
‹#›

Carol S. Woodward

Lawrence Livermore National Laboratory
P. O. Box 808

Livermore, CA 94551
This work was performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

LLNL-PRES-641695

 SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation Solvers

2

SUite of Nonlinear and
DIfferential-ALgebraic Solvers

 Suite of time integrators and nonlinear solvers

• ODE and DAE time integrators with forward & adjoint sensitivity integration

− Adaptive in time step and (for the multistep codes) order

• Newton and fixed point nonlinear solvers

• Written in ANSI C with Fortran interfaces

• Designed to be easily incorporated into existing codes

• Modular implementation with swappable components

− Linear solvers – direct dense/band/sparse, iterative

− Vector structures (core data structure for all packages) – supplied with
serial, threaded, and MPI parallel

 Freely available, released under BSD license

https://computation.llnl.gov/casc/sundials/main.html

3 ‹#›

SUNDIALS has been used worldwide in applications
from research and industry

 Power grid modeling (RTE France, LLNL, ISU)
 Simulation of clutches and power train parts

(LuK GmbH & Co.)
 Magnetism at the nanoscale (Magpar, Nmag)
 3D parallel fusion (SMU, U. York, LLNL)
 Spacecraft trajectory simulations (NASA)
 Dislocation dynamics (LLNL)
 Combustion and reacting flows (Cantera)
 Large-scale subsurface flows (CO Mines, LLNL)
 3D battery simulation (ORNL - AMPERE)
 Computational modeling of neurons (NEURON)
 Micromagnetic simulations (U. Southampton)
 Released in third party packages:
 Red Hat Extra Packages for Enterprise Linux

(EPEL) [Old versions in Debian and Ubuntu]
 SciPy – python wrap of SUNDIALS
 Cray Third Party Software Library (TPSL)

Magnetic reconnection

Core collapse
supernova

Dislocation dynamics

Subsurface flow

Over 4,500
downloads / year

4

 Variable order and variable step size Linear Multistep Methods

 Nonstiff: Adams-Moulton; K1 = 1, K2 = k, k = 1,…,12
 Stiff: Backward Differentiation Formulas [BDF]; K1 = k, K2 = 0, k = 1,…,5
 Optional stability limit detection based on linear analysis
 The stiff solvers execute a predictor-corrector scheme:

CVODE solves

Explicit predictor to give yn(0)

Implicit corrector with yn(0) as
initial iterate

5

Convergence and errors are measured
against user-specified tolerances

 User-defined tolerances:

• Absolute tolerance on each solution component, ATOLi

• Relative tolerance for all solution components, RTOL

 Norm calculations are weighted by:

 Errors are measured with a weighted root-mean-square norm:

 Choose time steps to bound an estimate of the local truncation error

6

Time steps are chosen to minimize local
truncation error and maximize efficiency

 Time step selection criteria:
• Estimate the error: E(∆t) = C(yn - yn(0))

− Accept step if ||E(∆t)||WRMS < 1
− Reject step otherwise

• Estimate error at the next step, ∆t’, as (q is current method order)

• Choose next step so that ||E(∆t’)|| WRMS < 1
 Method order selection criteria:

• Estimate error and prospective steps for orders {q, q-1, q+1}
• Choose order resulting in largest time step meeting error condition

7

ARKode solves IVPs

 Split system into stiff, fI, and nonstiff, fE, components
 M may be the identity or any nonsingular mass matrix (e.g. FEM)
 Variable step size additive Runge-Kutta Methods – combine explicit

(ERK) and diagonally implicit (DIRK) RK methods to enable ImEx solver
(disable either for pure explicit/implicit). Let tn,j = tn-1 + cj∆tn:

 Solve for stage solutions, zi = 1, …, s, sequentially (via Newton, fixed-
point, linear solve, or just vector updates)

8

ARKode is the newest package in
SUNDIALS

 Time-evolved solution, embedded solution,
 Error estimate:
 Fixed order within each solve:

• ARK :
• DIRK:
• ERK:
• user-supplied

 Multistage embedded methods (as opposed to multistep):
• High order without solution history (enables spatial adaptivity)
• Sharp estimates of solution error even for stiff problems
• But, DIRK/ARK require multiple implicit solves per step

 User interface modeled on CVODE -> simple transition between
packages

9

 If is invertible, we solve for to obtain an ordinary differential
equation (ODE), but this is not always the best approach

 Else, the IVP is a differential algebraic equation (DAE)

 A DAE has differentiation index i if i is the minimal number of
analytical differentiations needed to extract an explicit ODE

yF ∂∂ / y

Initial value problems (IVPs) come in the
form of ODEs and DAEs

 The general form of an IVP is given by

00)(
0),,(

yty
yytF

=
=

10

IDA solves 𝐹𝐹 (𝑡𝑡, 𝑦𝑦, �̇�𝑦) = 0

 Variable order and step size BDF (no Adams-Moulton)
• Generally assume DAEs are more stiff than ODEs

 Originally, C rewrite of DASPK [Brown, Hindmarsh, Petzold]
 Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2

DAEs
 Optional routine solves for consistent values of and

• Semi-explicit index-1 DAEs
• differential components known, algebraic unknown OR
• all of specified, y0 unknown

 Nonlinear systems solved by Newton-Krylov method
 Optional constraints: yi > 0, yi < 0, yi ≥ 0, yi ≤ 0

0y

0y 0y

11

Implicit solutions result in nonlinear
systems at each time step

 Use predicted value as the initial iterate for the nonlinear solver
 Nonstiff systems: Functional iteration

 Stiff systems: Newton iteration

ODE

DAE

12

Sensitivity Analysis: CVODES and IDAS

 Sensitivity Analysis (SA) is the study of how the variation in the output
of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation in inputs.

 Applications:
• Model evaluation (most and/or least influential parameters)
• Model reduction
• Data assimilation
• Uncertainty quantification
• Optimization (parameter estimation, design optimization, optimal

control, …)
 Approaches:

• Forward SA– augment state system with sensitivity equations
• Adjoint SA– solve a backward in time adjoint problem (user

supplies the adjoint problem)

13

Adjoint Sensitivity Analysis
Implementation

 Solution of the forward problem is required for the adjoint problem 
need predictable and compact storage of solution values for the
solution of the adjoint system

 Simulations are reproducible from each checkpoint
 Cubic Hermite or variable-degree polynomial interpolation
 Store solution and first derivative at each checkpoint
 Force Jacobian evaluation at checkpoints to avoid storing it
 Computational cost: 2 forward and 1 backward integrations

t0 tf
ck0 ck1 ck2 …

Checkpointing

14

KINSOL solves: F(u) = 0

 Originally, C rewrite of Fortran NKSOL (Brown and Saad)

 Newton Solvers: update iterate via

• Inexact: approx. solves

• Modified: directly solves

 Optional constraints: ui > 0, ui < 0, ui ≥ 0 or ui ≤ 0

 Can separately scale equations and/or unknowns

 Backtracking and line search options for robustness

 Dynamic linear tolerance selection for use with iterative linear solvers

15

KINSOL also includes fixed point and
Picard iteration

Fixed point iterations use recursion to solve the fixed-point problem,

 Picard iteration is a fixed point method for a rootfinding problem

• Splits F into linear and nonlinear parts,

• Defines a fixed point iteration based on the splitting

• Like Newton but with

 Fixed point iteration has a global but linear convergence theory

 Requires G to be a contraction 1,)()(<−≤− γγ yxyGxG

KINSOL includes both Picard and fixed point iterations with acceleration;
ARKode includes accelerated fixed point

16

SUNDIALS provides many options for
linear solvers

 Iterative Krylov linear solvers (all allow scaling and preconditioning)

• All packages have GMRES, BiCGStab, & TFQMR; KINSOL also has
FGMRES; ARKode also has PCG and FGMRES

• Only require matrix-vector products, Jv may be user-supplied, or
estimated via

• Require preconditioning for scalability

 Dense direct (dense or banded)

• Require serial/threaded vector environments; banded requires some
pre-defined structure to the data

• J can be user-supplied or estimated with finite differences

 Sparse direct interfaces to external libraries: KLU, SuperLU_MT (threaded)

• Currently requires serial or threaded vector environments

• J must be supplied in compressed sparse column format (CSR soon)

17

Preconditioning is essential for large
problems as Krylov methods can stagnate

 Competing preconditioner goals:
• P should approximate the Jacobian matrix
• P should be efficient to construct and solve

 Typical P (for time-dep. ODE problem) is
 The user must supply two routines for treatment of P:

• Setup: evaluate and preprocess P (infrequently)
• Solve: solve systems Px=b (frequently)

 The user can save and reuse P as directed by the solver
 Band and block-banded preconditioners are supplied for use with

the included serial vector structures
 SUNDIALS offers hooks for user-supplied preconditioning

• Can use hypre or PETSc or SuperLU_DIST, or …

JJJI ≈− ~,~γ

18

CVODE , IDA, and ARKode are equipped
with a rootfinding capability

 Finds roots of user-defined functions, or
 Important in applications where problem definition may change

based on a function of the solution
 Roots are found by looking at sign changes, so only roots of odd

multiplicity are found
 Checks each time interval for sign change
 When sign changes are found, apply a modified secant method with

a tight tolerance to identify root

 Rootfinding is a critical feature for applications like power grid
where solution-dependent system adaptations are common, e.g.
voltage limit on a generator

0),,(=yytgi 0),(=ytgi

19

SUNDIALS provides Fortran interfaces

 CVODE, ARKode, IDA, and KINSOL (not CVODES or IDAS)

 Cross-language calls go in both directions:

• Fortran program calls solver creation, setup, solve, and output
interface routines

• Solver routines call users’ problem-defining function/residual,
matrix-vector product, and preconditioning routines

 For portability, all user routines have fixed names

 Examples are provided for each solver

20

SUNDIALS encapsulates all operations on data

 Vector structures can be user-supplied for problem-specific needs

 Essentially follows an object-oriented base/derived class approach
(but in C), with most solvers defined on the base class

 The generic NVECTOR module defines:

• A content structure (void *)

• An ops structure, containing function pointers to actual vector
operations supplied by a vector definition

 Each implementation of NVECTOR defines:

• Content structure specifying the actual vector data and any
information needed to make new vectors (problem or grid data)

• Implemented vector operations

• Routines to clone vectors

21

Interfacing SUNDIALS with other
software is done in three areas

 Specifies:
• 3 constructors/destructors
• 3 utility functions
• 9 streaming operators
• 10 reduction operators

 SUNDIALS does not introduce
parallelism outside vector ops

 Entire interaction w/ app. data
is through these 19 ops

 All are level-1 BLAS ops
 Individual modules require

only a subset

 Problem-defining function
 Jacobian evaluation (or Jv eval)
 Tolerances (vector or scalars)

Vector interface Application interface

 Specifies the following five
functions: init, setup, solve,
perf, and free

 Optional: Preconditioner setup
and solve

 SUNDIALS is independent of
solve strategy

Linear solver interface

22

SUNDIALS provides serial and parallel
NVECTOR implementations

 Use is optional
 Vectors are laid out as an array of doubles (or floats)
 Appropriate lengths (local, global) are specified
 Operations are fast since stride is always 1
 All operations provided for each implementation: Serial, Threaded

(OpenMP), Threaded (pThreads), and Distributed memory (MPI)
 Can serve as templates for creating a user-supplied vector
 Threaded kernels require long vectors (>10K) for appreciable benefit:

23

We have begun evaluating user model
for GPUs

 SUNDIALS integrators operate almost solely on vectors
 Experimented with a first GPU implementation with accelerated

fixed point (FP)
• Main loop of FP runs on CPU
• All vectors are created on and remain on GPU
• Vector operations run on GPU using CuBLAS from Nvidia
• Data resides in GPU RAM

 Expect the solver to be memory bound
 Peak bandwidth of GPU on LLNL Surface machine is ~5 x greater

than CPU bandwidth
 Compared with a CPU-only implementation using standard BLAS

and keeping data in CPU RAM

24

See definite benefit from use of GPU

 For vectors less than 10,000, CPU
versions take less time than GPU version

 CPU version costs remain ~constant until
vector lengths reach 100

 GPU version cost is constant until vector
is 10,000 – length at which the work per
vector dominates overhead per vector op

 Times approach linear with vector length

 When both CPU and GPU versions are in
linear regime, we expect ratio between
timings to be ~ratio of bandwidth

 Threading reduces runtime on CPU

 GPU gives more benefit on large problem

Its = 16,
m = 16

Run times for CPU and GPU
(fcn cost not timed)

25

We experimented with the user model
for GPU with simple function eval

 Applied 16 iterations with simple function, f(x) = x; touches 2 vectors
 CPU runs used all 16 cores and 16 threads
 Timed 4 combinations:

• Both function eval (FE) and vector ops on same side of bus
• And on opposite side: CPU (GPU) = vectors on CPU, FE on GPU

 Fastest times occur when vectors
are on GPU

 FE on opposite side of bus causes
data transfer every iteration

 For this “light weight” function, not
worth computing it on GPU if vector
operations are not also on GPU (in
fact, this gives worst performance)

26

SUNDIALS code usage is similar
across the suite

Core components to any user program:
1. #include header files for integrator/solver(s) and vector implementation

2. Create data structure for solution vector

3. Set up integrator

1. Create integrator object (allocates solver-specific memory structure)

2. Initialize integrator (sets solution vector, problem-defining function
pointers, default solver parameters)

3. Call “Set” routines to customize integrator behavior/parameters

4. Set up linear solver (if needed for Newton/Picard)

1. Create linear solver object

2. Call “Set” routines to customize behavior/parameters

5. Call integrator (once or repeatedly)

6. Destroy integrator and vectors to free memory

27

SUNDIALS code usage is similar across
the suite

For CVODE with parallel vector implementation and GMRES solver:

 #include “cvode.h”
 #include “cvode_spgmr.h”
 #include “nvector_parallel.h”

 y = N_VNew_Parallel(comm, local_n, NEQ);
 cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
 flag = CVodeSet*(…);
 flag = CVodeInit(cvmem,rhs,t0,y,…);
 flag = CVSpgmr(cvmem,…);
 flag = CVSpilsSet*(cvmem, …);
 for(tout = …) {
 flag = CVode(cvmem, …,y,…); }

 NV_Destroy(y);
 CVodeFree(&cvmem);

28

Availability

Web site:
 Individual codes or full suite download
 User manuals
 User group email list (~1,500 subscribers)
 SUNDIALS Uses

The SUNDIALS Team:
Carol S. Woodward, Daniel R. Reynolds, Alan C. Hindmarsh,
Slaven Peles, David J. Gardner, and Lawrence E. Banks
We acknowledge significant past contributions of Radu Serban

Open source BSD license
https://computation.llnl.gov/casc/sundials

Publications
https://computation.llnl.gov/casc/sundials/
documentation/documentation.html

	Slide Number 1
	SUite of Nonlinear and DIfferential-ALgebraic Solvers
	SUNDIALS has been used worldwide in applications from research and industry
	CVODE solves
	Convergence and errors are measured against user-specified tolerances
	Time steps are chosen to minimize local truncation error and maximize efficiency
	ARKode solves IVPs
	ARKode is the newest package in SUNDIALS
	Initial value problems (IVPs) come in the form of ODEs and DAEs
	IDA solves 𝐹 (𝑡,𝑦, 𝑦) =0
	Implicit solutions result in nonlinear systems at each time step
	Sensitivity Analysis: CVODES and IDAS
	Adjoint Sensitivity Analysis Implementation
	KINSOL solves: F(u) = 0
	KINSOL also includes fixed point and Picard iteration
	SUNDIALS provides many options for linear solvers
	Preconditioning is essential for large problems as Krylov methods can stagnate
	CVODE , IDA, and ARKode are equipped with a rootfinding capability
	SUNDIALS provides Fortran interfaces
	SUNDIALS encapsulates all operations on data
	Interfacing SUNDIALS with other software is done in three areas
	SUNDIALS provides serial and parallel NVECTOR implementations
	We have begun evaluating user model for GPUs
	See definite benefit from use of GPU
	We experimented with the user model for GPU with simple function eval
	SUNDIALS code usage is similar across the suite
	SUNDIALS code usage is similar across the suite
	Availability

