= mssoclate Lab_atory Dlrector for 00mput|ng‘ : clences

A
coecceer] !

BERKELEY LAB

Parallel Programming Problem: Histogram

« Consider the problem of computing a histogram:
—-Large number of “words” streaming in from somewhere
-You want to count the # of words with a given property

 In shared memory
—Lock each bucket
As |Bs |Cs|... |Ys |Zs

* Distributed memory: the array is huge and spread out

—Each processor has a substream and sends +1 to the
appropriate processor... and that processor “receives”

As | B’s C’s | D’s Y's | Z's

PGAS = Partitioned Global Address Space

* Global address space: thread may directly read/write
remote data

» Convenience of shared memory
* Partitioned: data is designated as local or global
* Locality and scalability of message passing

Global address space

Hello World in UPC

« Any legal C program is also a legal UPC program

* If you compile and run it as UPC with P threads, it will
run P copies of the program.

 Using this fact, plus the a few UPC keywords:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main () {
printf ("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS) ;

>
. A
rrrrrrr ‘"'|

BERKELEY LAB

Example: Monte Carlo Pi Calculation

» Estimate Pi by throwing darts at a unit square
 Calculate percentage that fall in the unit circle

—-Area of square =r2 = 1

—Area of circle quadrant = % * x r2 = n/4
 Randomly throw darts at x,y positions
« If X2 + y2 <1, then point is inside circle
« Compute ratio:

—# points inside / # points total

- 1 = 4*ratio

Pi in UPC

* Independent estimates of pi:
main (int argc, char **argv) ({

int i, hits, trials = 0; Each thread gets its own
double pi; copy of these variables

if (argc !'= 2)trials = 1000000; |Eachthreadcanuse
atoi (arqv([1l]) : input arguments

else trials

Initialize random in

for (i=0; i < trials; i++) hits += hit();
pi = 4.0*hits/trials;
printf ("PI estimated to 3f.", pi);

Each thread calls “hit” separately

>
A
rrrrrrr ""|

BERKELEY LAB

Helper Code for Pi in UPC

* Required includes:
#include <stdio.h>
#include <math.h>
#include <upc.h>

* Function to throw dart and calculate where it hits:
int hit(){
int const rand max = OxFFFFFF;
double x = ((double) rand()) / RAND MAX;
double y = ((double) rand()) / RAND MAX;
if ((x*x + y*y) <= 1.0) {
return(l) ;
} else {
return (0) ;

>
. A
rrrrrrr ‘"'|

BERKELEY LAB

Shared vs. Private
Variables

Private vs. Shared Variables in UPC

 Normal C variables and objects are allocated in the private
memory space for each thread.

« Shared variables are allocated only once, with thread O
shared int ours; // use sparingly: performance
int mine;

» Shared variables may not have dynamic lifetime, i.e., may

not occur in a function definition, except as static.

Thread, Thread, Thread
7))
7))
'
T o ours: |i Shared
© 0O
(4v B 4 o :
— Q]] i
g 7)) mine: mine: XX mine:
o Private
O

>
g A
rrrrrrr ‘"'|

BERKELEY LAB

Pi in UPC: Shared Memory Style

 Parallel computing of pi, but with a bug

shared int hits; shared variable to
main (int argc, char **argv) { record hits
int i, my trials = 0;
int trials = atoi(argv([l]);, divide work up evenly
my trials = (trials + THREADS - 1)/THREADS;
srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++)

hits += hit () ;

upc_barrier;

if (MYTHREAD == 0) {
printf ("PI estimated to %£.", 4.0*hits/trials)

accumulate hits

.
4

} What is the problem with this program?

>
. A
rrrrrrr ‘"'|

BERKELEY LAB

UPC Synchronization

« UPC has two basic forms of barriers:
— Barrier: block until all other threads arrive
upc_barrier
- Split-phase barriers
upc notify; this thread is ready for barrier

do computation unrelated to barrier
upc wait; wait for others to be ready

« UPC also has locks for protecting shared data:

- Locks are an opaque type (details hidden):
upc_lock t *upc global lock alloc(void);

— Critical region protected by lock/unlock:
void upc lock (upc lock t *1)
void upc _unlock (upc _lock t *1)
use at start and end of critical region o

BERKELEY LAB

Pi in UPC: Shared Memory Style

 Like pthreads, but use shared accesses judiciously

shared int hits; |one shared scalar variable
main (int argc, char **argv) {

int i, my hits, my trials = 0; |other private variables
upc lock t *hit lock = upc all lock alloc();

int trials = atoi(argvi|l]); create a lock

my trials = (trials + THREADS - 1)/THREADS;

srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++) accumulate hits
my hits += hit(); locally

upc lock (hit lock) ;

hits += my hits; accumulate

upc_unlock (hit_lock) ; across threads

upc_barrier;

if (MYTHREAD == 0)

printf ("PI: %$f", 4.0*hits/trials);

>
A
rrrrrrr ""|

BERKELEY LAB

Pi in UPC: Data Parallel Style w/ Collectives

* The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

« Use a reduction for better scalability

#include <bupc collectivev.h> Berkeley collectives

// no shared variables
main (int argc, char **argv) {

for (i=0; i < my trials; i++)
my hits += hit();

my hits = // type, input, thread, op

bupc allv reduce(int, my hits, 0, UPC ADD) ;
[/ barrier implied by collective
if (MYTHREAD == 0)

printf ("PI: %f", 4.0*my hits/trials);

U& } e

BERKELEY LAB

Shared Arrays Are Cyclic By Default

» Shared scalars always live in thread 0
« Shared arrays are spread over the threads
« Shared array elements are spread across the threads

shared int x[THREADS] [* 1 element per thread */
shared int y[3] [THREADS] /* 3 elements per thread */
shared int z[3][3] [* 2 or 3 elements per thread */

* In the pictures below, assume THREADS =4
-Blue elts have affinity to thread 0O

Think of linearized

C array, then map
X . in round-robin

¢ As a 2D array, y is
y [||] logically blocked
by columns
V4 l
. . z is not

>
A
rrrrrrr ""|

BERKELEY LAB

Pi in UPC: Shared Array Version

« Alternative fix to the race condition
 Have each thread update a separate counter:
-But do it in a shared array

-Have one thread compute sum

all_hits is
shared int all hits [THREADS]; shared by all
main (int argc, char **argv) { processors,

... declarations an initialization code omitted just as hits was
for (i=0; 1 < my trials; i++)

all hits[MYTHREAD] += hit(); update element
upc_barrier; with local affinity
if (MYTHREAD == 0) {
for (i=0; i < THREADS; i++) hits += all hits[i];
printf ("PI estimated to %£.", 4.0*hits/trials);

>
. A
rrrrrrr ‘"'|

BERKELEY LAB

Global Memory Allocation

shared void *upc alloc(size t nbytes);
nbytes : size of memory in bytes

* Non-collective: called by one thread

« The calling thread allocates a contiguous memory space in the shared
space with affinity to itself.

shared [] double [n] p2 = upc alloc(n&sizeof (double) ;

_ w Thread, Thread, Thread,
@ :
39 S Shared
O 5 a|| ndoubles n doubles n doubles
OT »

f

p2:

p2: XX p2: /| Private

void upc free(shared void *ptr);

« Non-collective function; frees the dynamically allocated shared
memory pointed to by ptr

>
. A
rrrrrrr ‘"'|

BERKELEY LAB

Distributed Arrays Directory Style

* Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc alloc(local size*sizeof (double));

o ’ . T directory

Distributed Arrays Directory Style

* These are also more general:

* Multidimensional, unevenly distributed
* Ghost regions around blocks

Ry

physical and
conceptual
3D array
layout

>
. A
rrrrrrr ‘"'|

BERKELEY LAB

UPC Non-blocking Bulk Operations

Important for performance:

« Communication overlap with computation

« Communication overlap with communication (pipelining)
 Low overhead communication

#include<upc _nb.h>

upc_handle t h =
upc_memcpy nb(shared void * restrict dst,
shared const void * restrict src,
size t n);
void upc_sync(upc _handle t h); // blocking wait
int upc_sync_attempt(upc handle t h); // non-blocking

ik ceeee

BERKELEY LAB

One-Sided Communication in GASNet

two-sided message host
id data payload —
message i pay CPU
one-sided put message network
P g interface
address data payload >
memory

* A two-sided messages needs to be matched with a receive
- Ordering requirements on messages can also hinder bandwidth

« A one-sided put/get message can be handled directly by a network
interface with RDMA support

— Decouples transfer from synchronization
- Avoids interrupting the CPU or storing data from CPU (preposts)

>
g A
rrrrrrr ‘"'|

BERKELEY LAB

Bandwidths on Cray XE6 Gemini Network (as on Titan)

Bandwidth on NERSC Hopper (Cray XEG6)

18000

16000

14000

12000

10000

=¢=Berkeley UPC
=@=Cray UPC
=#=Cray MPI

8000

p—
(72
—
[01]
<
L
)
2
3
©
c
©
(01]

6000

4000

2000

8 32 128 512 2048 8192 32768 131072 524288 209715 ;:::qﬁ

BERKELEY LAB

Bandwidths on Cray XC30 Aries Network (Edison)

Bandwidth on NERSC Edison

10000

9000

8000

7000

6000

5000

4000

Bandwidth (MB/s)

3000 ——upc

“@=MPI

2000
=#=MPI Put

1000

16 64 256 1K 4K 16K 64K 256K 1™ 4M

>
- r\
rrrrrrr ’"'|

Why Should You Care about PGAS?

Latency between 2 Xeon Phi’s via Latency between 2 Intel lvyBridge
Infiniband nodes on NERSC Edison (Cray XC30)
30 T 10 -
- =Z=MPI Send/Recv 77N
=#=MPI_Send/Recv (Intel MPI) =7~ 9 - = Zm
25 - 7 \ ==upc_memput / \
=0=ypc_memput / \ 8 - ! \
] \ \
7207 ! Ve \
E) i 1 8 6 |
> 1 1 > 1
215 - l 195 .'
I ! 1 2 4 - /
3 10 - \ I' 3 /
¥ 'II teJ 3 -
/ 1
5 - _—/l E 2
e 17
r
O T T T T T T T T T T T T T 1 0 T T T T T T T T T T T T T T T 1
~ N < 00 © NN X 00 © N < O ©
~ M O AN O «—AN O O
- N IO ©O O O
~ (N < ©

Size (bytes) ’\l ¢

Application Challenge: Fast All-to-All

chunk = all rows with same destination

X

Transpose in 3D FFT

* Three approaches:

* Chunk:
« Wait for 2" dim FFTs to finish
* Minimize # messages
 Slab:

» Wait for chunk of rows destined for 1
proc to finish

» Overlap with computation
* Pencil:
» Send each row as it completes

« Maximize overlap and
« Match natural layout

pencil =1 row

slab = all rows in a single plane with
same destination

>
= r\
rrrrrrr ’"'|

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

MFlops per Thread

Bisection Bandwidth

1100

1000

900

800

700

600

500

400

300

200

100

B Best NAS Fortran/MPI
[Best MPI (always Slabs)

|:| Best UPC (always Pencils)

e\an

~net O
Wyne m,‘.“,\-\gand

T T
Chunk (NAS FT with FFTW)
Best MPI (always slabs)
Best UPC (always pencils)

256 a 250

A 256

2
gran3 51 Eran

« Avoid congestion at node interface: allow all cores to communicate

* Avoid congestion inside global network: spread communication

over longer time period (send early and often)

U
fe

DEGAS Overview

>
A
rrrrrrr ""|

BERKELEY LAB

FFT Performance on BlueGene/P (Mira)

- UPC implementation s
outperforms MPI

—=Slabs

—#-Slabs (Collective)
—*—Packed Slabs (Collective)
=><MPI Packed Slabs

3000

- Both use highly 2500
optimized FFT library
on each node

- UPC version avoids
send/receive
synchronization 1000

- Lower overhead
- Better overlap

- Better bisection 256 512 1024 2048 4096 8192 16384 32768
bandwidth Num. of Cores

2000

GFlops

1500

500

>
. A
rrrrrrr ‘"'|

s "Pc

BERKELEY LAB

UPC Atomic Operations

* More efficient than using locks when applicable

upc_lock();
update(); VS atomic_update();

upc_unlock();

« Hardware support for atomic operations are available, but
need to be careful about atomicity w.r.t nonatomics

« Example: atomic fetch-and-add
int bupc_atomici_fetchadd_relaxed (shared void *ptr, int op);

« See more examples on the web page:
http://upc.lbl.gov/docs/user/#atomics

De novo Genome Assembly

* DNA sequence consists of 4 bases: A/C/G/T
* Read: short fragment of DNA

* De novo assembly: Construct a genome
(chromosomes) from a collection of reads

=005 ., Pt Tl o O,
& RavensburgerazPuzzle
e X

611

PGAS in Genome Assembly

« Sequencers produce fragments called “reads”
» Chop them into overlap fixed-length fragments, “K-mers”

 Parallel DFS (from randomly selected K-mers) - “contigs”

Contig 2: AACCG

Contig 1: GATCTGA
[0 @ @& o o)

Contig 3: AATGC

« Hash tables used here (and in other assembly phases)
-Different use cases, different implementations
« Some tricky synchronization to deal with conflicts

. 1 DEGAS 30

Partitioned Global Address Space Programming

" .
S [L 1 I 1
% key.: act key.: cga key.: gac key: tac
o val: a val: g val: ¢ [val: e
7))
o | :
.E [key: cca | key: gta
yo) [val: t | val: ¢
® ' .
©
O
o
O]
PO p1 pn

. Sttc;lre the connections between read fragments (K-mers) in a hash
table

* Allows for TB-PB size data sets

>
g A
rrrrrrr ‘"'|

BERKELEY LAB

HipMer (High Performance Meraculous) Assembly Pipeline

Distributed Hash Tables in PGAS

« Remote Atomics, Dynamic Aggregation, Software Caching
« 13x Faster than MPI code (Ray) on 960 cores

8192 T T T T T
., overall time esgag o overalltime
e, kmer analysis === | A T, kmer analysis ===
4096 |- "':,,"l" o contig generation seesdesss 8192 Sy, di contig generation wennkunnn
e, scaffolding «waees || Ry, _ scaffolding
2048 g '“"'"":—,, . ideal overall time s L ILLL 4096 F e P ideal overall time s
ey, el .l’l, B,
m 1024 ,.',-.,,,,,,,,,,'," ,,,,,, i 2048 o, L .~
~~~~~~~ . e,
'8 ,,,,,,,,,,, 1024 [ M,
) 512 Wy g S o, '
() ‘n. """" - .'.-.,.
J’) ,,,,,,, B12 o
BB [ g o] "My,
A, Ty, "t """ll.n. i
L.,......... ........ g 256 A"r-'.',..'.'.." e iy
128 .nrlg,*., '.l ........., ~ T,
........ ey 128 [ g
L ..,."A.., - oy,
64 [ 64 | ., o
B . e
B0 by Bihbil) LU T 32 L I PRl L N
480 960 1920 3840 7680 15360 960 1920 3840 7680 15360
Number of Cores Number of Cores

Evangelos Georganas, Aydin Bulug, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob Egan, , \
Lenny Oliker, Dan Rokhsar, and Kathy Yelick. HipMer: An Extreme-Scale De Novo Genome Assembler, rrfrf>r| i

SC’15 A




Comparison to other Assemblers

140 hours

Runtime on Assemblers

o

< 30 -

£, Equal core counts (960 Edison)
o

S

S 20 - A

4 min

Meraculous SGA ABySS 960 Ray 960 HipMer 960 HipMer 20K n
Contig only ;}M

CERKELEVEAS




Science Impact: HipMer is transformative

 Human genome (3Gbp) “de novo” assembled :
—Meraculous: 48 hours

—HipMer: 4 minutes (720x speedup
relative to Meraculous)

 Wheat genome (17 Gbp) “de novo™ assembled (2014):
—Meraculous (did not run):

-HipMer: 39 minutes; 15K cores (first all-in-one
assembly)

* Pine genome (20 Gbp) “de novo” assembled (2014) :
-Masurca : 3 months; 1 TB RAM
» Wetland metagenome (1.25 Tbp) analysis (2015):
—Meraculous (projected): 15 TB of memory
-HipMER: Strong scaling to over 100K cores
(contig gen only)

Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick,
: IDIGAS [Aluru,Egan,Hofmeyr] in SC14, IPDPS15, SC15 34

Makes unsolvable
problems solvable!




Led by Yili Zheng (LBNL)
with Amir Kamil (U Mich)

And host of others: Paul Hargrove,
Dan Bonachea, John Bachan,

DEGAS is a DOE-funded X-Stack with Lawrence Berkeley
National Lab, Rice Univ., UC Berkeley, and UT Austin.

>
- r\
rrrrrrr ‘"'|

DYNAMIC EXASCALE GLOBAL ADDRESS SPACE

i A



UPC++: PGAS with “Mixins”

« UPC++ uses templates (no compiler
needed) e

shared_var<int> s;
global ptr<LLNode> g;

shared_array<int> sa(8); =161 x: 5 /%—* x: 7
« Default execution model is SPMD, but / y: 7 | y:0
« Remote methods, async 18 / 5 - 03 27
async(place) (Function f, T1 argl,..); ./ \\
wait(); // other side does poll(); s oL
PO p1 p2

e Teams for hierarchical
algorithms and machines

teamsplit (team) { ... }

« Interoperability is key; UPC++ can be use with OpenMP or MPI

>
A
rrrrrrr ‘"'|

- | DEGAS




UPC++ Performance Close to UPC

UPC++ is a library, not a compiled language, yet
performance is comparable

GUPS (fine-grained) Performance on MIC and BlueGene/Q

MIC BlueGene/Q
Giga Updates Per Second 100 - Giga Updates Per Second
— - l,__l
1.00 » -
“E=UPC++ ==UPC++ r
UPC 0.10 - UPC r /r_/-
0.10 " »
& S 501 - /r./-
: (D 4
o /r_/-
0.01 ;
0.00 | ’_/'
Hﬂ
000 I | T T T T T T 1 000 T T <« wI©|N|¢|w|©|N|
~— AN < 00 © A\
1 2 4 8 16 32 60 meggggggg
Num. of Processes Num. of Processe; N < ©

Difference between UPC++ and

UPC is about 0.2 us (~220 cycles) —
| DEGAS eer)
-




Bulk Communication with One-Sided Data Transfers

// Copy count elements of T from src to dst
upcxx: :copy<T>(global ptr<T> src,
global ptr<T> dst,

size t count);

// Non-blocking version of copy

upcxx: :async_copy<T>(global ptr<T> src,
global ptr<T> dst,
size t count);

// Synchronize all previous asyncs
upcxx: :async_wait();

Similar to upc_memcpy_nb extension in UPC 1.3

. IDEGAS 40 |
i BERKELEY LAB




Dynamic Global Memory Management

 Global address space pointers (pointer-to-shared)
global ptr<data type> ptr;

* Dynamic shared memory allocation
global ptr<T> allocate<T>(uint32_t where,
size t count);
void deallocate(global ptr<T> ptr);

Example: allocate space for 512 integers on rank 2
global ptr<int> p = allocate<int>(2, 512);

Remote memory allocation is not
available in MPI-3, UPC or SHMEM.
:




Async Task Example
#include <upcxx.h>

void print_num(int num) {
printf(“myid %u, arg: %d\n”, MYTHREAD, num);
}

int main(int argc, char **argv) {
for (int i = @0; i < upcxx::ranks(); i++) {
upcxx::async(i)(print_num, 123);
}

upcxx::async_wait(); // wait for remote tasks to complete
return 9;

>
A
, 1) f g.ﬂ.s 42 rrrrrrr "“|
- } BERKETEYEAE




Async with Anonymous Functions (C++ Lambda)

for (int i = 0; 1 < upcxx::ranks(); i++) {
// spawn a task expressed by a lambda function
upcxx::async(i)([] (int num)
{ printf("num: %d\n”, num); },
1000+i); // argument to the A function
}

upcxx::async_wait(); // wait for all tasks to finish

mpirun —n 4 ./test_async

Output: Function arguments and lambda-
num: 1000
captured values must be
hum: 1001 std::is_trivially_copyable
num: 1002 T JEOpyEnE
num: 1003

~
'\ DEGAS 43l
B BERKELEY LAB
4 A! e ey W s




Application Challenge: Data Fusion in UPC++

« Seismic modeling for energy applications “fuses” observational
data into simulation
« With UPC++ “matrix assembly” can solve larger problems

First ever sharp, three-dimensional scan of Earth’s interior that conclusively connects plumes of
hot rock rising through the mantle with surface hotspots that generate volcanic island chains
like Hawaii, Samoa and Iceland.

French and Romanowicz use code with UPC++ phase to compute first ever whole-mantle

global tomographic model using numerical seismic wavefield computations (F & R, 2014, A
GJI, extending F et al., 2013, Scierd4é). rrfrr>r|
‘ BERKETEVICAD




Application Challenge: Data Fusion in UPC++

Strong Scaling (NERSC Edison)
100 F—m—m B — o B ]

sl

== lle5x1.1e5(45GB) |
B—E 2.2e5 x 2.2e5 (180 GB)
B—E 8.2e5 x 8.2e5 (2.5 TB)

20}

Relative Parallel Efficiency (%)

48 192 768 3072 12288
Cores

Distributed Matrix Assembly

 Remote asyncs with user-controlled resource management
« Remote memory allocation

 Team idea to divide threads into injectors / updaters
» 6x faster than MPI 3.0 on 1K nodes
- Improving UPC++ team support

See French et al, IPDPS 2015 for parallelization overview. n
. A
m 45 rz}rl
BERKELEY LAB




Multidimensional Arrays in UPC++ (and Titanium)

« UPC++ arrays have a rich set of operations

—

translate restrict slice (n dim to n-1)

* None of these modify the original array, they just create
another view of the data in that array

* You create arrays with a RectDomain and get it back
later using A.domain() for array A
- A Domain is a set of points in space
- A RectDomain is a rectangular one
« Operations on Domains include +, -, * (union, different
intersection)

' DEGAS !
K “!




Load Balancing and Irregular Matrix Transpose

» Hartree Fock example (e.g., in NWChem)

* Inherent load imbalance Increase scalability!
« UPC++ 205
« Work stealing and fast atomics
« Distributed array: easy and fast transpose
* Impact
« 20% faster than the best existing solution
(GTFock with Global Arrays)

0 1 2 3
Distributed Array 4 S 6 7
Local Array —3 9 10 | 11
12 13 14 15

>
A
rrrrrrr ‘"'|

David Ozog , Amir Kamil , Yili Zheng, Paul Hargrove , Jeff R. Hammond, Allen Malony,
Wibe de Jong, Katherine Yelick BERKELEY LAB




Hartree Fock Code in UPC++

128-0 T T T T T T T T T T T T T T T T T T T T T T T

064.0¢

T

T

32.0¢

16.0

T

T

8.0}

4.0

T

208 __ Ideal

1.0f B GTFock - alkane
- &—® UPC++ - alkane
0.5/ A—a GTFock - DNA 5mer
- ¢—¢ UPC++ - DNA S5mer

Seconds per Fock build (ave.)

> © O > 2 0 O >
W o o o> L AV W S

Cores

Strong Scaling of UPC++ HF Compared to GTFock with Global Arrays on
NERSC Edison (Cray XC30)

David Ozog , Amir Kamil , Yili Zheng, Paul Hargrove , Jeff R. Hammond, Allen Malony,
Wibe de Jong, Katherine Yelick




Arrays in a Global Address Space for AMR

» Key features of UPC++ arrays
— Generality: indices may start/end and any point

- Domain calculus allow for slicing, subarray, transpose and
other operations without data copies

 Use domain calculus to iterate over interior:

foreach (idx, .shrink (1) .domain () )

» Array copies automatically work on intersection
.copy (gridA.shrink (1)) ;

& (non- | . | /L@‘section (copied
“restricted” (non- : | | area)
ghost) cells 4| Useful in grid
T computations
ghl?St /*gridA rids including AMR
cells

UPC++ arrays based on Titanium Arrays




UPC++ Communication Speeds up AMR

» Adaptive Mesh Refinement
on Block-Structured Meshes

—-Used in ice sheet modeling,
climate, subsurface (fracking),

FillBoundary Test on 2048 Cori Cores i
T T

1.13 | 1

h Better

of 052 | Hierarchical UPC++ (distributed /
i | shared style)

ol | UPC++ plus UPC++ is 2x faster

02| | than MPI plus OpenMP

Renormalized Time
o
D

o
=~

« MPI + MPI also does well

0.0 1

>
A
rrrrrrr ‘"'|

BERKELEY LAB



Beyond Put/Get: Event-Driven Execution

 DAG Scheduling in a distributed (partitioned) memory context
» Assignment of work is static; schedule is dynamic
* Ordering needs to be imposed on the schedule
— Critical path operation: Panel Factorization
* General issue: dynamic scheduling in partitioned memory

— Can deadlock in memory allocation

- “memory constrained” lookahead _
Uses a Berkeley extension to

UPC to remotely synchronize

SHEC I
L HMJH i
[ ] = ]
mC L]
some edges omitted

Pl | rjn}l "“|
JJ

BERKELEY LAB



Example: Building A Task Graph

using namespace UpCxX;
event el, e2, e3;

async(P1, &e1)(task1);
async(P2, &e1)(task2);
async_after(P3, &e1, &e2)(task3);
async(P4, &e2)(task4);
async_after(P5, &e2, &e3)(taskd);
async_after(P6, &e2, &e3)(tasko);
async_wait(); // all tasks will be done




symPACK: Sparse Cholesky

=]

Processor list:
Po|P1| P2| P3

0000
(XX
()

(]

(=]

°
°
.
EN

000000 @
000000 00000
o0 +++00
(X +++00
o0
( X J +++00

) Supernodal elimination tree of

(a) Structure of Cholesky factor L ( atrix A

« Sparse Cholesky using fan-both algorithm in UPC++

-Uses asyncs with dependencies
Matthias Jacquelin, Yili Zheng, Esmond Ng, Katherine Yelick

>
g A
rrrrrrr ‘"'|

BERKELEY LAB




symPACK: Sparse Cholesky

Run times on boneS10 for three variants of symPACK

&=® sympACK- Push

V=¥ sympack- Pull
A=/ symPACK- Pull dynamic scheduling

101 L

Time (s)

100 L

N % P> oy & e q(/oQ) %‘bb‘
Processor count

Figure 7: Impact of communication strategy and scheduling
on symPACK performance

 Scalability of symPACK on Cray XC30 (Edison)
- Comparable or better than best solvers (evaluation in progress)
— Notoriously hard parallelism problem

U T
ljr; Matthias Jacquelin, Yili Zheng, Esmond Ng, Katherine Yelick E;KEDYJ\B'




Summary: PGAS for Irregular Applications

« Lower overhead of communication makes PGAS useful for
latency-sensitive problems or bisection bandwidth problems

» Specific application characteristics that benefit:
-Fine-grained updates (Genomics HashTable construction)
-Latency-sensitive algorithms (Genomics DFS)
-Distributed task graph (Cholesky)
-Work stealing (Hartree Fock)
—Irregular matrix assembly / transpose (Seismic, HF)
-Medium-grained messages (AMR)
- All-to-all communication (FFT)

* There are also benefits of thinking algorithmically in this
model: parallelize things that are otherwise hard to imagine




Summary: PGAS for Modern HPC Systems

* The lower overhead of communication is also important
given current machine trends

-Many lightweight cores per node (do not want a hefty
serial communication software stack to run on them)

-~RDMA mechanisms between nodes (decouple
synchronization from data transfer)

- GAS on chip: direct load/store on chip without full
cache coherence across chip

—-Hierarchical machines: fits both shared and distributed
memory, but supports hierarchical algorithms

-New models of memory: High Bandwidth Memory on
chip or NVRAM above disk




Installing Berkeley UPC++, UPC, and GASNet

Available on Mac OSX, Linux, Infiniband clusters, Ethernet
clusters, and most HPC systems

« UPC++ Open source with BSD license

https://bitbucket.org/upcxx

« UPC++ installation
https://bitbucket.org/upcxx/upcxx/wiki/Installing%20UPC++
« GASNet communication

https://gasnet.lbl.gov

 Examples

-DAXPY, Conjugate Gradient, FFT, GUPS,
MatrixMultiply, Mutigrid, Minimum Degree Ordering,
Sample Sort, Sparse Matrix-Vector mutliply




Using Berkeley UPC at NERSC or ALCF

Load the bupc module via
module load bupc

Compile code with the upcc
upcc -V // shows version

Add the following line to your ~/.soft file:

PATH += /home/projects/pgas/berkeley_upc-2.22.3/V1R2M2/
gcc-narrow/bin/

OR, if using the xI compilers, add:

PATH += /home/projects/pgas/berkeley_upc-2.22.3/
V1R2M2/x1c-narrow/bin/

. Argonneé
r.eso-Ft NATIONAL LABORATORY
Compile with upcc. To see the version and configuration, run
upcc -V

BERKELEY LAB



LBNL / UCB Collaborators

Yili Zheng*

Amir Kamil*

Paul Hargrove

Eric Roman

Dan Bonachea
Marquita Ellis

Khaled Ibrahim

Costin lancu

Michael Driscoll
Evangelos Georganas
Penporn Koanantakool
Steven Hofmeyr
Leonid Oliker

*Former LBNL/UCB

« John Shalf
* Erich Strohmaier

. Samuel Williams Thanks!
* Cy Chan

* Didem Unat*

« James Demmel

» Scott French

« Edgar Solomonik*

* Eric Hoffman*

* Wibe de Jong

External collaborators (& their teams!)
* Vivek Sarkar, Rice

« John Mellor-Crummey, Rice
 Mattan Erez, UT Austin

>

A
reecere] "

BERKELEY LAB



