
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-7497 TR

Testing	your	Code
Alicia	Klinvex

Sandia	National	Labs
August	8,	2016

TESTING

2

Outline

§ Why	testing	is	important
§ Types	of	tests
§ Testing	tips
§ How	Trilinos is	tested
§ Code	coverage
§ Verification

Why	testing	is	important:
the	protein	structures	of	Geoffrey	Chang
§ Some	inherited	code	flipped	two	columns	of	data,	inverting	

an	electron-density	map
§ Resulted	in	an	incorrect	protein	structure
§ Resulted	in	5	retracted	publications

§ One	was	cited	364	times

§ Many	papers	and	grant	applications	conflicting	with	his	
results	were	rejected

4

A	scientist's	nightmare:	Software	problems	lead	to	five	retractions	(Miller)

Why	testing	is	important:
the	40	second	flight	of	the	Ariane	5
§ Ariane	5:	a	European	orbital	launch	vehicle	meant	to	lift	20	

tons	into	low	Earth	orbit	
§ Initial	rocket	went	off	course,	started	to	disintegrate,	then	

self-destructed	less	than	a	minute	after	launch
§ Seven	variables	were	at	risk	of	leading	to	an	Operand	Error	

(due	to	conversion	of	floating	point	to	integer)
§ Four	were	protected

§ Investigation	concluded	insufficient	test	coverage	as	one	of	
the	causes	for	this	accident

§ Resulted	in	a	loss	of	$370,000,000.

5

ARIANE	5	Flight	501	Failure	(report	by	the	Inquiry	Board)

Why	testing	is	important:
the	Therac-25	accidents
§ Therac-25:	a	computer-controlled	radiation	therapy	machine
§ Minimal	software	testing
§ Race	condition	in	the	code	went	undetected	
§ Unlucky	patients	were	struck	with	approximately	100	times	

the	intended	dose	of	radiation,	~	15,000	rads
§ Error	code	indicated	that	no	dose	of	radiation	was	given,	so	

operator	instructed	machine	to	proceed
§ Documentation	gave	no	indication	that	the	frequent	malfunctions	of	

the	machine	could	place	a	patient	at	risk
§ See	also:	why	documentation	is	important

§ Recalled	after	six	accidents	resulting	in	death	and	serious	
injuries

6

An	Investigation	of	the	Therac-25	Accidents	(Leveson &	Turner)

Granularity	of	tests

§ Unit	tests
§ Test	individual	functions	or	classes
§ Build	and	run	fast
§ Localize	errors

§ Integration	tests
§ Test	interaction	of	larger	pieces	of	software

§ System-level	tests
§ Test	the	full	software	system	at	the	user	interaction	level

7

Types	of	tests

§ Verification	tests
§ Does	the	code	implement	the	intended	algorithm	correctly?
§ Check	for	specific	mathematical	properties

§ Acceptance	tests
§ Assert	acceptable	functioning	for	a	specific	customer
§ Generally	at	the	system-level

§ Regression	(no-change)	tests
§ Compare	current	observable	output	to	a	gold	standard
§ Must	independently	verify	that	the	gold	standard	is	correct

§ Performance	tests
§ Focus	on	the	runtime	and	resource	utilization
§ Nothing	to	do	with	correctness

§ Installation	tests
§ Verify	that	the	configure-make-install	is	working	as	expected

8

CSE	testing	challenges

§ Floating	point	issues
§ Different	results

§ On	different	platforms
§ On	different	runs	(due	to	multi-processor	computation)

§ Ill-conditioning	can	magnify	these	small	differences
§ Final	solution	may	be	different
§ Number	of	iterations	may	be	different

§ Performing	a	diff	is	bad

§ Non-unique	solutions

9

CSE	testing	challenges

§ Scalability	testing
§ Difficult	to	get	accurate	data	on	a	shared	machine
§ Getting	access	to	many	processors	on	a	parallel	machine	is	expensive

§ Many	supercomputing	facilities	discourage	routine	scalability	testing
§ Large	jobs	may	sit	in	the	queue	for	quite	some	time

§ How	do	you	scale	a	problem	for	weak	scaling	studies?
§ A	more	refined	problem	may	not	have	the	same	condition	number

10

Testing	tips

§ Ideal	time	to	build	a	test	suite	is	during	development
§ Ensures	that	new	code	does	not	break	existing	functionality

§ Failing	tests	should	help	you	identify	what	part	of	the	code	
needs	to	be	fixed

§ Software	should	be	tested	regularly
§ Develop	a	consistent	policy	on	dealing	with	failed	tests

§ Use	an	issue	tracking	system
§ Add	a	regression	test	after	the	issue	is	fixed

§ Run	a	regression	test	suite	when	checking	in	new	code
§ Avoid	zero-diffing	tests	against	gold	standard	output

§ spiff	(https://github.com/dontcallmedom/spiff)

11

How	is	Trilinos tested?

§ Trilinos has	1500	tests	between	its	66	packages
§ Developers	are	strongly	advised	to	run	a	checkin test	script	

when	committing
§ Detects	which	packages	were	modified	by	your	commits
§ Determines	which	packages	you	potentially	broke
§ Configures,	builds,	and	tests	those	packages

§ On	success,	pushes	to	repo
§ On	failure,	reports	why	it	failed

§ Useful	for	ensuring	your	changes	don’t	break	another	package
§ May	take	a	while,	but	many	people	run	it	overnight

§ Automated	testing	on	a	variety	of	different	platforms

12

Why	do	we	do	automated	testing	if	
everyone	uses	the	checkin script?
§ May	test	a	different	set	of	packages
§ May	test	different	environments

§ Do	your	changes	work	with	Intel	compilers	as	well	as	GNU?
§ Do	your	changes	work	on	a	mac?
§ Do	your	changes	work	with	CUDA?

§ Identifies	a	small	set	of	commits	that	could	have	broken	a	
build	or	test
§ Average	12	commits	per	day
§ Identifies	the	person	who	knows	how	to	un-break	it

§ Bugs	are	easier	to	fix	if	caught	early

13

Checkin test	script	examples

§ Example	1:	a	harmless	change	to	a	comment
§ Example	2:	breaking	the	build
§ Example	3:	breaking	some	tests

14

Example	1:	a	harmless	change

15

Example	1:	a	harmless	change

16

Example	1:	a	harmless	change

17

Note that the checkin script
correctly identified what

was modified.

Example	1:	a	harmless	change

18

Configure, build, and test
passed for MPI_DEBUG

Example	1:	a	harmless	change

19

We are ready to push
because all tests passed

Example	2:	broken	build

20

Missing semicolon at the
end of the class. This will

break the build

Example	2:	broken	build

21

The checkin script detected
that I broke the build

Example	2:	broken	build

22

Checkin script also creates
a log file with the error

Example	3:	broken	tests

23

Added a logic error to the
code.

Example	3:	broken	tests

24

The checkin script detected
that I broke several tests

Example	3:	broken	tests

25

The log file tells us which
tests were broken

Trilinos automated	testing

26

testing.sandia.gov/cdash/viewSubProjects.php?project=Trilinos

Trilinos automated	testing

27

Trilinos automated	testing

28

§ Several	Amesos2	(direct	solver)	tests	are	broken.

§ Are	any	of	its	dependencies	broken?
§ Yes,	there	is	a	broken	Epetra (basic	linear	algebra)	test
§ Maybe	this	broke	Amesos2

Trilinos automated	testing

29

§ Which	tests	were	broken	in	Amesos2?

Trilinos automated	testing

§ If	you	may	have	broken	something,	you	will	get	an	email	
about	it

30

How	do	you	motivate	somebody	to	write	all	
those	tests?

§ Tests	protect	YOU	from	other	people	breaking	your	work
§ If	someone	else’s	changes	break	your	code,	they	are	responsible	for	

fixing	it

§ You	may	already	have	some
§ Drivers	for	generating	conference	or	paper	results

§ Just	reduce	the	problem	size
§ User	submitted	bugs

§ Ask	for	a	file	that	reproduces	the	issue
§ These	make	great	regression	tests

§ Examples
§ Add	a	pass/fail	condition	and	you	have	a	test

31

How	do	I	determine	what	other	tests	I	need?

§ Code	coverage	tools
§ Expose	parts	of	the	code	that	aren’t	being	tested
§ gcov

§ standard	utility	with	the	GNU	compiler	collection	suite
§ counts	the	number	of	times	each	statement	is	executed

§ lcov
§ a	graphical	front-end	for	gcov
§ available	at	http://ltp.sourceforge.net/coverage/lcov.php

32

Similar	tools	exist	for	mac	and	windows

How	to	use	lcov

§ Compile	and	link	your	code	with	--coverage	flag
§ It’s	a	good	idea	to	disable	optimization

§ Run	your	test	suite
§ Collect	coverage	data	using	lcov
§ Generate	html	output	using	genhtml

33

A	simple	example

bool isEven(int x)
{
if(x%2 == 0)

return true;

return false;

}

#include<iostream>

#include “isEven.hpp”

int main()

{
int num = 8;

if(isEven(num))

std::cout << num << “ is an even number.\nTEST PASSED”;

else

std::cout << num << “ is an odd number.\nTEST FAILED”;

return 0;

}
34

A	simple	example

§ Compile	and	link	with	--coverage	flag
§ g++ --coverage evenExample.cpp -o
evenExample

§ This	creates	a	file	called	evenExample.gcno
§ Run	the	test

§ ./evenExample
§ This	creates	a	file	called	evenExample.gcda

§ Collect	coverage	data	using	lcov
§ lcov --capture --directory . --output-file
evenExample.info

§ This	creates	evenExample.info
§ Generate	html	output	using	genhtml

§ genhtml evenExample.info --output-directory
evenHTML

§ This	generates	html	files	in	the	directory	evenHTML

35

A	simple	example

36

This is the file we’re testing

A	simple	example

37

We never tested this line of code
(which activates when x is odd)

Let’s	add	another	test

bool isEven(int x)
{
if(x%2 == 0)

return true;

return false;

}

#include<iostream>

#include “isEven.hpp”

int main()

{
int num = 7;

if(isEven(num))

std::cout << num << “ is an even number.\nTEST FAILED”;

else

std::cout << num << “ is an odd number.\nTEST PASSED”;

return 0;

}
38

A	simple	example

§ Compile	and	link	with	--coverage	flag
§ g++ --coverage oddExample.cpp -o oddExample
§ This	creates	a	file	called	oddExample.gcno

§ Run	the	test
§ ./oddExample
§ This	creates	a	file	called	oddExample.gcda

§ Collect	coverage	data	for	BOTH	TESTS	using	lcov
§ lcov --capture --directory . --output-file
twoExamples.info

§ This	creates	twoExamples.info
§ Generate	html	output	using	genhtml

§ genhtml twoExamples.info --output-directory
totalHTML

§ This	generates	html	files	in	the	directory	totalHTML

39

A	simple	example

40

This is the file we’re testing

A	simple	example

41

We tested every line of this function

A	real	example	- xSDKTrilinos

§ Part	of	the	Trilinos library,	developed	at	SNL	as	part	of	the	
IDEAS	project

§ Contains	the	interfaces	between	Trilinos,	PETSc,	and	hypre
§ Available	at	https://github.com/trilinos/xSDKTrilinos
§ Ten	automated	tests	are	run	nightly

§ Six	are	actually	examples	that	were	converted	into	tests

§ Did	we	leave	anything	out?

42

A	real	example	- xSDKTrilinos

§ Step	1:	Modify	our	CMake configuration	file	to	use	the	
--coverage	flag	to	compile	and	link
§ -D	CMAKE_CXX_FLAGS:STRING=“--coverage”
§ -D	CMAKE_C_FLAGS:STRING=“--coverage”
§ -D	CMAKE_EXE_LINKER_FLAGS:STRING=“--coverage”

43

A	real	example	- xSDKTrilinos

§ Build	Trilinos (including	xSDKTrilinos)
§ ./do-configure

§ make -j
§ This	will	create	a	whole	bunch	of	.gcno files
§ This	will	also	build	the	xSDKTrilinos tests	because	the	

configure	file	included
§ -D Trilinos_ENABLE_TESTS:BOOL=ON

§ -D Trilinos_ENABLE_EXAMPLES:BOOL=ON

§ -D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES=ON

44

A	real	example	- xSDKTrilinos

§ Run	the	tests	using	ctest
§ Note	that	this	is	not	prohibitively	slow

45

A	real	example	- xSDKTrilinos

§ All	tests	passed.		Yay!
§ This	also	created	a	bunch	of	.gcda files	

46

A	real	example	- xSDKTrilinos

§ Collect	coverage	data	for	the	tests	using	lcov
§ lcov --capture --directory . --output-file
xSDKTrilinos.info

§ This	creates	xSDKTrilinos.info
§ lcov processes	634	gcda files	in	this	step,	so	this	does	take	a	few	

minutes

47

A	real	example	- xSDKTrilinos

§ Generate	html	output	using	genhtml
§ genhtml xSDKTrilinos.info --output-directory
xSDKTrilinos

§ This	generates	html	files	in	the	directory	xSDKTrilinos
§ This	step	takes	a	few	minutes	too

48

A	real	example	- xSDKTrilinos

49

Let’s take a look at the solver interface.

A	real	example	- xSDKTrilinos

50

A	real	example	- xSDKTrilinos

51

Oops. I never tested the RIGHT preconditioning branch.

Code	coverage	disclaimer

52

100% code coverage does not ensure bug-free
code

VERIFICATION

53

Why	is	verification	a	separate	topic?

§ Code	verification	uses tests	
§ It	is	much	more	than	a	collection	of	tests
§ It	is	the	holistic	process	through	which	you	ensure	that	

§ your	implementation	shows	expected	behavior,
§ your	implementation	is	consistent	with	your	model,
§ science	you	are	trying	to	do	with	the	code	can	be	done.

54

Many	stages	and	types	of	verification

§ During	initial	code	development
§ accuracy	and	stability	during	development	of	the	algorithm
§ matching	the	algorithm	to	the	model
§ interoperability	of	algorithms

§ In	later	stages
§ Ongoing	maintenance	
§ while	adding	new	major	capabilities	or	modifying	existing	capabilities	
§ Preparing	for	production

§ If	refactoring
§ Ensuring	that	behavior	remains	consistent	and	expected

§ All	stages	have	a	mix	of	automation	and	human-intervention

55

Development	Phase

§ Development	of	tests	and	diagnostics	goes	hand-in-hand	with	
code	development
§ Non-trivial	to	devise	good	tests,	but	extremely	important
§ A	code	is	only	as	good	as	its	tests
§ Compare	against	simpler	analytical	or	semi-analytical	solutions

§ They	can	also	form	a	basis	for	unit	testing	

§ In	addition	to	testing	for	“correct”	behavior,	also	test	for	
stability,	convergence,	or	other	such	desirable	characteristics

§ Many	of	these	tests	will	be	worth	preserving	for	the	
maintenance	phase

56

Mature	Phase

§ A	subset	of	tests	developed	during	the	development	phase	
become	part	of	the	regular	testing	regime
§ Focus	on	both	code	and	functionality	coverage

§ Code	coverage	by	itself	does	not	guarantee	correctness	if	the	many	
moving	parts	also	do	not	interoperate	well

§ Tweak	in	one	part	may	result	in	correct	behavior	of	individual	parts,	but	
not	when	they	work	together

§ When	new	features	or	capabilities	are	added	to	the	code	-
§ Some	tests	will	have	been	generated	during	development
§ The	capability	should	have	been	verified	for	interoperability	with	

existing	code
§ A	subset	of	all	those	tests	should	get	included	in	the	test-suite

§ Following	the	same	principles	of	code	and	functionality	coverage

57

Other	Phases

§ Preparing	for	simulations
§ Targeted	testing	of	production	configuration
§ Performance	testing	and	tuning
§ More	on	this	tomorrow…

§ Refactoring
§ Possible	expansion	of	test-suite
§ Numerical	drift	in	results
§ Ramp-on	planning
§ More	on	this	tomorrow…

58

Selecting	Tests

§ Selection	of	tests	is	non-trivial
§ Tools	exist	for	code	coverage
§ Not	for	interoperability	coverage

§ One	approach	:	use	a	matrix	
§ Put	infrastructure	components	in	rows,	science	components	in	

columns
§ List	interoperability	constraints,	and	pick	tests

§ Tests	for	ongoing	productions
§ Tests	known	to	be	sensitive	to	perturbations
§ Least	complex	tests	that	can	cover	the	empty	spots
§ Least	complex	tests	that	meet	the	missing	interoperability	constraints

59

Dubey et al, Ongoing verification of a multiphysics community code: FLASH,
Software: Practice and Experience Vol 45(2) pp. 233-244

Example	from	FLASH

§ A	test	on	the	same	row	indicates	
interoperability	between	corresponding	
physics	

§ Similar	logic	would	apply	to	tests	on	the	
same	column	for	infrastructure

§ More	goes	on,	but	this	is	the	primary	
methodology

60

Hydro EOS Gravity Burn Particles
AMR CL CL CL CL
UG SV SV SV
Multigrid WD WD WD WD
FFT PT

Tests Symbol
Sedov SV
Cellular CL
Poisson PT
White	Dwarf WD

You can pick rows and columns in many different ways

Hands	on	session	tonight

§ A	small	linear	algebra	package	called	Morpheus
§ Contains	matrix	and	vector	classes	and	functions

§ We	will…
§ Examine	its	Doxygen documentation
§ Determine	the	code	coverage	using	gcov
§ Discuss	how	to	improve	its	test	suite

61

