"A Vision for Exascale: Simulation, Data and Learning"

Rick Stevens Argonne National Laboratory The University of Chicago

Crescat scientia; vita excolatur

Data-Driven Science Examples

For many problems there is a deep coupling of observation (measurement) and computation (simulation)

Cosmology: The study of the universe as a dynamical system

Images from Salman Habib et al. (HEP, MCS, etc.) and Ray Osborne et al. (MSD, APS, etc.)

How Many Projects?

Artificial Intelligence Takes Off at Google

Number of software projects within Google that uses a key AI technology, called Deep Learning.

Source: Google

Note: 2015 data does not incorporate data from Q4

By 2020, the market for machine learning will reach \$40 billion, according to market research firm IDC.

Deep Learning market is projected to be ~\$58 by 2020

L ISC

AI AND MORE ON IA

ntel

10 0

Dr. Rajeeb Hazra Vice President, Data Center Group General Manager, Enterprise and Government Group

1

High Performance

Exhibit 23: Monster.com Postings by Company, Search Terms: Artificial Intelligence, Machine Learning, and Deep Learning

Source: monster.com

Exhibit 8: Artificial Intelligence Industry Forecasts (\$B)

Markets are Developing at Different Rates ~2020

- HPC (Simulation) → ~\$30B @ 5.45%
- Data Analysis → ~\$200B @ 11.7%
- Deep Learning \rightarrow ~\$5B @ 65%
- DL > HPC in 2024
- DL > DA in 2030

Big Picture

- Mix of applications is changing
- HPC "Simulation", "Big" Data Analytics, Machine Learning "AI"
- Many projects are combining all three modalities
 - Cancer
 - Cosmology
 - Materials Design
 - Climate
 - Drug Design

Deep Learning in Climate Science

- Statistical Downscaling
- Subgrid Scale Physics
- Direct Estimate of Climate Statistics
- Ensemble Selection
- Dipole/Antipode Detection

w		Chinese Sci	ence Bulletin		
,			Vol.55 No.34: 3853-3863 10.1007/s11434-010-4183-3		
ication of artifici	ial neural netv	vorks in global climate ch	ange		
cological researc	ch: An overvi				
f Life Science and Tec					
f Environment Scienco (QC) H3C 3P8, Cana fay 7, 2010; accepted		Neural Networ	k Modeling	in Climate 1 🤈	
t employ artificial r end of computer tee tt of increasing con d atmospheric ciric require typically hit ience. ANNs, howe voring the effects o better choice than n global climate chan tuations in which rr II be widely adopted		Change Studie Antonello Pasini		12	
ange, ecology, artil	12.1 Introdu	uction	thoroughly applie	d. Then, considerations about the	
La ZL Pag CL SA Krhal 2006 355 355 4 years, global cli ion for governmo lated research in and remarkable limitac change is y uente IE Niño and an anomalies. The by approximate machine change is y uente IE Niño and the standard sector of the sector of the sector of the 9% since the pre-i s so 700 µmd mol	only in scientific but also in wide policy-makers. In whatever appears crucial it the climate syst thermore, once ' sents the only c future behavior - In this frame neural networks fulness in mode system. Thus, th discuss the appl to climate at least to	nate change is a "hot topic", not analyses and papers by researchers, r discussions among economists and area you are, the role of modeling or order to understand the behavior of em and to grasp its complexity. Fur- validated on the past, a model repre- hance to make projections about the of the climate system. work: AI methods (more specifically, NNs) have recently shown their use- ing studies dealing with the climate ea aim of this paper is to review and leations of neural network modeling	application of dynamical modeling to a complex system like (immate will lead us to recognize some weaknesses in the simulated reconstruction of the sys- tem itself. In particular, as we will see, this can lead us to criticize this kind of modeling (when applied to complex systems) and to not rely on its results. In this unsatisfactory situation, a more phenomeno- logical approach to the analysis of climate behavior can be applied. In Section 12.3 we will initially show how some modelers used neural network modeling for studying and forcesting the occurrence of specific phenomena, like El Niño. Then, in what follows, a comprehensive analysis of the influence of natural and anthropogenic forcings on global and regional temper- ature behaviors will be performed by NNs, sheding		
China Press and Spring	"complen via Globa	Theor Appl Climatol (2011) 103:103-107 DOI 10.1007/s00704-010-0285-8			
	stantial na the secon modeling of the clin driven wa Thus, ies about activity tl papers dt	ORIGINAL PAPER Detecting human inf networks based Gran A. Attanasio - U. Triacca			
ng adhr and page Drug Press and Bars	Antonello F CNR – Inst 29.300, I-0 Phone: + 35 email: pasii	Received: 17 August 2009 / Accepted: 30 M © Springer-Verlag 2010	March 2010 / Published or	nline: 25 April 2010	
	S. E. Haupt © Springer	Abstract In this note we observe linear approach to Granger causal CO ₂ and global temperature is that low power. The probability to reject of non-causability, based or linear Granger causality, based or of significant undirectional Gran CO ₂ to global temperature. Introduction There is little doubt that much of t	1969) from radiative forcing due to CO ₂ concentration to global surface temperature anomalies. In othe terms, past observations of radiative forcing due to CO ₂ do not significantly improve the predictability of current temperature. In this note we show that this current temperature. In this note we show that this of the temperature is the study of		
1	ing and motion drive an interest in about activity of papers do Anometici	undergoing a pronounced varmings of of the twentistic entury. An imp Has this global warming been pri ural fluctuations or anthropogenic i a number of man-made 'greenhouse' sorb and emit thermal radiation, su and methane, CO, is widely believ "greenhouse" gas which has the gr the global climate. Consequently, it tween global temperature and CO ₂ been the subject of intense resear decades. In particular Triacea (see Triac there is no detectable Granger cau	significant undirectional non-linear Granger causalit from CO ₂ to global temperature. The paper is organized as follows: A short review or neural networks considering their usage in this wor is given in the next section. The results of non-linea Granger causality analysia are presented in Section Some concluding remarks are given in Section 4. 2 Methodology and data We are interested to test the null hypothesis that CO concentration does not Granger cause global surfat temperature. The linear framework is to simple 1		
		A. Attanasio - U. Triacca (E3) Università di L'Aquila, L'Aquila, Italy e-mail: umbetto:triacaffec.univa,i A. Attanasio e-mail: alessandro_attanasio@yahoo.it	., chinger	eatch the complex non-linear behavior of the temper- ture with respect CO ₂ concentration. To overcome th problem we use a non-linear out-of-sample analysis the dynamic relationship between these variables base on artificial neural network models. Climate change studies represent a field in whit- neural networks can be applied successfully (see Pasi	

Revie Ecology

Appl and e

ZHAC

Fields th developm ers in lig events, a rameters ual exper search fa remain a study of true for s ANNs w

of atter large. F ducted Global ing, fre circulat

increase and is p tion, glo nearly 3

Automatic Discovery of Dipoles

- Detection of Global Dipole Structures
 - Most known dipoles discovered
 - Some `new' dipoles: Previously unknown phenomenon?
 - A new dipole near Australia [Liess et al., J Clim'14]

Deep Learning in Genomics

Predicting Microbial Phenotypes

Classification of Tumors

Using deep learning to enhance cancer diagnosis and classification, ICML2013

High Throughput Drug Screening

Figure 1: Hierarchical nature of fingerprint features: by combining the ECFP features we can build reactive centers. By pooling specific reactive centers together we obtain a pharmacophore that encodes a specific pharmacological effect.

WILEY-VCH

Jure Zupan, Johann Gasteiger Neural Networks in Chemistry and Drug Design

Second Edition

Deep Learning as an Opportunity in Virtual Screening, NIPS2014

Deep Networks Screen Drugs

Table 2: Hyperparameters considered for the Neu	ural Net
---	----------

Hyperparameter	Considered values
Number of Hidden Units	{1024, 4096, 16356, 8192-8192}
Learning Rate	{10, 20, 30, 50}
Dropout [30]	{no, yes (50% Hidden Dropout, 20% Input Dropout)}

Method	AUC	p-value
Deep network	0.830	
SVM	0.816	1.0e-07
BKD	0.803	1.9e-67
Logistic Regression	0.796	6.0e-53
k-NN	0.775	2.5e-142
Pipeline Pilot Bayesian Classifier	0.755	5.4e-116
Parzen-Rosenblatt	0.730	1.8e-153
SEA	0.699	1.8e-173

Deep Learning and Drug Discovery

AI company/ location	Tashnalagu	Announced partner/ location	Indication(s)	Deal date	
	Technology				
Atomwise	Deep-learning screening from molecular structure data	Merck	Malaria	2015	
BenevolentAl	Deep-learning and natural language processing of research literature	Janssen Pharmaceutica (Johnson & Johnson), Beerse, Belgium	Multiple	November 8, 2016	
Berg,Deep-learning screeningFramingham,of biomarkers from patientMassachusettsdata		None	Multiple	N/A	
Exscientia Bispecific compounds via Bayesian models of ligand activity from drug discovery data		Sanofi	Metabolic diseases	May 9, 2017	
GNS Healthcare	Bayesian probabilistic inference for investigating efficacy	Genentech	Oncology	June 19, 2017	
Insilico Medicine	Deep-learning screening from drug and disease databases	None	Age-related diseases	N/A	
Numerate Deep learning from pheno- typic data		Takeda	Oncology, gastro- enterology and central nervous system disorders	June 12, 2017	
Recursion, Salt Lake City, Utah	Cellular phenotyping via image analysis	Sanofi	Rare genetic diseases	April 25, 2016	
voXAR, Palo Deep-learning screening Ito, California from literature and assay data		Santen Pharmaceuticals, Osaka, Japan	Glaucoma	February 23, 2017	

N/A, none announced. Source: companies' websites.

Deep Learning In Disease Prediction

Learning Climate Disease Environment Associations

Big Data Opportunities for Global Infectious Disease Surveillance Simon I. Hay, Dylan B. George, Catherine L. Moyes, John S. Brownstein

Neural Networks Materials science

- **Estimate Materials Properties from** Composition Parameters
- **Estimate Processing** Parameters for **Synthesis**
- **Materials Genome**

On the use of a neural network to characterize the plasma etching of SiON thin films B. KIM Department of Electronic Engineering, Bio Engineering Research Center, Sejong University, 98, Goonja-Dong, Kwangjin-Gu, Seoul, 143–747, Korea E-mail: kbwhan@seiona.ac.kr B. T. LEE Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Ku, Kwangju-Si, 500–757, Korea K. K. LEE Division of Micromechatronics, Korea Institute of Industrial Technology, Chunan, South Korea Using a generalized regression neural network (GRNN), plasma etching of oxynitride thin films was modeled. The et experiment. A genetic alg optimizing multiparameter 1 Mater Sc the constructed etch rate prediction performance. 3 DOI 10.1007/s10853-011-5868mechanisms while validat and chemical effects, both source power affected sig or C₂F₆ flow rate. For pres A neural network approach for the prediction of the refractive chemical etching. The con chemical etching or polyn index based on experimental data Alex Alexandridis · Eva Chondrodima 1 Introduction Konstantinos Moutzouris · Dimos Triantis Introduction In manufacturing optical devic (SiON) film is a promising m pability to achieve a higher ref between the core and cladding It tures attractive for manufactur Received: 26 May 2011/Accepted: 10 August 2011 © Springer Science+Business Media, LLC 2011 ices include low density of surf tric permittivity, and controllab terms of [O]/[N] ratio [4]. Mos on studying deposition character fractive index or electrical pro-Abstract This article presents a systematic approach for fundamental physical property of substance related not correlating the refractive index of different material kinds only to its optical, but also electrical, magnetic, thermal devices. Few studies have be and forms with experimentally measured inputs like wavelength, temperature, and concentration. The correlaonly to its optical, but also electrical, magnetic, thermai, and mechanical properties [1-4]. In general, *n* depends on light wavelength and temperature, effects commonly referred to as chromatic and temperature dispersion, devices. Few studies have been characteristics of SiON films. Pl means to form fine patterns in ma devices. In plasma etching, man are typically included and their siderably affect etching character tion is accomplished using neural network models, which can deal effectively with the nonlinear nature of the respectively. However, in many situations there exist can be determined with the monitorial matter of the problem without requiring a predefined form of equation, while taking into account all the parameters affecting the refractive index. The proposed methodology employs the powerful radial basi numerous additional parameters influencing the refractive index, ranging from doping level and composition in amorphous materials and semiconductor or dielectric experimental budget, it is not p rameter effects under various p limitation can be overcome by puter prediction model. Despit the neural network puter prediction model. Despit on plasma dynamics, first prin ject to many assumptions, resu between the predictions and actu other alternative is to use a neu in conjunction with a statistica using an innovative increased prediction Bull. Mater. Sci., Vol. 36, No. 7, December 2013, pp. 1307-1313. (c) Indian Academy of Sciences to two cases, invo index of semicondus water mixture and th predictions are accur of decimal places as 0957-4522 © 2005 Springer Scien Quantitative structure-property relationships of electroluminescent with other neural ne materials: Artificial neural networks and support vector machines empirical forms like superiority of the pa to predict electroluminescence of organic molecules Introduction ALANA FERNANDES GOLIN and RICARDO STEFANI* Laboratório de Estudos de Materiais (LEMAT), Instituto de Ciências Exatas e da Terra, Av. Govern 6390, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, 78600-00 Barra d The refractive index of the velocity of light light in the consider MS received 13 February 2012: revised 13 December 2012 Abstract. Electroluminscent compounds are extensively used as materials for application in OLED. In order to understand the chemical features related to electroluminscence of such compounds, QSPR study based on neu-ral network model and support vector machine was beeloped on a series of organic compounds commonly used in OLED development. Radial-basis function-SVM model was able to predict the electroluminscence with good A. Alexandridis (🖾) - E D. Triantis Laboratory of Electric P of Electronics, Technole Agiou Spiridonos, 12211 e-mail: alexx@teiath.gr accuracy (R = 0.90). Moreover, RMSE of support vector machine model is approximately half of RMSE observed for artificial neural networks model, which is significant from the point of view of model precision, as the dataset is very small. Thus, support vector machine is a good method to build QSPR models to predict the electrolumi-nescence of materials when applied to small datasets. It was observed that descriptors related to chemical bonding Published online: 24 Au and electronic structure are highly correlated with electroluminescence properties. The obtained results can hel in understating the structural features related to the electroluminescence, and supporting the development of new Keywords. OSPR: neural networks; SVM: electroluminescence; OLED: organic materi 1. Introduction Electroluminescent materials (EL) are among the most promising modern materials with a wide range of techno-

JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 16 (2005) 673-67

logy applications (Xue and Luo 2003; So et al 2009). One of the most promising EL applications, is the design and fabrication of organic light-emitting diodes (OLEDs) (Akcelrud 2003). OLEDs have demonstrated manufacturing and market notential in small and medium device applications. Thus OLED can become one of the mainstream display technolo-gies, competing directly with LCD (liquid crystal display) technology (Wen et al 2005). For high-quality OLED displays, highly efficient and low-cost electroluminescent materials are of great importance, since, to gain market share over LCD displays, OLED devices need to be efficient and to have low prices to the final costumer. Many pyran-containing, polyaromatic hydrocarbons (PAH) and porphyrin type compounds are used in OLED fabrication and these compounds may be polymeric itself or used as a dopant to allow thinfilms to become electroluminescent (Mi *et al* 2002). Understanding of the physical and chemical features related to the electroluminescence of such materials, can help in the to the electronuminescence of such materials, can help in the design and development of new chemical compounds with improved electroluminescence features. In order to develop new organic compounds that can be used in OLED applications, computational methods, such as quantitative-structure

properties relationships (QSPR) have emerged as a fast and reliable method to predict and study physical-chemical

properties of materials. Quantitative-structure properties relationships (OSPR) models can be used to predict with good accuracy, key physical and chemical features from chemical compounds. QSPR methods are based on the existing correlation between groups of mathematical values (descriptors), representing certain features of a chemical structure and a target chemi-cal property. The advantage of QSPR model is that it is based solely on the knowledge of chemical structure and it requires no additional experimental data and once the co rrelation is established, it can be used for the prediction of properties of new compounds that have not been prepared (Yu et al 2008). Thus, QSPR models can be used to assist material design, since one can predict the properties of a ce tain material before its synthesis. As the development of new can material before its synthesis. As the development of new materials involves extensive experimental work, the ability to predict the properties of materials is of great value, because, it provides a guide to the development process and speeds up to be development process and speeds up the development cycle, allowing time and reagent saving (Yu et al 2008). Thus, many research groups have been develop-ing QSPR models in order to assist material discovery and design (Morril and Byrd 2008; Taherpour 2009; Fourches et al 2010; Yu 2010). The advantage of using QSPR mo dels over traditional computational methods is that descrip tion calculation is quite easy and requires little computatio

*Author for correspondence (rstefani@ufmt.br)

1307

Searching For Lensed Galaxies

galaxy

galaxy cluster

lensed galaxy images

distorted light-rays

Earth

Large Synoptic Survey Telescope

15 TB/Night Use CNN to find Gravitational Lenses

Deep Learning is becoming a major element of scientific computing applications

- Across the DOE lab system hundreds of examples are emerging
 - From fusion energy to precision medicine
 - Materials design
 - Fluid dynamics
 - Genomics
 - Structural engineering
 - Intelligent sensing
 - Etc.

WE ESTIMATE BY 2021 ONE THIRD OF THE SUPERCOMPUTING JOBS ON OUR MACHINES WILL BE MACHINE LEARNING APPLICATIONS

SHOULD WE CONSIDER ARCHITECTURES THAT ARE OPTIMIZED FOR THIS TYPE OF WORK? HOW TO LEVERAGE EXASCALE?

The New HPC "Paradigm"

The New HPC "Paradigm"

The Critical Connections I

- Embedding Simulation into Deep Learning
 - Leveraging simulation to provide "hints" via the Teacher-Student paradigm for DNN
 - DNN invokes "Simulation Training" to augment training data or to provide supervised "labels" for generally unlabeled data
 - Simulations could be invoked millions of times during training runs
 - Training rate limited by simulation rates
 - Ex. Cancer Drug Resistance

Hybrid Models in Cancer

Figure 1. In two DREAM challenges, high throughput data characterizing cancer cells are used to build predictive models. Mechanistic models provide insight into the underlying biology, but do not take full advantage of the information within the data to achieve high performance. Machine learning methods are associative and extract maximum predictive value from the data, but do not always provide insight about mechanism. The future may bring hybrid models that combine the best of both approaches.

Predicting Cancer Drug Response: Advancing the DREAM

Russ B. Altman

Summary: The DREAM challenge is a community effort to assess current capabilities in systems biology. Two

ENERGY

NATIONAL CANCER INSTITUTE

Teacher-Student Network Model

(a) Standard: student network learns from teacher guidance (soft loss) and ground truth (hard loss).

Teacher-Student Network Model

(a) Standard: student network learns from teacher guidance (soft loss) and ground truth (hard loss).

Integrating ML and Simulation

Figure 3: Overview of how data at all steps will be integrated using machine learning. The orange square boxes represent the three types of data in this project: kinases, drugs, and their interactions at various levels. The green rounded boxes denote the variety of MD simulations for free energy calculation. Each blue arrow represents an ML model; they combine in a joint predictive model that integrates all datasets.

The Critical Connections II

- Embedding Machine Learning into Simulations
 - Replacing explicit first principles models with learned functions
 - Faster, Lower Power, Lower Accuracy(?)
 - Functions in simulations accessing ML models at high throughput
 - On node invocation of dozens or hundreds of models millions of times per second?
 - Ex. Nowcasting in Weather

Algorithm Approximation

Benchmark Task		Main computational kernel	Category	ANN alternative			
blackscholes	Option pricing	Differential equations	Approximation	Approximation using MLP ^a			
bodytrack	Track 3D pose of body	Annealed particle filter	Classification	Feature extraction			
	in video			and recognition with CNN ^b [11]			
canneal	Chip routing	Simulated annealing	Optimization	Optimization using HNN ^c			
dedup	File compression	Hashing and compression	Classification	Hashing and compression			
				using an unsupervised neural network			
facesim	Modeling face movements	Image synthesis	Approximation	Interpolation using MLP (partial) [12]			
ferret	Content (image) similarity	Feature extraction,	Clustering/Classification	NN-based Gabor filters			
		indexing and hashing		and SOM for comparison ^d			
fluidanimate	Fluid simulation	Navier-Stokes equations	Approximation	CeNN ^e for solving			
				Navier Stokes equation [13]			
freqmine	Frequent itemset miner	Database requests	Classification	Learning features correlations [14]			
				using MLP			
streamcluster	Online clustering	Distance-based clustering	Clustering	Online clustering using SOM			
swaptions	Option pricing	Simulated annealing	Approximation	Option pricing approximation			
				using MLP			
vips	Image processing library	Affine transformations	Raw NN operation	Convolutions and filtering			
		and convolutions		using CNNs as operators (no learning) [15]			
x264	Video encoding	H264 algorithm	Classification	MLP to learn 2D transforms			
				in NGVC, H265 [16]			

Neural Acceleration for General-Purpose Approximate Programs Hadi Esmaeilzadeh Adrian Sampson Luis Ceze Doug Burger* University of Washington *Microsoft Research

Replacing Imperative Code with NN Computed Approximations

Figure 1: The Parrot transformation at a glance: from annotated code to accelerated execution on an NPU-augmented core.

Neural Acceleration for General-Purpose Approximate Programs

Hadi Esmaeilzadeh Adrian Sampson Luis Ceze Doug Burger* University of Washington *Microsoft Research

2.3x Speedup, 3x Power Reduction, ~7% Error

Table 1: The benchmarks evaluated, characterization of each transformed function, 0 data, and the result of the Parrot transformation.

	Description	Туре	Evaluation Input Set	# of Function Calls	# of Loops	# of ifs/ elses	# of x86-64 Instructions	Training Input Set	Neural Network Topology	NN MSE	Error Motri	Error
fft	Radix-2 Cooley-Tukey fast Fourier	Signal Processing	2048 Random Floating Point Numbers	2	0	0	34	32768 Random Floating Point Numbers	1 -> 4 -> 4 -> 2	0.00002	Averag Relativ Error	
inversek2j	Inverse kinematics for 2-joint arm	Robotics	10000 (x,y) Random Coordinates	4	0	0	100	10000 (x,y) Random Coordinates	2 -> 8 -> 2	0.00563	Averag Relativ Error	
jmeint	Triangle intersection detection	3D Gaming	10000 Random Pairs of 3D Triangle Coordinates	32	0	23	1,079	100000 Random Pairs of 3D Triangle Coordinates	18 -> 32 -> 8 -> 2	0.00530	Mis Rat	7.32%
jpeg	JPEG encoding	Compression	220x200-Pixel Color Image	3	4	0	1,257	Three 512x512-Pixel Color Images	64 -> 16 -> 64	0.00890	lma <mark>g</mark> e Diff	9.56%
kmeans	K-means clustering	Machine Learning	220x200-Pixel Color Image	1	0	0	26	50000 Pairs of Random (r, g, b) Values	6 -> 8 -> 4 -> 1	0.00169	lmage Diff	6.18%
sobel	Sobel edge detector	Image Processing	220x200-Pixel Color Image	3	2	1	88	One 512x512-Pixel Color Image	9 -> 8 -> 1	0.00234	lmage Diff	3.44%

Neural Acceleration for General-Purpose Approximate Programs

Hadi Esmaeilzadeh Adrian Sampson Luis Ceze Doug Burger* University of Washington *Microsoft Research
Launched in November 2015

Joint Design of Advanced Computing Solutions for Cancer

DOE-NCI partnership to advance cancer research and high performance computing in the U.S.

DOE Secretary of Energy

Director of the National Cancer Institute

DOE Objective: Dirve Integration of Simulation, Data Analytics and Machine Learning

Exascale Node Concept Space

Abstract Machine Models and Proxy Architectures for Exascale Computing Rev 1.1 Sandia National Laboratory and Lawrence Berkeley National Laboratory Leverage Resources on the Die, in Package or on the Node

- Local high-bandwidth memory stacks
- Node based non-volitile memory
- High-Bandwidth Low Latency Fabric
- General Purpose Cores
- Dynamic Power Management

What Kind of Accelerator(s) to Add?

- Vector Processors
- Data Flow Engines
- Patches of FPGA
- Many "Nano" Cores (< 5 M Tr each?)
- Neuromorphic Cores
- CNN Cores
- Tensor Engines
- Other Machine Learning Cores?

Hardware and systems architectures are emerging for supporting deep learning

- CPUs
 - AVX, VNNI, KNL, KNM, KNH, ...
- GPUs

– Nvidia P100, V100, AMD Instinct, Baidu GPU, ...

• ASICs

- Nervana, DianNao, Eyeriss, GraphCore, TPU, DLU, ...

- FPGA
 - Arria 10, Stratix 10, Falcon Mesa, ...
- Neuromorphic

- True North, Zeroth, N1, ...

Aurora 21

- Argonne's Exascale System
- Balanced architecture to support three pillars
 - Large-scale Simulation (PDEs, traditional HPC)
 - Data Intensive Applications (science pipelines)
 - Deep Learning and Emerging Science Al
- Enable integration and embedding of pillars
- Integrated computing, acceleration, storage
- Towards a common software stack

Argonne Targets for Exascale

Simulation Applications

- Materials Science
- Cosmology
- Molecular Dynamics
- Nuclear Reactor Modeling
- Combustion
- Quantum Computer Simulation
- Climate Modeling
- Power Grid
- Discrete Event Simulation
- Fusion Reactor Simulation
- Brain Simulation
- Transportation Networks

Big Data Applications

- APS Data Analysis
- HEP Data Analysis
- LSST Data Analysis
- SKA Data Analysis
- Metagenome Analysis
- Battery Design Search
- Graph Analysis
- Virtual Compound Library
- Neuroscience Data Analysis
- Genome Pipelines

Deep Learning Applications

- Drug Response Prediction
- Scientific Image Classification
- Scientific Text Understanding
- Materials Property Design
- Gravitational Lens Detection
- Feature Detection in 3D
- Street Scene Analysis
- Organism Design
- State Space Prediction
- Persistent Learning
- Hyperspectral Patterns

Differing Requirements?

Simulation Applications

- 64bit floating point
- Memory Bandwith
- Random Access to Memory
- Sparse Matrices
- Distributed Memory jobs
- Synchronous I/O multinode
- Scalability Limited Comm
- Low Latency High Bandwidth
- Large Coherency Domains help sometimes
- O typically greater than I
- O rarely read
- Output is data

Big Data Applications

- 64 bit and Integer important
- Data analysis Pipelines
- DB including No SQL
- MapReduce/SPARK
- Millions of jobs
- I/O bandwidth limited
- Data management limited
- Many task parallelism
- Large-data in and Large-data out
- I and O both important
- O is read and used
- Output is data

Deep Learning Applications

- Lower Precision (fp32, fp16)
- FMAC @ 32 and 16 okay
- Inferencing can be 8 bit (TPU)
- Scaled integer possible
- Training dominates dev
- Inference dominates pro
- Reuse of training data
- Data pipelines needed
- Dense FP typical SGEMM
- Small DFT, CNN
- Ensembles and Search
- Single Models Small
- I more important than O
- Output is models

Aurora 21 Exascale Software

- Single Unified stack with resource allocation and scheduling across all pillars and ability for frameworks and libraries to seamlessly compose
- Minimize data movement: keep permanent data in the machine via distributed persistent memory while maintaining availability requirements
- Support standard file I/O and path to memory coupled model for Sim, Data and Learning
- Isolation and reliability for multi-tenancy and combining workflows

Towards an Integrated Stack

The New HPC "Paradigm"

Acknowledgements

Many thanks to DOE, NSF, NIH, DOD, ANL, UC, Moore Foundation, Sloan Foundation, Apple, Microsoft, Cray, Intel, NVIDIA and IBM for supporting our research group over the years

Our Vision Automate and Accelerate

The CANDLE Exascale Project

Typical Machine Learning Flow diagram

Drug Response CANDLE General Workflow

Cancer Data Processing, Storage and Machine Learning Workflow

ECP-CANDLE : CANcer Distributed Learning Environment

CANDLE Goals

Develop an exascale deep learning environment for cancer

Building on open source Deep learning frameworks

Optimization for CORAL and exascale platforms

Support all three pilot project needs for deep

Collaborate with DOE computing centers, HPC vendors and ECP co-design and software technology projects

CANDLE Software Stack

Hyperparameter Sweeps, Data Management (e.g. DIGITS, Swift, etc.)

Network description, Execution scripting API (e.g. Keras, Mocha)

Tensor/Graph Execution Engine (e.g. Theano, TensorFlow, LBANN-LL, etc.) Workflow

Scripting

Engine

Architecture Specific Optimization Layer (e.g. cuDNN, MKL-DNN, etc.)

Optimization

DL Frameworks "Tensor Engines"

- TensorFlow (c++, symbolic diff+)
- Theano (c++, symbolic diff+)
- Neon (integrated) (python + GPU, symbolic diff+)

Tensor

neoi

lean

- Mxnet (integrated) (c++)
- LBANN (c++, aimed at scalable hardware)
- pyTorch7 TH Tensor (c layer, symbolic diff-, pgks)
- **Caffe** (integrated) (c++, symbolic diff-)
- Mocha backend (julia + GPU)
- CNTK backend (microsoft) (c++)
- PaddlePaddle (Baidu) (python, c++, GPU)

CANDLE Benchmarks.. Representative problems

- Variational AutoEncoder
 - Learning (non-linear) features of core data types
- AutoEncoder
 - Molecular dynamics trajectory state detection
- MLP+LCNN Classification
 - Cancer type from gene expression/SNPs
- MLP+CNN Regression
 - Drug response (gene exp, descriptors)
- CNN
 - Cancer pathology report term extraction
- RNN-LSTM
 - Cancer pathology report text analysis
- RNN-LSTM
 - Molecular dynamics simulation control

Deep Convolutional Network (DCN)

Generative Adversarial Network (GAN)

Progress in Deep Learning for Cancer

- AutoEncoders learning data representations for classification and prediction of drug response, molecular trajectories
- VAEs and GANs generating data to support methods development, data augmentation and feature space algebra, drug candidate generation
- **CNNs** type classification, drug response, outcomes prediction, drug resistance
- **RNNs** sequence, text and molecular trajectories analysis
- Multi-Task Learning terms (from text) and feature extraction (data), data translation (RNAseq <-> uArray)

CANDLE - FOM – Rate of Training

- "Number of networks trained per day"
 - size and type of network, amount of training data, batch size, number of epochs, type of hardware
- "Number of 'weight' updates/second"

– Forward Pass + Backward Pass

• Training Rate = $\sum_{i=1}^{n} a_i R_i$ where R_i is the rate for our benchmark *i* and a_i is a weight

Table 1: Full pass time of TensorFlow and PALEO estimation on AlexNet and VGG-16.

		Forward pass (ms)	Backward pass (ms)
AlexNet	TensorFlow	44.00	155.10
	PALEO Estimation	45.96	118.44
VGG-16	TensorFlow	400.46	1117.48
	PALEO Estimation	435.46	1077.27

7 CANDLE Benchmarks

https://github.com/ECP-CANDLE

Benchmark Owners:

- P1: Fangfang Xia (ANL)
- P2: Brian Van Essen (LLNL)
- P3: Arvind Ramanathan (ORNL)

Benchmark	Туре	Data	ID	OD	Sample Size	Size of Network	Additional (activation, layer types, etc.)
1. P1: B1 Autoencoder	MLP	RNA-Seq	10 ⁵	10 ⁵	15K	5 layers	Log2 (x+1) → [0,1] KPRM-UQ
2. P1: B2 Classifier	Pru	BNP Re	S)0	nse	5 layers	Training Set Balance issues
3. P1: B3 Regression	MLP+LCN	expression; drug descs	105	1	3M	8 layers	Drug Response [-100, 100]
4. P2: B1 Autoencoder	RA		ťh	10 ²	10 ⁶ -10 ⁸	5-8 layers	State Compression
5. P2: B2 RNN-LSTM	RNN-LSTM	MD K-RAS	10 ⁵	3	10 ⁶	4 layers	State to Action
6. P3: B1 RNN-LSTM		Path Corts	10 ³	5	^{5K}	1-2 layers	Dictionary 12K +30K
7. P3: B2 Classification	CNN	Path reports	104	10 ²	103	5 layers	Biomarkers

Typical Performance Experience

CANDLE - Predicting drug response of tumor samples

- MLP/CNN on Keras
- 7 layers, 30M 500M parameters
- 200 GB input size
- 1 hour/epoch on DGX-1; 200 epochs take 8 days (200 GPU hrs)
- Hyperparameter search ~ 200,000 GPU hrs or 8M CPU hrs

Protein function classification in genome annotation

- Deep residual convolution network on Keras
- 50 layers
- 1 GB input size
- 20 minutes/epoch on DGX-1; 200 epochs take 3 days (72 GPU hrs)
- Hyperparameter search ~ 72,000 GPU hrs or 2.8M CPU hrs

Github and FTP

- ECP-CANDLE GitHub Organization:
- https://github.com/ECP-CANDLE

- ECP-CANDLE FTP Site:
- The FTP site hosts all the public datasets for the benchmarks from three pilots.
- <u>http://ftp.mcs.anl.gov/pub/candle/public/</u>

Things We Need

- Deep Learning Workflow Tools
- Data Management for Training Data and Models
- Performance Measurement, Modeling and Monitoring of Training Runs
- Deep Network Model Visualization
- Low-level Solvers, Optimization and Data Encoding
- Programming Models/Runtimes to support next generation Parallel Deep Learning with sparsity
- OS Support for High-Throughput Training