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Parallel Programming Problem: Histogram 

• Consider the problem of computing a histogram: 
- Large number of “words” streaming in from somewhere 
- You want to count the # of words with a given property 

•  In shared memory 
- Lock each bucket 

A’s B’s C’s … Y’s Z’s 

• Distributed memory: the array is huge and spread out 
- Each processor has a substream and sends +1 to the 

appropriate processor… and that processor “receives” 

A’s B’s C’s D’s Y’s Z’s … 



PGAS = Partitioned Global Address Space 

• Global address space: thread may directly read/write 
remote data  
• Convenience of shared memory 

• Partitioned: data is designated as local or global 
• Locality and scalability of message passing 
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Hello World in UPC 

• Any legal C program is also a legal UPC program 
•  If you compile and run it as UPC with P threads, it will 

run P copies of the program. 
• Using this fact, plus the a few UPC keywords: 

#include <upc.h>  /* needed for UPC extensions */ 
#include <stdio.h> 
 
main() { 
  printf("Thread %d of %d: hello UPC world\n",  
         MYTHREAD, THREADS); 
} 



Example: Monte Carlo Pi Calculation 

• Estimate Pi by throwing darts at a unit square 
• Calculate percentage that fall in the unit circle 

- Area of square = r2 = 1 
- Area of circle quadrant = ¼ * π r2 = π/4  

• Randomly throw darts at x,y positions 
•  If x2 + y2 < 1, then point is inside circle 
• Compute ratio: 

- # points inside / # points total 
-  π = 4*ratio  

r =1 



Each thread calls “hit” separately 

Initialize random in 
math library 

Each thread can use 
input arguments 

Each thread gets its own 
copy of these variables 

Pi in UPC  

• Independent estimates of pi: 
  main(int argc, char **argv) { 
    int i, hits, trials = 0; 
    double pi; 
 
    if (argc != 2)trials = 1000000; 
    else trials = atoi(argv[1]); 
 
    srand(MYTHREAD*17); 
 
    for (i=0; i < trials; i++) hits += hit(); 
    pi = 4.0*hits/trials; 
    printf("PI estimated to %f.", pi); 
  } 



Helper Code for Pi in UPC 

• Required includes: 
    #include <stdio.h> 
    #include <math.h>  
    #include <upc.h>  

• Function to throw dart and calculate where it hits: 
  int hit(){ 
    int const rand_max = 0xFFFFFF; 
    double x = ((double) rand()) / RAND_MAX; 
    double y = ((double) rand()) / RAND_MAX; 
    if ((x*x + y*y) <= 1.0) { 
         return(1); 
    } else { 
         return(0); 
    } 
  } 



Shared vs. Private 
Variables



Private vs. Shared Variables in UPC 

• Normal C variables and objects are allocated in the private 
memory space for each thread. 

• Shared variables are allocated only once, with thread 0 
     shared int ours;  // use sparingly: performance 
     int mine; 

• Shared variables may not have dynamic lifetime, i.e., may 
not occur in a function definition, except as static.   

Shared 
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Thread0   Thread1                                       Threadn 

ours:  



Pi in UPC: Shared Memory Style 

• Parallel computing of pi, but with a bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_trials = 0; 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)    
        hits += hit(); 
      upc_barrier; 
      if (MYTHREAD == 0) { 
        printf("PI estimated to %f.", 4.0*hits/trials); 
      } 
   } 

shared variable to 
record hits 

divide work up evenly 

accumulate hits 

What is the problem with this program? 



UPC Synchronization 

•  UPC has two basic forms of barriers: 
-  Barrier: block until all other threads arrive  

 upc_barrier 
-  Split-phase barriers 
   upc_notify;  this thread is ready for barrier 
      do computation unrelated to barrier 
   upc_wait;      wait for others to be ready 

•  UPC also has locks for protecting shared data: 
-  Locks are an opaque type (details hidden):       

upc_lock_t *upc_global_lock_alloc(void); 

-  Critical region protected by lock/unlock: 
void upc_lock(upc_lock_t *l) 
void upc_unlock(upc_lock_t *l) 

  use at start and end of critical region 



Pi in UPC: Shared Memory Style 

• Like pthreads, but use shared accesses judiciously 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_hits, my_trials = 0; 
  upc_lock_t *hit_lock = upc_all_lock_alloc(); 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      upc_lock(hit_lock); 
      hits += my_hits; 
      upc_unlock(hit_lock); 
      upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials); 
   } 

create a lock 

accumulate hits 
locally 

accumulate 
across threads 

other private variables 

one shared scalar variable 



Pi in UPC: Data Parallel Style w/ Collectives 

• The previous version of Pi works, but is not scalable: 
- On a large # of threads, the locked region will be a bottleneck 

• Use a reduction for better scalability 
   
  #include <bupc_collectivev.h> 
  // shared int hits; 
  main(int argc, char **argv) { 
      ... 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      my_hits =         // type, input, thread, op 
         bupc_allv_reduce(int, my_hits, 0, UPC_ADD);  
      // upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*my_hits/trials); 
   } 

 Berkeley collectives 
no shared variables 

barrier implied by collective 



Shared Arrays Are Cyclic By Default 

• Shared scalars always live in thread 0 
• Shared arrays are spread over the threads 
• Shared array elements are spread across the threads 

shared int x[THREADS]        /* 1 element per thread */ 
shared int y[3][THREADS] /* 3 elements per thread */ 
shared int z[3][3]               /* 2 or 3 elements per thread */ 

•  In the pictures below, assume THREADS = 4 
- Blue elts have affinity to thread 0 

x 

y 

z 

As a 2D array, y is 
logically blocked 
by columns 

Think of linearized 
C array, then map 
in round-robin 

z is not 



Pi in UPC: Shared Array Version 

• Alternative fix to the race condition  
• Have each thread update a separate counter: 

- But do it in a shared array 
- Have one thread compute sum 

shared int all_hits [THREADS]; 
main(int argc, char **argv) { 
  … declarations an initialization code omitted 
  for (i=0; i < my_trials; i++)  
    all_hits[MYTHREAD] += hit(); 
  upc_barrier; 
  if (MYTHREAD == 0) { 
    for (i=0; i < THREADS; i++) hits += all_hits[i]; 
    printf("PI estimated to %f.", 4.0*hits/trials); 
  } 
} 

all_hits is 
shared by all 
processors, 
just as hits was 

update element 
with local affinity 



Global Memory Allocation  
shared void *upc_alloc(size_t nbytes); 

  nbytes : size of memory in bytes 
•  Non-collective: called by one thread  
•  The calling thread allocates a contiguous memory space in the shared 

space with affinity to itself.  
 shared [] double [n] p2 = upc_alloc(n&sizeof(double); 

void upc_free(shared void *ptr); 
•  Non-collective function; frees the dynamically allocated shared 

memory pointed to by ptr 

Shared 
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Distributed Arrays Directory Style 

• Many UPC programs avoid the UPC style arrays in 
factor of directories of objects 

typedef shared [] double *sdblptr; 
shared sdblptr directory[THREADS]; 
directory[i]=upc_alloc(local_size*sizeof(double)); 

directory 



Distributed Arrays Directory Style 

physical and 
conceptual 
3D array 
layout 

• These are also more general: 
• Multidimensional, unevenly distributed 
• Ghost regions around blocks 



UPC Non-blocking Bulk Operations 

#include<upc_nb.h>		
	
upc_handle_t	h	=		
upc_memcpy_nb(shared	void	*	restrict	dst,		
														shared	const	void	*	restrict	src,	
														size_t	n);	 
void	upc_sync(upc_handle_t	h);								//	blocking	wait	
int	upc_sync_attempt(upc_handle_t	h);	//	non-blocking		
	
	
	
 

Important for performance:  
•  Communication overlap with computation 
•  Communication overlap with communication (pipelining) 
•  Low overhead communication  



One-Sided Communication in GASNet

•  A two-sided messages needs to be matched with a receive 
- Ordering requirements on messages can also hinder bandwidth 

•  A one-sided put/get message can be handled directly by a network 
interface with RDMA support 
- Decouples transfer from synchronization 
- Avoids interrupting the CPU or storing data from CPU (preposts) 

address 

message id 

data payload 

data payload 

one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 
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Bandwidths on Cray XC30 Aries Network (Edison)
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Why Should You Care about PGAS?
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Application Challenge: Fast All-to-All 

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

chunk = all rows with same destination 

pencil = 1 row 

Transpose in 3D FFT 
 
•  Three approaches: 

• Chunk:  
•  Wait for 2nd dim FFTs to finish 
•  Minimize # messages 

• Slab:  
•  Wait for chunk of rows destined for 1 

proc to finish 
•  Overlap with computation 

• Pencil:  
•  Send each row as it completes 
•  Maximize overlap and 
•  Match natural layout slab = all rows in a single plane with 

same destination 



Bisection Bandwidth 

DEGAS Overview

•  Avoid congestion at node interface: allow all cores to communicate 
•  Avoid congestion inside global network: spread communication 

over longer time period (send early and often) 
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FFT Performance on BlueGene/P (Mira)

•  UPC implementation 
outperforms MPI 

•  Both use highly 
optimized FFT library 
on each node 

•  UPC version avoids 
send/receive 
synchronization 
•  Lower overhead 
•  Better overlap 
•  Better bisection 
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UPC Atomic Operations
• More efficient than using locks when applicable 

• Hardware support for atomic operations are available, but 
need to be careful about atomicity w.r.t nonatomics 

• Example: atomic fetch-and-add 
 

• See more examples on the web page: 
http://upc.lbl.gov/docs/user/#atomics 

upc_lock();	
update();	
upc_unlock();	

atomic_update();	vs 

int bupc_atomici_fetchadd_relaxed (shared void *ptr, int op); 



De novo Genome Assembly 

• DNA sequence consists of 4 bases: A/C/G/T 
• Read: short fragment of DNA  
• De novo assembly: Construct a genome 

(chromosomes) from a collection of reads 

DEGAS 



• Sequencers produce fragments called “reads” 
• Chop them into overlap fixed-length fragments, “K-mers” 
• Parallel DFS (from randomly selected K-mers) à “contigs” 

• Hash tables used here (and in other assembly phases) 
- Different use cases, different implementations 

• Some tricky synchronization to deal with conflicts 

PGAS in Genome Assembly 
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Partitioned Global Address Space Programming 
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•  Store the connections between read fragments (K-mers) in a hash 
table 

•  Allows for TB-PB size data sets 

key: cca 
val: t  

key: gta 
val: c  

key: tac 
val: c 

DEGAS 
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Evangelos Georganas, Aydın Buluç, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob Egan, 
Lenny Oliker, Dan Rokhsar, and Kathy Yelick. HipMer: An Extreme-Scale De Novo Genome Assembler, 
SC’15 
 
.		

  HipMer (High Performance Meraculous) Assembly Pipeline

Distributed Hash Tables in PGAS 
•  Remote Atomics, Dynamic Aggregation, Software Caching 
•  13x Faster than MPI code (Ray) on 960 cores 



Comparison to other Assemblers
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Science Impact: HipMer is transformative 

• Human genome (3Gbp) “de novo” assembled : 
- Meraculous: 48 hours 
- HipMer: 4 minutes (720x speedup                         

relative to Meraculous) 
• Wheat genome (17 Gbp) “de novo” assembled (2014): 

- Meraculous (did not run):  
- HipMer: 39 minutes; 15K cores (first all-in-one 

assembly) 
• Pine genome (20 Gbp) “de novo” assembled (2014) : 

- Masurca : 3 months; 1 TB RAM 
• Wetland metagenome (1.25 Tbp) analysis (2015): 

- Meraculous (projected): 15 TB of memory 
- HipMER: Strong scaling to over 100K cores   
   (contig gen only) 

34Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick, 
[Aluru,Egan,Hofmeyr] in SC14, IPDPS15, SC15 

Makes unsolvable 
problems solvable! 

DEGAS 



DEGAS is a DOE-funded X-Stack with Lawrence Berkeley 
National Lab, Rice Univ., UC Berkeley, and UT Austin.    

Led by Yili Zheng (LBNL) 
with Amir Kamil (U Mich) 
 
And host of others: Paul Hargrove, 
Dan Bonachea, John Bachan,  



p0 p1 p2

UPC++:  PGAS with “Mixins”

•  Default execution model is SPMD, but 

•  UPC++ uses templates (no compiler 
needed) 
	shared_var<int>	s;		
	global_ptr<LLNode> g;  
	shared_array<int>	sa(8);	

s: 16 

g:  

x: 5 
y:  

x: 7 
y: 0 

sa:  

 18                  63           27 •  Remote methods, async 
		async(place)	(Function	f,	T1	arg1,…);	
		wait();					//	other	side	does	poll();	

•  Interoperability is key; UPC++ can be use with OpenMP or MPI 

•  Teams for hierarchical 
algorithms and machines 

				teamsplit	(team)	{	...	}	
	

DEGAS 



UPC++ Performance Close to UPC"
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DEGAS 

Difference between UPC++ and 
UPC is about 0.2 µs (~220 cycles) 



Bulk Communication with One-Sided Data Transfers

//	Copy	count	elements	of	T	from	src	to	dst	
upcxx::copy<T>(global_ptr<T>	src,																										
															global_ptr<T>	dst,		

												size_t	count);	
	

//	Non-blocking	version	of	copy	
upcxx::async_copy<T>(global_ptr<T>	src,	

																		global_ptr<T>	dst,		
																		size_t	count);	
	

//	Synchronize	all	previous	asyncs	
upcxx::async_wait();	

Similar to upc_memcpy_nb extension in UPC 1.3 
40DEGAS 



Dynamic Global Memory Management

• Global address space pointers (pointer-to-shared) 
global_ptr<data_type>	ptr;	
	

• Dynamic shared memory allocation 
global_ptr<T>	allocate<T>(uint32_t	where,	
																										size_t	count);	
void	deallocate(global_ptr<T>	ptr);	
	
Example: allocate space for 512 integers on rank 2 
global_ptr<int>	p	=	allocate<int>(2,	512);	

Remote memory allocation is not 
available in MPI-3, UPC or SHMEM. 

41DEGAS 



Async Task Example

#include	<upcxx.h>	
	
void	print_num(int	num)	{		
		printf(“myid	%u,	arg:	%d\n”,	MYTHREAD,	num);		
}	
	
int	main(int	argc,	char	**argv)	{		
		for	(int	i	=	0;	i	<	upcxx::ranks();	i++)	{	
				upcxx::async(i)(print_num,	123);		
		}	
		upcxx::async_wait();	//	wait	for	remote	tasks	to	complete	
		return	0;	
}	

42DEGAS 



Async with Anonymous Functions (C++ Lambda)

for	(int	i	=	0;	i	<	upcxx::ranks();	i++)	{	
		//	spawn	a	task	expressed	by	a	lambda	function	
		upcxx::async(i)([]	(int	num)		
																		{	printf("num:	%d\n”,	num);	},		
																		1000+i);	//	argument	to	the	λ	function	
}	
upcxx::async_wait();	//	wait	for	all	tasks	to	finish	

mpirun –n 4  ./test_async!
!
Output: !
num:  1000 !
num:  1001 !
num:  1002 !
num:  1003 !

Function arguments and lambda-
captured values must be 
std::is_trivially_copyable. 

43DEGAS 



Application Challenge: Data Fusion in UPC++

44

•  Seismic modeling for energy applications “fuses” observational 
data into simulation 

•  With UPC++ “matrix assembly” can solve larger problems 

French and Romanowicz use code with UPC++ phase to compute first ever whole-mantle 
global tomographic model using numerical seismic wavefield computations (F & R, 2014, 
GJI, extending F et  al., 2013, Science).   

First ever sharp, three-dimensional scan of Earth’s interior that conclusively connects plumes of 
hot rock rising through the mantle with surface hotspots that generate volcanic island chains 
like Hawaii, Samoa and Iceland. 

DEGAS 



Application Challenge: Data Fusion in UPC++

45

Distributed Matrix Assembly 
•  Remote asyncs with user-controlled resource management 
•  Remote memory allocation 
•  Team idea to divide threads into injectors / updaters 
•  6x faster than MPI 3.0 on 1K nodes 
à Improving UPC++ team support 

See French et al, IPDPS 2015 for parallelization overview. 

DEGAS 



March 5, 2004

Multidimensional Arrays in UPC++ (and Titanium)

• UPC++ arrays have a rich set of operations 

• None of these modify the original array, they just create 
another view of the data in that array 

• You create arrays with a RectDomain and get it back 
later using A.domain() for array A 
- A Domain is a set of points in space 
- A RectDomain is a rectangular one 

• Operations on Domains include +, -, * (union, different 
intersection) 

translate restrict slice (n dim to n-1) 

DEGAS 



Load Balancing and Irregular Matrix Transpose 

•  Hartree Fock example (e.g., in NWChem) 

Local Array
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Increase scalability! •  Inherent load imbalance 
•  UPC++ 

•  Work stealing and fast atomics  
•  Distributed array: easy and fast transpose 

•  Impact 
•  20% faster than the best existing solution 

(GTFock with Global Arrays) 

 David Ozog , Amir Kamil , Yili Zheng, Paul Hargrove , Jeff R. Hammond, Allen Malony, 
Wibe de Jong, Katherine Yelick 



Hartree Fock Code in UPC++ 

Strong Scaling of UPC++ HF Compared to GTFock with Global Arrays on 
NERSC Edison (Cray XC30)  

 David Ozog , Amir Kamil , Yili Zheng, Paul Hargrove , Jeff R. Hammond, Allen Malony, 
Wibe de Jong, Katherine Yelick 



Arrays in a Global Address Space for AMR

• Key features of UPC++ arrays 
- Generality: indices may start/end and any point 
- Domain calculus allow for slicing, subarray, transpose and 

other operations without data copies 
• Use domain calculus to iterate over interior: 
      foreach (idx, gridB.shrink(1).domain()) 

• Array copies automatically work on intersection 
      gridB.copy(gridA.shrink(1)); 

gridA gridB 

“restricted” (non-
ghost) cells  

ghost 
cells  

intersection (copied 
area) 

UPC++ arrays based on Titanium Arrays

Useful in grid 
computations 
including AMR 



UPC++ Communication Speeds up AMR 

• Adaptive Mesh Refinement 
on Block-Structured Meshes 
- Used in ice sheet modeling, 

climate, subsurface (fracking), 
astrophysics, accelerator 
modeling and many more 
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Hierarchical UPC++ (distributed / 
shared style) 
•  UPC++ plus UPC++ is 2x faster 

than MPI plus OpenMP 
•  MPI + MPI also does well 



Beyond Put/Get: Event-Driven Execution 

• DAG Scheduling in a distributed (partitioned) memory context 
• Assignment of work is static; schedule is dynamic 
• Ordering needs to be imposed on the schedule 

- Critical path operation: Panel Factorization 
• General issue: dynamic scheduling in partitioned memory 

- Can deadlock in memory allocation 
- “memory constrained” lookahead 
 

some edges omitted 

Uses a Berkeley extension to 
UPC to remotely synchronize 

55



Example: Building A Task Graph 

using namespace upcxx; 
event e1, e2, e3; 

t1 

e1 

t2 

t4 t3 

t5 

e3 

e2 

t6 

async(P1, &e1)(task1); 
async(P2, &e1)(task2); 
async_after(P3, &e1, &e2)(task3); 
async(P4, &e2)(task4); 
async_after(P5, &e2, &e3)(task5); 
async_after(P6, &e2, &e3)(task6); 
async_wait(); // all tasks will be done  
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symPACK: Sparse Cholesky 

• Sparse Cholesky using fan-both algorithm in UPC++ 
- Uses asyncs with dependencies 

Matthias Jacquelin, Yili Zheng, Esmond Ng, Katherine Yelick 

2) Column j of L is used to update the remaining columns
of A.

If A is a dense matrix, then every column k, k > j, is
updated.

Once the factorization is computed, the solution to the
original linear system can be obtained by solving two
triangular linear systems using the Cholesky factor L.

B. Cholesky factorization of sparse matrices
For large-scale applications, A is often sparse, meaning

that most of the elements of A are zero. When the Cholesky
factorization of A is computed, some of the zero entries
will turn into nonzero (due to the subtraction operations in
the column updates; see Alg. 1). The extra nonzero entries
are referred to as fill-in. For in-depth discussion of sparse
Cholesky factorization, the reader is referred to [1].

Following is an important observation in sparse Cholesky
factorization. It is expected that the columns of L will
become denser and denser as one moves from the left to the
right. This is due to the fact that the fill-in in one column will
result in additional fill-in in subsequent columns. Thus, it is
not uncommon to find groups of consecutive columns that
eventually share essentially the same zero-nonzero structure.
Such a group of columns is referred to as a supernode. To be
specific, if columns i, i+1, · · ·, j form a supernode, then the
diagonal block of these columns will be completely dense,
and row k, j + 1  k  n, within the supernode is either
entirely zero or entirely nonzero.

Fill-in entries and supernodes of a sample symmetric
matrix are depicted in Figure 1a. In this example, 10
supernodes are found. Fill-in entries are created in supernode
8 because of the nonzero entries in supernode 6.
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Figure 1: Sparse matrix A partitioned into supernodes, i
denotes the i-th supernode. represents original nonzero
elements in A, while + denotes fill-in entries. Colors
correspond to the 4 distributed memory nodes on which
supernodes are mapped in a 1D-cyclic way.

The elimination tree of A (or L) is a very important
and useful tool in sparse Cholesky factorization. It is an

acyclic graph that has n vertices {v1, v2, · · · , vn}, with v
i

corresponding to column i of A. Suppose i > j. There is an
edge between v

i

and v
j

in the elimination tree if and only
if `

ij

is the first off-diagonal nonzero entry in column j of
L. Thus, v

i

is called the parent of v
j

and v
j

is a child of v
i

.
The elimination tree contains a lot of information regarding
the sparsity structure of L and the dependency among the
columns of L. See [2] for details.

An elimination tree can be expressed in terms of supern-
odes rather than column. In such a case, it is referred to as
a supernodal elimination tree. An example of such tree is
depicted in Figure 1b.

C. Scheduling in parallel sparse Cholesky factorization

In the following, we discuss scheduling of the computa-
tion in the numerical factorization. The only constraints that
have to be respected are the numerical dependencies among
the columns: column k of A has to be updated by column j
of L, for any j < k such that `

k,j

6= 0, but the order in which
the updates occur is mathematically irrelevant, as long as the
updates are performed before column k of A is factored.
There is therefore significant freedom in the scheduling of
computational tasks that factorization algorithms can exploit.

For instance, on sequential platforms, this has led to two
well-known variants of the Cholesky factorization algorithm:
left-looking and right-looking schemes, which have been
introduced in the context of dense linear algebra [3]. In the
left-looking algorithm, before column k of A is factored,
all updates coming from columns i of L such that i < k
and `

k,i

6= 0 are first applied. In that sense, the algorithm is
“looking to the left” of column k. In right-looking, after a
column k has been factored, every column i such that k < i
and `

i,k

6= 0 is updated by column k. The algorithm thus
“looks to the right” of column k.

Distributed memory platforms add the question of where
the computations are going to be performed. Various par-
allel algorithms have been proposed in the literature for
Cholesky factorization, such as MUMPS [4], which is based
on the multifrontal approach (a variant of right-looking), and
PASTIX [5], which is left-looking.

In [6], the author classifies parallel Cholesky algorithms
into three families: fan-in, fan-out and fan-both.

The fan-in family includes all algorithms such that all
updates from a column k to other columns i, for k < i such
that `

i,k

6= 0, are computed on the processor owning column
k. When one of these columns, say i, will be factored, the
processor owning i will have to “fan-in” (or collect) updates
from previous columns.

The fan-out family includes algorithms that compute
updates from column k to columns i, for k < i such that
`
k,i

6= 0, on processors owning columns i. This means
that the processor owning column k has to “fan-out” (or
broadcast) column k of the Cholesky factor.

2) Column j of L is used to update the remaining columns
of A.

If A is a dense matrix, then every column k, k > j, is
updated.

Once the factorization is computed, the solution to the
original linear system can be obtained by solving two
triangular linear systems using the Cholesky factor L.

B. Cholesky factorization of sparse matrices
For large-scale applications, A is often sparse, meaning

that most of the elements of A are zero. When the Cholesky
factorization of A is computed, some of the zero entries
will turn into nonzero (due to the subtraction operations in
the column updates; see Alg. 1). The extra nonzero entries
are referred to as fill-in. For in-depth discussion of sparse
Cholesky factorization, the reader is referred to [1].

Following is an important observation in sparse Cholesky
factorization. It is expected that the columns of L will
become denser and denser as one moves from the left to the
right. This is due to the fact that the fill-in in one column will
result in additional fill-in in subsequent columns. Thus, it is
not uncommon to find groups of consecutive columns that
eventually share essentially the same zero-nonzero structure.
Such a group of columns is referred to as a supernode. To be
specific, if columns i, i+1, · · ·, j form a supernode, then the
diagonal block of these columns will be completely dense,
and row k, j + 1  k  n, within the supernode is either
entirely zero or entirely nonzero.

Fill-in entries and supernodes of a sample symmetric
matrix are depicted in Figure 1a. In this example, 10
supernodes are found. Fill-in entries are created in supernode
8 because of the nonzero entries in supernode 6.
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Figure 1: Sparse matrix A partitioned into supernodes, i
denotes the i-th supernode. represents original nonzero
elements in A, while + denotes fill-in entries. Colors
correspond to the 4 distributed memory nodes on which
supernodes are mapped in a 1D-cyclic way.

The elimination tree of A (or L) is a very important
and useful tool in sparse Cholesky factorization. It is an

acyclic graph that has n vertices {v1, v2, · · · , vn}, with v
i

corresponding to column i of A. Suppose i > j. There is an
edge between v

i

and v
j

in the elimination tree if and only
if `

ij

is the first off-diagonal nonzero entry in column j of
L. Thus, v

i

is called the parent of v
j

and v
j

is a child of v
i

.
The elimination tree contains a lot of information regarding
the sparsity structure of L and the dependency among the
columns of L. See [2] for details.

An elimination tree can be expressed in terms of supern-
odes rather than column. In such a case, it is referred to as
a supernodal elimination tree. An example of such tree is
depicted in Figure 1b.

C. Scheduling in parallel sparse Cholesky factorization

In the following, we discuss scheduling of the computa-
tion in the numerical factorization. The only constraints that
have to be respected are the numerical dependencies among
the columns: column k of A has to be updated by column j
of L, for any j < k such that `

k,j

6= 0, but the order in which
the updates occur is mathematically irrelevant, as long as the
updates are performed before column k of A is factored.
There is therefore significant freedom in the scheduling of
computational tasks that factorization algorithms can exploit.

For instance, on sequential platforms, this has led to two
well-known variants of the Cholesky factorization algorithm:
left-looking and right-looking schemes, which have been
introduced in the context of dense linear algebra [3]. In the
left-looking algorithm, before column k of A is factored,
all updates coming from columns i of L such that i < k
and `

k,i

6= 0 are first applied. In that sense, the algorithm is
“looking to the left” of column k. In right-looking, after a
column k has been factored, every column i such that k < i
and `

i,k

6= 0 is updated by column k. The algorithm thus
“looks to the right” of column k.

Distributed memory platforms add the question of where
the computations are going to be performed. Various par-
allel algorithms have been proposed in the literature for
Cholesky factorization, such as MUMPS [4], which is based
on the multifrontal approach (a variant of right-looking), and
PASTIX [5], which is left-looking.

In [6], the author classifies parallel Cholesky algorithms
into three families: fan-in, fan-out and fan-both.

The fan-in family includes all algorithms such that all
updates from a column k to other columns i, for k < i such
that `

i,k

6= 0, are computed on the processor owning column
k. When one of these columns, say i, will be factored, the
processor owning i will have to “fan-in” (or collect) updates
from previous columns.

The fan-out family includes algorithms that compute
updates from column k to columns i, for k < i such that
`
k,i

6= 0, on processors owning columns i. This means
that the processor owning column k has to “fan-out” (or
broadcast) column k of the Cholesky factor.



symPACK: Sparse Cholesky 

• Scalability of symPACK on Cray XC30 (Edison) 
- Comparable or better than best solvers (evaluation in progress) 
- Notoriously hard parallelism problem 
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Figure 7: Impact of communication strategy and scheduling
on symPACK performance

communications when using a push strategy also signif-
icantly constrains the schedule. Removing the constraints
on how communications are scheduled while avoiding still
deadlocks through the use of the Pull strategy allows to
achieve a better scalability.

This trend is further improved by using a dynamic
scheduling policy in conjunction with the Pull strategy. This
confirms the dynamic scheduling as described in Section IV
is a good way to improve scalability in the context of
sparse matrix computations. In the rest of the paper, results
corresponding to symPACK will correspond to the Pull +
dynamic scheduling variant.

B. Strong scaling

In the next set of experiments, we evaluate the strong
scaling of our sparse symmetric solver symPACK. We
compare its performance to two state-of-the-art parallel
symmetric solvers: MUMPS 5.0 [4] and PASTIX 5.2.2 [5].
The package MUMPS is a well-known sparse solver based on
the multifrontal approach and that implements a symmetric
factorization. The code PASTIX is based on is a left-looking
supernodal formulation.

We also provide the run times achieved by
SuperLU_DIST 4.3 [15], [16] as a reference. Note
that SuperLU_DIST is not a symmetric code and
therefore requires twice as much memory and floating point
operations (if the columns are factored in the same order).
However, it is well known for its good strong scaling.
Therefore, only scalability trend rather than run times
should be compared.

As this paper focuses solely on distributed memory
platforms, neither PASTIX, MUMPS nor SuperLU_DIST
are using multi-threading. Furthermore, the term processor
corresponds to a distributed memory process. Each data
point corresponds to the average of three runs.

On the G3 circuit matrix, for which results are depicted
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in Figure 8, MUMPS and PASTIX perform better when using
up to 96 and 192 processors respectively. On larger platform,
symPACK becomes faster than these two state-of-the-art
solvers, displaying a better strong scaling. The average
speedup against the fastest solver for this specific matrix is
1.07, with a minimum value of 0.24 and a maximum value
of 5.70 achieved when using 2048 processors.

The performance of symPACK on a smaller number of
processors can be explained by the data structures which are
used to reduce the memory usage at the expense of more
expensive indirect addressing operations. The G3 circuit
matrix being extremely sparse, it is very likely that simpler
structures with lower overhead would yield a higher level of
performance. In terms of scalability, symPACK displays a
favorable trend when compared to SuperLU_DIST, which
scales up 192 processors on the expanded problem.

On other problems, symPACK is faster than all alterna-
tives, as observed on Figures 9, 10, 11, 12, and 13. Detailed
speedups over the best symmetric solver and the best overall
solver (thus including SuperLU_DIST) are presented in
Table II. The highest average speedup is achieved on the



Summary: PGAS for Irregular Applications 

•  Lower overhead of communication makes PGAS useful for 
latency-sensitive problems or bisection bandwidth problems 

• Specific application characteristics that benefit: 
- Fine-grained updates (Genomics HashTable construction) 
- Latency-sensitive algorithms (Genomics DFS) 
- Distributed task graph (Cholesky) 
- Work stealing (Hartree Fock) 
- Irregular matrix assembly / transpose (Seismic, HF) 
- Medium-grained messages (AMR) 
- All-to-all communication (FFT) 

• There are also benefits of thinking algorithmically in this 
model: parallelize things that are otherwise hard to imagine 



Summary: PGAS for Modern HPC Systems 

• The lower overhead of communication is also important 
given current machine trends 
- Many lightweight cores per node (do not want a hefty 

serial communication software stack to run on them) 
- RDMA mechanisms between nodes (decouple 

synchronization from data transfer) 
- GAS on chip: direct load/store on chip without full 

cache coherence across chip 
- Hierarchical machines: fits both shared and distributed 

memory, but supports hierarchical algorithms 
- New models of memory: High Bandwidth Memory on 

chip or NVRAM above disk 



Installing Berkeley UPC++, UPC, and GASNet 

•  UPC++ Open source with BSD license 
https://bitbucket.org/upcxx 
•  UPC++ installation    
https://bitbucket.org/upcxx/upcxx/wiki/Installing%20UPC++ 
•  GASNet communication 
   https://gasnet.lbl.gov 
• Examples 

- DAXPY, Conjugate Gradient, FFT, GUPS, 
MatrixMultiply, Mutigrid, Minimum Degree Ordering, 
Sample Sort, Sparse Matrix-Vector mutliply 

Available on Mac OSX, Linux, Infiniband clusters, Ethernet 
clusters, and most HPC systems 



Using Berkeley UPC at NERSC or ALCF 

Load the bupc module via 
     module load bupc 
 

Compile code with the upcc 
  upcc –V  // shows version 

Add the following line to your ~/.soft file:  
PATH += /home/projects/pgas/berkeley_upc-2.22.3/V1R2M2/
gcc-narrow/bin/  

OR, if using the xl compilers, add:  
PATH +=  /home/projects/pgas/berkeley_upc-2.22.3/
V1R2M2/xlc-narrow/bin/  

Run  
    resoft 
Compile with upcc.  To see the version and configuration, run 

 upcc -V 
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