
Brian Van Straalen

Block Structured AMR Libraries
(plus a note on PETSc Interface)

FASTMath SciDAC Institute

Refined regions are organized into logically-rectangular patches.
Refinement is performed in time as well as in space.

Block-Structured Local Refinement (Berger and
Oliger, 1984)

1
n+

2

t
10 2

levellevellevel

t

t

sync sync

sync

n+1

n

t

refinement
level

•  Think of AMR as a compression technique for the discretized mesh

•  Apply higher resolution in the domain only where it is needed

•  When should you use AMR:
•  When you have a multi-scale problem
•  When a uniformly spaced grid is going to use more memory than

you have available to achieve the resolution you need

•  You cannot always use AMR even when the above conditions are met
•  When should you not use AMR:

•  When the overhead costs start to exceed gains from compression
•  When fine-coarse boundaries compromise the solution accuracy

beyond acceptability

Why use AMR and When ?

Much as using any tool in scientific computing, you should know what are
the benefits and limits of the technologies you are planning to use

•  Machinery needed for computations :
•  Interpolation, coarsening, flux corrections and other needed

resolutions at fine-coarse boundaries

•  Machinery needed for house keeping :
•  The relationships between entities at the same resolution levels
•  The relationships between entities at different resolution levels

•  Machinery needed for parallelization :
•  Domain decomposition and distribution among processors

• Sometimes conflicting goals of maintaining proximity and load
balance

•  Redistribution of computational entities when the grid changes due
to refinement

•  Gets more complicated when the solution method moves away
from explicit solves

The Flip Side - Complexity

5 5

!  Large Eddy simulations of wind turbines (PI, R. Samtaney, KAUST, S. Guzik
CSU).

!  CHARM - Compressible CFD + collisionless particle cosmology simulations (PI F.
Miniati, ETH Zurich)

!  MS_FLUKSS - Physics of the Solar Wind and Its Interaction with the Interstellar
medium using compressible hyperbolic CFD + electromagnetic and kinetic effects
(G. Zank. and N. Pogorelov UA-Huntsville)

!  PLUTO - General astrophysics modeling (PI A. Mignone)
!  ORION - Astrophysical MHD turbulence PI C. McKee / R. Klein, UCB
!  REALM - SF Bay and Delta Hydrology modeling shallow water (PI P. Schwartz,

LBNL and CA Department of Water Resources)
!  Plasma-wakefield accelerators -- compressible viscous flow (PI D. Graves,

LBNL).
!  ChomboCrunch - Pore-scale subsurface reacting flow code (PI D. Trebotich,

LBNL)
!  Conjugate heat transfer in nuclear reactors (PI R. Crockett, LBNL, TechX)
!  COGENT - 4D gyrokinetic models of tokamak edge (PI J. Hittinger, LLNL)
!  BISICLES - Land ice model for climate simulation (PI D. Martin, LBNL)

FASTMath SciDAC Institute

Chombo: Application Codes

6 6

•  BoxLib-based codes are being used in active research,
including:

!  MAESTRO – low Mach number astrophysics
!  CASTRO – compressible radiation/hydrodynamics
!  Nyx – cosmology (baryon plus dark matter evolution)
!  LMC – low Mach number combustion
!  RNS – higher-order method for compressible reacting flow

!  Shared features between many of these codes include:

!  Explicit advection solvers
!  Semi-implicit diffusion solvers (using multigrid)
!  Projection operations (using multigrid)
!  Pointwise solution of ODE’s (e.g. for chemical reactions)
!  Multilevel synchronization operations
!  Active and passive particles

!  Hybrid parallelism: MPI + OpenMP with logical tiling

!  Demonstrated scaling to O(10K – 100K) cores

BoxLib-based Application Codes

Simulation of core-collapse
supernova using CASTRO.

Simulation of low-swirl burner
using LMC.

7 7

!  Data is distributed
•  across the MPP machine
•  throughout the data hierarchy

!  Data is redundantly localized for
computation: halo/ghost cells

!  The halo cells may come from same
level exchanges or from a coarser
level through interpolation

!  If there is no sub-cycling, the
interface is simple, all patches can
get their halos filled simultaneously

!  With sub-cycling either the
application or the infrastructure can
control what to fill when Most structured AMR methods use the same abstraction for semi-implicit solvers

such as multigrid, in the sense they operate on a block/box at a time, the
operations in between and the orchestration gets more complicated

Abstraction for Data Localization

• Mixed-language model: C++ for higher-level data structures, Fortran for
regular single-grid calculations.
• Reuseable components. Component design based on mapping of
mathematical abstractions to classes.
• Build on public-domain standards: MPI and OpenMP

•  Chombo also uses HDF5

• Interoperability with other tools: VisIt, PETSc, hypre, SUNDIALS,LAPACK.
• The lowest levels are very similar – they had the same origin
• Downloads

•  BoxLib
•  https://ccse.lbl.gov/Downloads/downloadBoxLib.html

•  Chombo:
•  https://anag-repo.lbl.gov/

• Examples from Chombo

The Two Packages: BoxLib and Chombo

Software Reuse by Templating Dataholders
Classes can be parameterized by types, using the class template language feature
in C++.

•  BaseFAB<T> is a multidimensional array for any type T.

•  FArrayBox: public BaseFAB<Real>
•  LevelData<T>, T can be any type that “looks like” a multidimensional
array.

o  Ordinary multidimensional arrays: LevelData<FArrayBox>

o  Binsorted lists of particles: LevelData<BinFAB<ParticleType>>

o  Data structures for embedded boundary methods.

FArrayBox Class

Specialized BaseFab<T> with additional floating-point operations – can
add, multiply, divide, compute norms.

Box domain;
FArrayBox afab(domain, 1); // define single-component FAB's
FArrayBox bfab(domain, 1);

afab.setVal(1.0); // afab = 1 everywhere
bfab.setVal(2.0); // set bfab to be 2

afab.mult(2.0); // multiply all values in afab by 2
afab.plus(bfab); // add bfab to afab (modifying afab)

Example:

•  Locally refine patches where needed to improve the solution.
•  Each patch is a logically rectangular structured grid.

o  Better efficiency of data access.
o  Can amortize overhead of irregular operations over large number

of regular operations.
•  Refined grids are dynamically created and destroyed.

Approach

•  Boostrapping
•  Fill data at level 0
•  Estimate where refinement is

needed
•  Group cells into patches

according to constraints
(refinement levels, grid
efficiency etc)

•  Repeat for the next level
•  Maintains proper nesting

Building the Initial Hierarchy

class AMR {
 Vector<AMRLevel*> m_levels;
};
class AMRLevel {
 virtual void tagCells(IntVectSet& a_tags) = 0;
}

How Efficiency Affects the Grid

Efficiency=0.5 Efficiency=0.7 Efficiency=0.9

each box dimension satisfies
n%blocking_factor == 0
n<=MaxBoxSize

•  Consider two levels, coarse and fine with refinement ratio r

•  Berger-Oliger timestepping
•  Advance current level
•  Advance finer grids r times
•  Synchronize fine and coarse data
•  Apply recursively to all refinement levels

•  Variations provided in Chombo Backward-Euler, Crank-Nicolson,TGA,
RK4, ARK4. Can use SUNDIALS

Adaptive in Time

1

2
3

4
5

6

7

8

910

BoxLayout Operations

Set of Boxes which comprise the valid
regions on a single level, including processor
assignments for each rectangular region.

Two ways to iterate through a BoxLayout

•  LayoutIterator – iterates through all
boxes in the BoxLayout, regardless of
which processor they are assigned to.

•  DataIterator – iterates only through
the boxes on this processor.

(4,0)

(5,0)(3,2)

(0,0)

(2,0)

(1,1)

Interpolation from coarse to fine

•  Linearly interpolates data from
coarse cells to the overlaying
fine cells.
•  Useful when initializing newly-
refined regions after regridding.
Example:
ProblemDomain fineDomain;
DisjointBoxLayout coarseGrids, fineGrids;
int refinementRatio, nComp;
LevelData<FArrayBox> coarseData(coarseGrids, nComp);
LevelData<FArrayBox> fineData(fineGrids, nComp);

FineInterp interpolator(fineGrids, nComp, refinementRatio,
 fineDomain);

// fineData is filled with linearly interpolated coarseData
interpolator.interpToFine(fineData, coarseData);

CoarseAverage Class
•  Averages data from finer levels
to covered regions in the next
coarser level.
•  Used for bringing coarse levels
into sync with refined grids
covering them.

Example:
DisjointBoxLayout fineGrids;
DisjointBoxLayout crseGrids;
int nComp, refRatio;

LevelData<FArrayBox> fineData(fineGrids, nComp);
LevelData<FArrayBox> crseData(crseGrids, nComp);

CoarseAverage averager(fineGrids, crseGrids, nComp,
refRatio);

averager.averageToCoarse(crseData, fineData);

Coarse-Fine Interactions (AMRTools)

The operations that couple different levels of
refinement are among the most difficult to
implement, as they typically involve a combination
of interprocessor communication and irregular
computation.

•  Interpolation between levels (FineInterp).

• Averaging down to coarser grids
(CoarseAverage).
•  Interpolation of boundary conditions
(PiecewiseLinearFillpatch,
QuadCFInterp, higher-order extensions).
•  Managing conservation at refinement
boundaries (LevelFluxRegister).

PiecewiseLinearFillPatch Class

Linear interpolation of coarse-
level data (in time and space)
into fine-level ghost cells.
Example:
ProblemDomain crseDomain;
DisjointBoxLayout crseGrids, fineGrids;
int nComp, refRatio, nGhost;
Real oldCrseTime, newCrseTime, fineTime;

LevelData<FArrayBox> fineData(fineGrids, nComp,
nGhost*IntVect::Unit);
LevelData<FArrayBox> oldCrseData(crseGrids, nComp);
LevelData<FArrayBox> newCrseData(crseGrids, nComp);

PiecewiseLinearFillPatch filler(fineGrids, coarseGrids, nComp,
 crseDomain, refRatio, nGhost);
Real alpha = (fineTime-oldCrseTime)/(newCrseTime-oldCrseTime);
filler.fillInterp(fineData, oldCrseData, newCrseData, alpha,
 0, 0, nComp);

LevelFluxRegister Class

The coarse and fine fluxes are computed at different points in the
program, and on different processors. We rewrite the process in the
following steps.

Dimension-independence with ChomboFortran
Advantages to ChomboFortran:

•  Enables fast (2D) prototyping, and nearly immediate extension to 3D.

•  Simplifies code maintenance and duplication by reducing the replication of
dimension-specific code.

•  Automatic C++/Fortran interface generation and type-safety.

Replace
 do j = nlreg(2), nhreg(2)
 do i = nlreg(1), nhreg(1)
 phi(i,j) = phi(i,j) + nu*dt*lphi(i,j)
 enddo
 enddo

with

 CHF_MULTIDO[dombox; i;j;k]
 phi(CHF_IX[i;j;k]) = phi(CHF_IX[i;j;k])
 & + nu*dt*lphi(CHF_IX[i;j;k])
 CHF_ENDDO

Prior to compilation, ChomboFortran replaces the indexing and looping macros with code
appropriate to the dimensionality of the problem.

Example

Vector<Box> boxes; // boxes and processor assignments
Vector<int> procAssign;
ProblemDomain domain;
DisjointBoxLayout dbl(boxes, procAssign, domain); // define dbl
// access _all_ boxes
LayoutIterator lit = dbl.layoutIterator();
for (lit.begin(); lit.ok(); ++lit)
{
 const Box thisBox = dbl[lit];
}
// access only local boxes
DataIterator dit = dbl.dataIterator();
for (dit.begin(); dit.ok(); ++dit)

{

 const Box thisLocalBox = dbl[dit];

}

Example

DisjointBoxLayout grids;
int nComp = 2; // two
data components
IntVect ghostVect(IntVect::Unit) // one layer of ghost cells

LevelData<FArrayBox> ldf(grids, nComp, ghostVect);

 // Real distributed data.
LevelData<FArrayBox> ldf2(grids, nComp, ghostVect);

DataIterator dit = grids.dataIterator(); // iterate local data
for (dit.begin(); dit.ok(); ++dit)
{
 FArrayBox& thisFAB = ldf[dit];
 thisFAB.setVal(procID());
}

// fill ghost cells with "valid" data from neighboring grids
ldf.exchange();

ldf.copyTo(ldf2); \\ copy from ldf->ldf2

Example Explicit Heat Equation Solver,
Parallel Case

Want to apply the same algorithm as before, except that the data for the domain is
decomposed into pieces and distributed to processors.

p=0 p=1 p=2

p=3 p=0 p=1

p=2 p=3 p=0

Example Explicit Heat Equation Solver,
 Parallel Case

// C++ code:
 Box domain(IntVect:Zero,(nx-1)*IntVect:Unit);
 DisjointBoxLayout dbl;
// Break domain into blocks, and construct the DisjointBoxLayout.
 makeGrids(domain,dbl,nx);

 LevelData<FArrayBox> phi(dbl, 1, IntVect::TheUnitVector());

 for (int nstep = 0;nstep < 100;nstep++)
 {
…
// Apply one time step of explicit heat solver: fill ghost cell values,
// and apply the operator to data on each of the Boxes owned by this
// processor.

 phi.exchange();

Example Explicit Heat Equation Solver,
 Parallel Case

DataIterator dit = dbl.dataIterator();
 for (dit.reset();dit.ok();++dit)
 {
 FArrayBox& soln = phi[dit()];
 Box& region = dbl[dit()];
 FORT_HEATSUB(CHF_FRA(soln),
 CHF_BOX(region),
 CHF_BOX(domain),
 CHF_REAL(dt), CHF_REAL(dx), CHF_REAL(nu));
 }
 }

LevelFluxRegister Class

A LevelFluxRegister object encapsulates these operations.

•  LevelFluxRegister::setToZero()
•  LevelFluxRegister::incrementCoarse: given a flux in a
direction for one of the patches at the coarse level, increment the flux
register for that direction.

•  LevelFluxRegister::incrementFine: given a flux in a
direction for one of the patches at the fine level, increment the flux
register with the average of that flux onto the coarser level for that
direction.

•  LevelFluxRegister::reflux: given the data for the entire
coarse level, increment the solution with the flux register data for all of the
coordinate directions.

Layer 3 Classes: Reusing control structures
via inheritance (AMRTimeDependent,
AMRElliptic)

AMR has multilevel control structures that are largely independent of the
operations and data.
•  Berger-Oliger timestepping (refinement in time).
•  Various linear solver operations, such as multigrid on a single level, multigrid on
an AMR hierarchy.
 To separate the control structure from the the details of the operation that are
being controlled, we use C++ inheritance in the form of interface classes.

29 29

!  Chombo/src/AMREllitpic/
•  AMRLevelOp
- AMRPoissonOp, VCAMRPoissonOp,
ViscousTensorOp

•  AMRMultigrid
!  Chombo/releasedExamples/AMRPoisson

•  execNode execVariableCoefficient
•  execCell execPETSc
 execViscousTensor

!  What happens in that odd one, execPETSc?

FASTMath SciDAC Institute

Matrix-Free Geometric Multigrid in Chombo

•  We have seen how construct AMR operator in Chombo as series of sub-operations
•  Coarse interpolation, fine interpolation, boundary conditions, etc.

•  Matrix-free operators
•  Low memory: good for performance and memory complexity
•  Can use same technology to construct matrix-free equation solvers

•  Operator inverse
•  Use geometric multigrid (GMG)
•  Inherently somewhat isotropic

•  Some applications have complex geometry and/or anisotropy
•  GMG looses efficacy
•  Solution: algebraic multigrid (AMG)

•  Need explicit matrix representation of operator
•  Somewhat complex bookkeeping task but pretty mechanical
•  Recently developed infrastructure in Chombo support matrix construction
•  Apply series of transformations to matrix or stencil

•  Similar to operator but operating matrix/stencil instead of field data
•  Stencil: list of <Real weight, <cell, level>>

•  Stencil + map <cell, level> to global equation number: row of matrix
•  Start with A0 : initial operator matrix

•  Eg, 1D 3-point stencil: {<-1.0, <i-1,lev>, <2.0, <i,lev>, <-1.0, <i+1,lev>}

Matrix representation of operators

PETSc Composite Grid Solvers: PetscCompGrid

class PetscCompGrid

{

 virtual void define(const ProblemDomain &a_cdomain,

 Vector<DisjointBoxLayout> &a_grids,

 Vector<int> &a_refratios, BCHolder a_bc …)

 PetscErrorCode putChomboInPetsc(Vector<LevelData<FArrayBox>*> &rhs, Vec b)const;

 PetscErrorCode putPetscInChombo(Vec b, Vector<LevelData<FArrayBox>*> &rhs)const;

 Vector<RefCountedPtr<LevelData<BaseFab<PetscInt> > > > m_GIDs;

};

class PetscCompGridPois : public PetscCompGrid

{

 void createOpStencil(IntVect,int,const DataIndex&, StencilTensor&);

 PetscErrorCode createMatrix(int a_makePmat=0);

 Mat getMatrix() const { return m_mat; }

};

PETSc Composite Grid Example:
PetscCompGridPois

void

PetscCompGridPois::createOpStencil(IntVect a_iv, int a_ilev,const
DataIndex &a_di_dummy, StencilTensor &a_sten)

{

 Real dx=m_dxs[a_ilev][0],idx2=1./(dx*dx);

 StencilTensorValue &v0 = a_sten[IndexML(a_iv,a_ilev)];

 v0.define(1);

 v0.setValue(0,0,m_alpha - m_beta*2.*SpaceDim*idx2);

 for (int dir=0; dir<CH_SPACEDIM; ++dir) {

 for (SideIterator sit; sit.ok(); ++sit) {

 int isign = sign(sit());

 IntVect jiv(a_iv); jiv.shift(dir,isign);

 StencilTensorValue &v1 = a_sten[IndexML(jiv,a_ilev)];

 v1.define(1);

 v1.setValue(0,0,m_beta*idx2);

}}}

PETSc AMR Solver Example:
 releasedExamples/AMRPoisson/execPETSc

Solve(Vector<DisjointBoxLayout> grids, Vector<LevelData<FArrayBox> *> phi, Vector<LevelData<FArrayBox> *> rhs)

{

 PetscCompGridPois petscop(0.,-1.,s_order);

 RefCountedPtr<ConstDiriBC> bcfunc =

RefCountedPtr<ConstDiriBC>(new

ConstDiriBC(1,petscop.getGhostVect()));

 BCHolder bc(bcfunc);

 petscop.define(cdomains, grids, refratios, bc, cdx*RealVect::Unit);

 ierr = petscop.createMatrix(); CHKERRQ(ierr);

 Mat A = petscop.getMatrix();

 ierr = MatGetVecs(A,&x,&b); CHKERRQ(ierr);

 ierr = petscop.putChomboInPetsc(rhs,b); CHKERRQ(ierr);

 ierr = KSPCreate(PETSC_COMM_WORLD, &ksp); CHKERRQ(ierr);

 ierr = KSPSetOperators(ksp, A, A); CHKERRQ(ierr);

 ierr = KSPSetFromOptions(ksp); CHKERRQ(ierr);

 ierr = KSPSolve(ksp, b, x); CHKERRQ(ierr);

 ierr = KSPDestroy(&ksp); CHKERRQ(ierr);

 ierr = a_petscop.putPetscInChombo(x, phi); CHKERRQ(ierr);

}

Polytropic Gas Example

•  Demonstrates integration of conservative laws (e.g., the Euler equations of
gas dynamics) on an AMR grid hierarchy.

•  Uses explicit unsplit, second-order Godunov method.
•  One of the released examples in Chombo distribution
•  Look under $CHOMBO_HOME/releasedExamples/AMRGodonov/

execPolytropic
•  Source code:

•  AMRLevel specialized for this set of problems in ../srcPolytropic
•  Main in ./amrGodunov.cpp
•  We use TutorialRamp.inputs to provide runtime parameters

•  Problem is a Mach 10 oblique shock impacting a rigid planar surface.
•  Solution has curved shocks, rarefactions, and mach lines
•  classic experiment and code stress problem

•  2-D double Mach reflection shock wedge test

Parameters and late time results

Length of the run
•  godunov.max_step = 100
•  godunov.max_time = 0.064

Shape of the patch
•  # godunov.num_cells = 32 8 4
•  godunov.num_cells = 64 16 8

Grid refinement parameters
•  godunov.max_level = 2
For 2D
•  godunov.ref_ratio = 4 4 4 4 4
For 3D
•  # godunov.ref_ratio = 2 2 2 2 2

Regridding parameters
•  godunov.regrid_interval = 2 2 2 2 2 2
•  godunov.tag_buffer_size = 3
•  godunov.refine_thresh = 0.015

Grid generation parameters
•  godunov.block_factor = 4
•  godunov.max_grid_size = 32
•  godunov.fill_ratio = 0.75

Experimenting with Parameters
Default Change ref_ratio to 2

Variations in
output with
change in
refinement
parameters

