block, waiting for a matching receive (will
for large enough messages)

* The variation of
if (has down nbr) then
Call MPI_Send( ... down ...)
endif
if (has up nbr) then
Call MPI_Recv( ... up ...)
endif

sequentializes (all except the bottom process blocks)



Sequentialization
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Fix 1: Use Irecv

= Doi=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

= Does not perform well in practice. Why?



Understanding the Behavior: Timing Model

= Sendsinterleave

= Sends block (data larger than buffering will allow)
= Sends control timing

= Receives do not interfere with Sends

= Exchange can be done in 4 steps (down, right, up, left)



Mesh Exchange - Step 1

= Exchange data on a mesh
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Mesh Exchange - Step 2

= Exchange data on a mesh




Mesh Exchange - Step 3

= Exchange data on a mesh




Mesh Exchange - Step 4

= Exchange data on a mesh




Mesh Exchange - Step 5

= Exchange data on a mesh




Mesh Exchange - Step 6

= Exchange data on a mesh




Timeline from IBM SP
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Note that process 1 finishes last, as predicted
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Distribution of Sends

‘SEND’' state length distribution
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Why Six Steps?

= Ordering of Sends introduces delays when there is contention
at the receiver

= Takes roughly twice as longas it should
= Bandwidthis being wasted

= Same thing would happen if using memcpy and shared
memory
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Fix 2: Use Isend and Irecv

= Doi=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&
comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(n_neighbors+i), ierr)
Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)
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Mesh Exchange - Steps 1-4

= Fourinterleaved steps




Timeline from IBM SP
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Note processes 5 and 6 are the only interior processors; these
perform more communication than the other processors
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Lesson: Defer Synchronization

= Send-receive accomplishes two things:
— Data transfer

— Synchronization

" |n many cases, there is more synchronization than required

= Use nonblockingoperationsand MPI_Waitall to defer
synchronization
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