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Data-Driven Science Examples

For many problems there is a deep coupling of observation
(measurement) and computation (simulation)

Cosmology: The study of the universe as a dynamical system
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Materials science: Diffuse scattering to understand disordered structures
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How Many Projects?

Artificial Intelligence Takes Off at Google

Number of software projects within Google that uses a key AI technology, called Deep
Learning.
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By 2020, the market for
machine learning will reach $40
billion, according to market
research firm IDC.

Deep Learning market is
projected to be ~$5B by 2020
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e
Exhibit 23: Monster.com Postings by Company, Search Terms: Artificial

Intelligence, Machine Learning, and Deep Learning
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Exhibit 8: Artifical Intlligence Industry Forecasts (5B)
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Markets are Developing
at Different Rates ~2020

HPC (Simulation)—> ~S30B @ 5.45%
Data Analysis 2 ~S200B @ 11.7%
Deep Learning 2 ~S5B @ 65%

DL> HPCin 2024
DL > DA in 2030




Big Picture

* Mix of applications is changing

 HPC “Simulation”, “Big” Data Analytics,
Machine Learning “Al”

* Many projects are combining all three
modalities

— Cancer

— Cosmology

— Materials Design
— Climate

— Drug Design




Review Chinese Science Bulletin

Ecology Decomber 2010 Vol55 No-i: 385335
doi: 10.1007/11434.010-415

e e p e a I g I Application of artificial neural networks in global climate change

and ecological research: An overview

LIU ZeLin', PENG ChangHui'*", XIANG !, TIAN DaLun', DENG XiangWen' &
ZHAO MeiFang'
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12.1 Introduction thoroughly applied. Then, considerations about the
application of dynamical modeling to a complex
system like climate will lead us to reco;
weaknesses in the simulated reconstruction of the sys-
tem itself. In particular, as we will see, this can lead
us to eriticize this kind of modeling (when applied to

Clation:
At present, climate change is a “hot topic”, not
only in scientific analyses and papers by researchers,
but also in wider discussions among economists and

In recent years, global cli policy-makers.

of attention for governm In whatever arca you are, the role of modeling OMPIEX systems) and to not rely on its results.

large. Related rescarch in appears erucial in order to understand the behavior of 10 this unsatisfactory situation, a more phenomeno-
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duted and remarkable the climate system and to grasp its complexity. Fur. _108i€al approach to the analysis of climate behavior
iAo o thermore, once validated on the past, a model repre- €40 be applied. In Section 12.3 we will initially show
ing, requent E1 Nifo nd sents the only chance to make projections about the MW some modelers used neural network modeling for
. studying and forecasting the occurrence of specific

phenomena, like EI Nifio. Then, in what follows, a
comprehensive analysis of the influence of natural and

increased by approxima future behavior of the climate system
and is projected 1o contin In this framework, Al methods (more specificall
tion, global atmospheric ¢ neural networks ~ NNs) have recently shown their use

nearly 38% since the pre-i anthropogenic forcings on global and regional temper-

fulness in modeling studies dealing with the climate

. .
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nsemble Selection

Abstract In this note we obscrve that a problem of ~ 1969) from radiative forcing duc to CO, concentr
Haupt

: linear approach to € r causality testing between tion to global surface temperature anom:
pri y
%

d global temperature is that such tests can have  terms, past observations of radiative for
low power. The probability to reject the null hypothesis ~ CO» do not significantly improve the predictability of
of non-causality when it is false is low. Regarding non-  current temperature. In this note we show that this

L] L L]
ar Granger causality, based on multi-layer feed-  (negative) result is due to the inapprops
of significant unidirectional Granger causality from utilized by the author. The problem of linear approach
CO; to global temperature. 10 causality testing is that such tests can have low
power detecting certain kinds of non-linear causal re-

1 Introduction on multi-layer feed-forward (MLF) neural network be-
tween CO; and global temperature, the

There is little doubt that much of the Earth has been  vides a quite different story. It provides eviden
ndergoing a pronounced warming since about the start  significant unidirectional non-linear Granger causality

of the twentieth century. An important question is

Has this global warming been primarily due o nat . cd a : A short review of

ural fluctuations or anthropogenic influences? Among ~ ne k in this work

a number of man-made ‘greenhouse” gases which ab- is given in the next section; esults of non-linear

sorb and emit thermal radiation, such as nitrous oxide ~ Granger causality analysis are presented in Section 3

and methane, CO; is widely believed to be the major  Some concluding re ion 4
areenhouse” gas which has the greatest influence on

the global climate. Consequently. the relationships be

tween global temperature and CO; concentration have 2 Methodology and data

been the subject of intense research in the last two

decades. We are interested 1o test the null hypothesis that CO;
In particular Triacca (see Triacca 2005) finds that  concentration does not Granger cause global surface

there is no detectable Granger causality (see temperature. The linear framework is too simple to

atch the complex non-linear behavior of the temper
tration. To overcome this

A. Attanasio - U, Triacea () out-of-sample analysis of
Universita di L"Aquila, L'Aquila, Italy

elationship between these variables based

A. Attanas
c-mail: alessandro_atta ahoo.i neural networks can be applied successfully (see Pasini
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Automatic Discovery of Dipoles
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Credit: V. Kumar

 Detection of Global Dipole Structures
* Most known dipoles discovered

 Some new’ dipoles: Previously unknown phenomenon?
* A new dipole near Australia [Liess et al., J Clim’14]



Individual motifs

Deep Learning in Genomics

DNA and RNA binding data
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Predicting Microbial Phenotypes
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Classification of Tumors

Gene Expression Profile
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High Throughput Drug Screening

Jure Zupan, Johann Gasteiger

Neural Networks
in Chemistry
and Drug Design

Second Edition

igure 1: Hierarchical nature of fingerprint features: by combining the ECFP features we can build
cactive centers. By pooling specific reactive centers together we obtain a pharmacophore that en-
odes a specific pharmacological effect.




Deep Networks Screen Drugs

Table 2: Hyperparameters considered for the Neural Net

Hyperparameter Considered values

Number of Hidden Units {1024, 4096, 16356, 8192-8192}
Learning Rate {10, 20, 30, 50}
Dropout [30] {no, yes (50% Hidden Dropout, 20% Input Dropout) }

p-value

Deep network .

VIV R 1.0e-07
BKD . 1.9e-67
Logistic Regression . 6.0e-53
k-NN : 2.5e-142
Pipeline Pilot Bayesian Classifier 0. 5.4e-116
Parzen-Rosenblatt : 1.8e-153
SEA : 1.8e-173




Table 1 Selected collaborations in the Al-drug discovery space

Al company/
location

Technology

Announced partner/
location

Indication(s)

Deep Learning and Drug Discovery

Deal date

Atomwise

Deep-learning screening
from molecular structure
data

Merck

Malaria

2015

BenevolentAl

Berg,
Framingham,
Massachusetts

Deep-learning and natural
language processing of
research literature
Deep-learning screening
of biomarkers from patient
data

Janssen Pharmaceutica
(Johnson & Johnson),
Beerse, Belgium

None

Multiple

Multiple

November 8,
2016

N/A

Exscientia

GNS
Healthcare

Bispecific compounds via
Bayesian models of ligand
activity from drug discovery
data

Bayesian probabilistic
inference for investigating
efficacy

Sanofi

Genentech

Metabolic
diseases

Oncology

May 9, 2017

June 19,
2017

Insilico
Medicine

Deep-learning screening
from drug and disease
databases

Age-related
diseases

N/A

Numerate

Deep learning from pheno-
typic data

Takeda

Oncology, gastro-

enterology and
central nervous

system disorders

June 12,
2017

Recursion,
Salt Lake City,
Utah

Cellular phenotyping via
image analysis

Sanofi

Rare genetic
diseases

April 25,
2016

twoXAR, Palo
Alto, California

Deep-learning screening
from literature and assay
data

Santen
Pharmaceuticals,
Osaka, Japan

Glaucoma

February 23,
2017

N/A, none announced. Source: companies’ websites.




Deep Learning In Disease Prediction
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JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 16 2005)673- 6

On the use of a neural network to characterize

the plasma etching of SiON thin films
e u l a e W O I S Depar
Department of Electronic Engineering, Bio Engineering Research Center, Sejong University,

98, Goonja-Dong, Kwangjin-Gu, Seoul, 143-747, Korea

E-mail: kbwhan@sejong.ac.kr

B. T. LEE

Department of Materials Science and Engineering, Chonnam National University, 300,
Yongbong-Dong, Buk-Ku, Kwangju-Si, 500-757, Korea

K. K. LEE
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Division of Micromechatronics, Korea Institute of Industrial Technology,
Chunan, South Korea
Using a generalized regression neural network (GRNN), plasma etching of oxynitride thin

films was modeled. The et
experiment. A genetic algc
optimizing multiparamete
the constructed etch rate r
prediction performance. 3
mechanisms while validat
and chemical effects, both
source power affected sigi
sf\ecr‘.fiéa':‘lmfg Fr‘i"féii A neural network approach for the prediction of the refractive

chemical etching or polyn index based on experimental data

J Mater Sci
DOI 10.100

Materials science

1. Introduction
In manufacturing optical devic
promising m:
pability to achieve a higher ref
n the core and cladding I
tres attractive for manufactu
vices include low density of surf ed: 26 May 2011/ Accepted: 10 Au
2 Springer SciencesBusiness Media, LLC 2

Abstract This article presents a systematic approach for  fundamental physical property of substance related not

corre the ractive index of diff jal kind: only to its optical, but also electri agnetic, thes
devices. Few studies have be: ¥ " -

characteristics of SiON films. P
ation. The correla-  light wa and temperature, effects commonly

° [ fly
means to form fine patterns in ma e
are typically included and theit can deal effectively with the nonlinear nature of the respectively. However, in many situations there exist
siderably affect eching characte problem without requiring a predefined form of equation.  numerous additional parameters influcncing the refractive
experimental budget, i i not pc while taking into sccount all the parameters affecting the  index, ranging from doping level and composition
I t . I
o . 2 © 2005 Springer Scie of decimal places as oo . " .
¢ with, other searad nel Quantitative structure-property relationships of electroluminescent
O I I l O S I I O I I empirical forms like materials: Artificial neural networks and support vector machines
superiority of the prc to predict electroluminescence of organic molecules

Introduction ALANA FERNANDES GOLIN and RICARDO §

Parameters s

Labortory of lectic P ad odel wasable 1o predit he letrolumineseen -
ve iy Moreover, RMSE of s e chine model is approximately half of RMSE observed

* Estimate Processing - e

d forms with experimentally measured inputs like  and mechanical properti n depends on

rameter effects under various pl refractive index. The proposed methodology employs the  amorphous materials and semiconductor or dielectric
limitation can be overcome by powerful radial basi
puter prediction model. Despite the neural network
on plasma dynamics, first princ using an innovative &
ject to many assumptions, resul ncreased pre

between the predictions and actu
other alternative is to use a neu
in conjunction with a statistical

Bull. Mater. Sci., Vol. 36, No, 7, December 2013, pp. 1307-1313, © Indian Academy of Scienc
to two cas

index of semiconduc

water mixture and the

predictions are accur

Laboratério de Estudos de Materiais (LEMAT), Instituto de Ciéncias Exatas ¢ da Terra, Av. Govemador Jaime Campos
6390, Campus Universitdrio do Araguaia, Universidade Federal de Mato Grosso, 78600-00 Barra do Gargas ~ MT. Brazil
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cly used as materials for application in OLED. In order to
e of such compounds, QSPR study based on ne
developed on a series of organic compounds commonly used

u h g

Published online: 24 Aug and electronic struct @ ed with electroluminescence properties. The obtained results can help
ind supporting the development of new

Keywords. QSPR; neural networks; SVM; electroluminescence; OLED; organic materials.

Parameters for

and reliable method to predict and study physical-chemical
Electroluminescent materials (EL) arc among the most  properties of materials.
omising modern materials with a wide range of techno Quantitative-structure properties  relationships (QSPR)
applications (Xue and Luo 2003; So ef al 2009). One of  models can be used to predict with good accuracy

e
the most promising EL applications, is the design and fabri-  physical and chemical features from chemical compounds.
cation of organic light-cmitting diodes (OLEDs) (Akeelrud ~ QSPR methods are based on the existing correlation between
2003). OLEDs have demonsirated manufacturing and mar-  groups of mathematical values (descriptors), representing

ket potential in small and medium device applications. Thus, ain features of a chemical structure and a target che
OLED can become one of the mainstream display technolo-  cal property. The advantage of QSPR model is that it is

. competing directly with LCD (liquid crystal display)  based solely on the knowledge of chemical structure and it
technology (Wen ef al 2005). For high-quality OLED dis-  requires no additional experimental data and once the co-
plays, highly efficient and low-cost electroluminescent mate-  rrelation is established, it can be used for the prediction of

L]
are of gre: X to gain market share over  properties of new compounds that have not been prepared
. i ays, evice: entandtohave  (Yu ef al 2008). Thus, QSPR models can be used to assist
low prices 10 the ost ¥ Py material design, since one can predict the properties of a cer
polyaromatic hydrocarbons (PAH) and porphyrin type com-  tain material before its synthesis. As the development of new
b

pounds are used in OLED fabrication and these compounds  materials involves extensive experimental work, th
may be polymeric itself or us a dopant o allow  predict the propertics of materials is of great value, because,
thinfilms to become electroluminescent (Mi er al 2002). it provides a guide to the development process and sp

Understanding of the physical and chemical features related  the development eycl

1o the electroluminescence of such materials, can help in the
design and development of new chemical compounds with
improved electroluminescence features. In order to de

new organic compounds that can be used in OLED applica
tions, computational methods, such as quantitative-structus

Author for correspondence (rstefani@ufmt.br)

oups have been develop-

QSPR models in order to assist material discovery and
design (Morril and Byrd 2008; Taherpour 2009; Fourches
et al 2010; Yu 2010). The advantage of using QSPR mo-
dels over traditional computational methods is that descrip-
tion calculation is quite easy and requires little computation
I
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Deep Learning is becoming a major element of
scientific computing applications

e Across the DOE lab system hundreds of
examples are emerging

— From fusion energy to precision medicine
— Materials design

— Fluid dynamics

— Genomics

— Structural engineering

— Intelligent sensing

— Etc.




WE ESTIMATE BY 2021 ONE THIRD OF THE
SUPERCOMPUTING JOBS ON OUR MACHINES

WILL BE MACHINE LEARNING APPLICATIONS

SHOULD WE CONSIDER ARCHITECTURES THAT ARE

OPTIMIZED FOR THIS TYPE OF WORK?

HOW TO LEVERAGE EXASCALE?




The New HPC “Paradigm”
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The New HPC “Paradigm”
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The Critical Connections |

* Embedding Simulation into Deep Learning

— Leveraging simulation to provide “hints” via the
Teacher-Student paradigm for DNN

— DNN invokes “Simulation Training” to augment
training data or to provide supervised “labels” for
generally unlabeled data

— Simulations could be invoked millions of times
during training runs

— Training rate limited by simulation rates
— Ex. Cancer Drug Resistance




Hybrid Models in Cancer

Genome

Inform

s| Mechanistic biological | —s T Insight
. +/-Predictive performance
Transcriptome models

Hybrid models

Cancer cell

Methylation Analyze 5>| Machine learning | —> T Predictive performance
+/- Insight

/)L

T Predictive performance
TInsight

Proteome

Figure 1. Intwo DREAM challenges, high throughput data characterizing cancer cells are used to build predictive models. Mechanistic models provide
insight into the underlying biology, but do not take full advantage of the information within the data to achieve high performance. Machine learning methods

are associative and extract maximum predictive value from the data, but do not always provide insight about mechanism. The future may bring hybrid
models that combine the best of both approaches.

Predicting Cancer Drug Response: Advancing the DREAM

Russ B. Altman

Summary: The DREAM challenge is a community effort to assess current capabilities in systems biology. Two

PIENT 0
£ &
' AN
% W S
) 5
) S
NS O

U.S. DEPARTMENT OF

ENERGY m) NATIONAL CANCER INSTITUTE




Teacher-Student Network Model

> Prediction
Teacher

@ Ground
Soft Loss Truth
— > Student —» | Prediction @

Hard Loss

<

(a) Standard: student network learns from teacher guidance (soft
loss) and ground truth (hard loss).



Teacher-Student Network Model

Simulation Based Predictions

> Prediction
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Ground
Truth

Soft Loss

— > Student —>  Prediction @
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ts
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(a) Standard: student network learns from teacher guidance (soft
loss) and ground truth (hard loss).



Integrating ML and Simulation

Clinical Resistance/Susceptibility |  ______ Clinical
B 3 Properties
Supervised Learning
. . T " Biochemical
Bloacﬂtlwty ‘ i Blndlng:‘\fﬂnmes ______ Properties
Biophysical
FreeEnergy | | Properties
Ensemble|Learning
Macroscopic
10 Properties
Sim Sim Sim|
aol| | | ! |/ | - Simulation
] .
Simulation-specific Intermediates
Function Approximation
Kinase Representation Drug Representation | ------ Latent
y 3 Features
Unsupervised Representation Learning

Kinase Features Drug Features | ------ Input
Features

Figure 3: Overview of how data at all steps will be integrated using machine learning. The orange
square boxes represent the three types of data in this project: kinases, drugs, and their interactions at various
levels. The green rounded boxes denote the variety of MD simulations for free energy calculation. Each blue
arrow represents an ML model; they combine in a joint predictive model that integrates all datasets.



The Critical Connections Il

* Embedding Machine Learning into Simulations

Replacing explicit first principles models with
earned functions

-aster, Lower Power, Lower Accuracy(?)

~unctions in simulations accessing ML models at
nigh throughput

— On node invocation of dozens or hundreds of
models millions of times per second?

— Ex. Nowcasting in Weather




Algorithm Approximation

Benchmark
blackscholes
bodytrack

canneal
dedup

facesim
ferret

fluidanimate
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x264

Task

Option pricing

Track 3D pose of body
in video

Chip routing

File compression

Modeling face movements
Content (image) similarity

Fluid simulation
Frequent itemset miner
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Option pricing

Image processing library

Video encoding

Main computational kernel

Differential equations
Annealed particle filter

Simulated annealing
Hashing and compression

Image synthesis
Feature extraction,
indexing and hashing
Navier-Stokes equations

Database requests

Distance-based clustering
Simulated annealing

Affine transformations
and convolutions
H264 algorithm

Category
Approximation
Classification

Optimization
Classification

Approximation
Clustering/Classification

Approximation
Classification

Clustering
Approximation

Raw NN operation

Classification

ANN alternative

Approximation using MLP¢

Feature extraction

and recognition with CNN? [11]
Optimization using HNN®

Hashing and compression

using an unsupervised neural network
Interpolation using MLP (partial) [12]
NN-based Gabor filters
and SOM for comparison
CeNN¢® for solving
Navier Stokes equation [13]

Learning features correlations [14]

using MLP

Online clustering using SOM

Option pricing approximation

using MLP

Convolutions and filtering

using CNNs as operators (no learning) [15]
MLP to learn 2D transforms

d

in NGVC, H265 [16]




Replacing Imperative Code with
NN Computed Approximations

Code Programmer Processor

Imperative Annotated | Training Trained
Source : ‘.‘ —> Inputs | Trainer —»| Neural
Code : : Network

(Topology &

Synaptic

Input Weights)
Data :

Programming Code Observation Training

Compilation

Instrumented

Code CPU Binary
Generator

NPU Config

Code Generation . Execution

Figure 1: The Parrot transformation at a glance: from annotated code to accelerated execution on an NPU-augmented core.




2.3x Speedup, 3x Power Reduction,

~7% Error

Table 1: The benchmarks evaluated, characterization of each transformed function, 0 data, and the result of the Parrot transfornjation.

Descrints - Evaluation # of Function #of #ofifs/ #of x86-64 Training Neural Network NN MSE Efror E
escription ype Input Set Calls Loops elses Instructions Input Set Topology Mitric T oF
Radix-2 Sienal 2048 Random 32768 Random Avefage
fft Cooley-Tukey 6 ) Floating Point 2 0 0 34| Floating Point 1->4->4->2 0.00002 Reldtive 7.22%
. Processing
fast Fourier Numbers Numbers Errdr
Inverse 10000 (x,y) Rand 10000 (x,y) Rand Avegage
m m
inversek2j kinematics for Robotics .y)Rando 4 0 0 100 %y} Rando 2->8->2 0.00563 Relftive 7.50%
.. Coordinates Coordinates
2-joint arm Errdr
Triangle 10000 Random Pairs 100000 Random Mi
jmeint intersection 3D Gaming |of 3D Triangle 32 0 23 1,079 Pairs of 3D Triangle |18->32->8->2 0.00530 R lt 7.32%
detection Coordinates Coordinates e
. ) ) 220x200-Pixel Color Three 512x512-Pixel Image
ipeg JPEG encoding Compression 3 4 0 1,257 64 ->16->64 0.00890 . 9.56%
Image Color Images Di
50000 Pairs of
K- Machi 220x200-Pixel Col
kmeans oo achine xetu-Fixel Lolor 10 0 26|Random (r, g, b) 6->8->4->1 0.00169 6.18%
clustering Learning Image D
Values
Sobel edge Image 220x200-Pixel Color One 512x512-Pixel |
sobel . 3 2 1 88 9->8->1 0.00234 3.44%
detector Processing |Image Color Image
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DOE Objective: Dirve Integration of Simulation,
Data Analytics and Machine Learning

Traditional

HPC
Systems _l CORAL Supercomputers

and Exascale Systems
Scalable
Large-Scale

. Data Analytics
Numerical

Simulation

Deep
Learning

@ ENERGY [I) NATIONAL CANCER INSTITUTE




Exascale Node Concept Space

(Low Capacity, High Bandwidth)

(Hgh Capacity
Low Bandwidth)

ntegrated NIC
for Of-Chip
Communication




Leverage Resources on the Die, in
Package or on the Node

Local high-bandwidth memory stacks
Node based non-volitile memory
High-Bandwidth Low Latency Fabric
General Purpose Cores

Dynamic Power Management




What Kind of Accelerator(s) to Add?

Vector Processors

Data Flow Engines

Patches of FPGA

Many “Nano” Cores (<5 M Tr each?)




Hardware and systems architectures are
emerging for supporting deep learning

CPUs

— AVX, VNNI, KNL, KNM, KNH, ...

GPUs

— Nvidia P100, V100, AMD Instinct, Baidu GPU, ...
ASICs

— Nervana, DianNao, Eyeriss, GraphCore, TPU, DLU, ...

FPGA
— Arria 10, Stratix 10, Falcon Mesa, ...

Neuromorphic
— True North, Zeroth, N1, ...




Aurora 21

Argonne’s Exascale System
anced architecture to support three pillars

_arge-scale Simulation (PDEs, traditional HPC)
Data Intensive Applications (science pipelines)

Deep Learning and Emerging Science Al
Enable integration and embedding of pillars
Integrated computing, acceleration, storage
Towards a common software stack




Big Data Applications

APS Data Analysis
HEP Data Analysis
LSST Data Analysis
SKA Data Analysis
Metagenome Analysis
Battery Design Search
Graph Analysis

Virtual Compound
Library

Neuroscience Data
Analysis

Genome Pipelines

Argonne Targets for Exascale

Deep Learning Applications

Drug Response Prediction

Scientific Image
Classification

Scientific Text
Understanding

Materials Property Design

Gravitational Lens
Detection

Feature Detection in 3D
Street Scene Analysis
Organism Design

State Space Prediction
Persistent Learning

Hyperspectral Patterns
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Differing Requirements?

Big Data Applications Deep Learning Applications

64 bit and Integer important Lower Precision (fp32, fp16)
Data analysis Pipelines FMAC @ 32 and 16 okay
DB including No SQL Inferencing can be 8 bit (TPU)

MapReduce/SPARK Scaled integer possible

Millions of jobs Training dominates dev
I/0 bandwidth limited

Data management limited

Inference dominates pro
Reuse of training data
Data pipelines needed
Dense FP typical SGEMM
Small DFT, CNN

Ensembles and Search

Many task parallelism

Large-data in and Large-data
out

| and O both important

O'is read and used Single Models Small

: | more important than O
Output is data .

Output is models
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Aurora 21 Exascale Software

Single Unified stack with resource allocation and
scheduling across all pillars and ability for
frameworks and libraries to seamlessly compose

Minimize data movement: keep permanent data
in the machine via distributed persistent memory
while maintaining availability requirements

Support standard file I/O and path to memory
coupled model for Sim, Data and Learning

Isolation and reliability for multi-tenancy and
combining workflows




Towards an Integrated Stack

HPC, Analytics and Big Data, Al and Machine Learning

Domain Platform
Abstractions

Domain Runtime Big Data Analytics Al ML DL
Environments

(Domain-aware RM
plug-ins)

Global Resource

Management Multi-domain Resource Manager

Resource
Provisioning
(Compute, Network
Storage)

Bare-metal Provisioning SDI Virtualized Provisioning
(e.g., xCAT, Warewulf, Ironic) (e.g., OpenStack, AWS, Azure, Google, Containers)

Infrastructure

Abstractions
Storage Abstractions

Compute (e.g., POSIX, Object, Block, HDFS, DAOS) Networking
Resource Pools (Xeon, Xeon Phi, FPGA) Object Stores (OmniPath, Ethernet, IB)
(Public & Private) (e.g.,RADOS (Ceph), AWS S3, Swift, Lustre OST)




The New HPC “Paradigm”

SIMULATION

=

e

/
DATA

- —

s |
v

ANALYSIS

Y

LEARNING

\ VISUALIZATION
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Our Vision
Automate and Accelerate

High-Throughput Lab (HTL) High Performance Computing (HPC)

Biological Experiments In silico Experiments

Data Generation — Data Analysis

Hypothesis Testing Novel Hypotheses







The CANDLE Exascale Project




Typical Machine Learning Flow diagram
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Drug Response CANDLE General Workflow

/ Data Sources \

NCI Databases
NCI-60

Sarcoma

Small Cell Lung |
Cancer

| PDMs/PDXs

[ Genomic Data
Commons

Other Databases

( R, §
Cancer Cell Line
Encyclopedia

P

Genomics of

Drug Sensitivity
in Cancer

[ PubChem ]

[ Others ]

o J

/ Data Prooeslng\

- 1 /4
/ Data Storage \

Compounds

el

Molecular
Assays

Target
~ Annotations

Drug
Descriptors

" p—)

Data API

—p Training

<

Machine Learning

(11T

Mod_els
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Cancer Data Processing, Storage and Machine Learning Workflow




ECP-CANDLE : CANcer Distributed Learning Environment

Semi-supervised
learning, scalable data
analysis and agent
based simulations on
population scale data

—

Scope of CANDLE

Deep Learning

Treatment
Strategy

<3

NVIDIA.

@ENERGY m) NATIONAL CANCER INSTITUTE

Unsupervised learning
coupled with multi-scale
molecular simulations

S

Supervised learning
augmented by stochastic
pathway modeling and
experimental design

Response

CANDLE Goals

Develop an exascale deep
learning environment for cancer

Building on open source
Deep learning frameworks

Optimization for CORAL
and exascale platforms

Support all three pilot project
needs for deep

Collaborate with DOE computing
centers, HPC vendors and ECP
co-design and software
technology projects

== \
EXRASCALE
. ( \) —] COMPUTING
\ PROJECT
\=
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CANDLE Software Stack

Hyperparameter Sweeps,

Data Management (e.g. DIGITS, Swift, etc.) WOHQ{LOW

Network description, Execution scripting API

(e.g. Keras, Mocha) -SOVL‘PtLV\a@

Tensor/Graph Execution Engine ,
(e.g. Theano, TensorFlow, LBANN-LL, etc.) EV\/@ LWE

Architecture Specific Optimization Layer

(e.g. cuDNN, MKL-DNN, etc.) O‘P’CLWLLZWCLDW




DL Frameworks “Tensor Engines” N

(* TensorFlow (c++, symbolic diff+) Tensor \

* Theano (c++, symbolic diff+) T h cano
* Neon (integrated) (python + GPU, symbolic diff+)
 Mxnet (integrated) (c++)

 LBANN (c++, aimed at scalable hardware)

* pyTorch7 TH Tensor (c layer, symbolic diff-, pgks)

» Caffe (integrated) (c++, symbolic diff-) \ﬁlg
 Mocha backend (julia + GPU) l

* CNTK backend (microsoft) (c++)

. PaddIePaddIe (Baidu) (python, c++, GPU)

EEEEEEEEEEEEEE

ENERGY m) NATIONAL CANCER INSTITUTE




CANDLE Benchmarks.. Representative problems

Variational AutoEncoder
— Learning (non-linear) features of core data types

AutoEncoder
— Molecular dynamics trajectory state detection

MLP+LCNN Classification
— Cancer type from gene expression/SNPs

MLP+CNN Regression
— Drug response (gene exp, descriptors)

CNN
— Cancer pathology report term extraction

RNN-LSTM
— Cancer pathology report text analysis

RNN-LSTM

— Molecular dynamics simulation control

U.S. DEPARTMENT OF

@ ENERGY [I[)) NATIONAL CANCER INSTITUTE




Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE)

A X

Deep Convolutional Network (DCN) Generative Adversarial Network (GAN)

X 0

X . . . .
RTATATa AT
X 0> AW AWAWAWAS
v>_<\/\/\/Q Q
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Progress in Deep Learning for Cancer

AutoEncoders — learning data representations for
classificaiton and prediction of drug response,
molecular trajectories

VAEs and GANs — generating data to support
methods development, data augmentation and
feature space algebra, drug candidate generation

CNNs — type classification, drug response,
outcomes prediction, drug resistance

RNNs — sequence, text and molecular trajectories
analysis

Multi-Task Learning — terms (from text) and
feature extraction (data), data translation
(RNAseq <-> uArray)




CANDLE - FOM - Rate of Training

“Number of networks trained per day”

— size and type of network, amount of training data,
batch size, number of epochs, type of hardware

“Number of ‘weight’ updates/second”

— Forward Pass + Backward Pass

Training Rate = 3"_, a,R; where R is the rate for
our benchmark i and a;is a weight

Table 1: Full pass time of TensorFlow and PALEO estimation on AlexNet and VGG-16.

Forward pass (ms) Backward pass (ms)
AlexNet TensorFlow 44.00 155.10
PALEO Estimation 45.96 118.44
VGG-16 TensorFlow 400.46 1117.48
PALEO Estimation 435.46 1077.27




Benchmark Owners:

/ CANDLE Benchmarks . P1: Fangfang Xia (ANL)

e P2: Brian Van Essen (LLNL)

https://github.com/ECP-CANDLE e P3: Arvind Ramanathan (ORNL)
. Additional
Benchmark Type SIlpIS s (activation, layer
yp Size Network 7
types, etc.)
1: B1 Autoencoder RNA-Seq 5 layers Log2 (x+1) = [0,1]
KPRM-UQ
2.1 82 Clasiier mru ngRe 5 po nse Slayers  Traiing St Balance
issues
3. P1: B3 Regression MLP+LCN  expression; 10° 3M 8 layers Drug Response
drug descs [-100, 100]
4. P2: B1 Autoencoder V\R a S patl 102 5108 S 5-8 layers  State Compression
5. P2: B2 RNN-LSTM RNN-LSTM  MD K-RAS  10° 106 4 layers State to Action
6. P3: B1 RNN-LSTM NN;LSTM  Path 42 Iayers Dictionary 12K +30K
Patient Trajectorigs
7. P3: B2 Classifica layers Biomarkers
reports

@ U.S. DEPARTMENT OF NATIONAL CANCER lNSTITUTE
ENERGY [ID) 64



Typical Performance Experience

CANDLE - Predicting drug response of tumor samples
* MLP/CNN on Keras
e 7 layers, 30M - 500M parameters

200 GB input size

1 hour/epoch on DGX-1; 200 epochs take 8 days (200 GPU
hrs)

Hyperparameter search ~ 200,000 GPU hrs or 8M CPU hrs

Protein function classification in genome annotation
Deep residual convolution network on Keras
50 layers
1 GB input size

20 minutes/epoch on DGX-1; 200 epochs take 3 days (72
GPU hrs)

Hyperparameter search ~ 72,000 GPU hrs or 2.8M CPU hrs




Github and FTP

ECP-CANDLE GitHub Organization:

ECP-CANDLE FTP Site:

The FTP site hosts all the public datasets for the
benchmarks from three pilots.

@cNErcY [



Things We Need

Deep Learning Workflow Tools
Data Management for Training Data and Models

Performance Measurement, Modeling and
Monitoring of Training Runs

Deep Network Model Visualization

Low-level Solvers, Optimization and Data
Encoding

Programming Models/Runtimes to support next
generation Parallel Deep Learning with sparsity

OS Support for High-Throughput Training




