
Argonne Training Program on Extreme-Scale Computing
(ATPESC)

Presented to

ATPESC 2017 Participants

Peter Kogge

Data Intensive Computing, the 3rd Wall, and
the Need for Innovation in Architecture

Q Center, St. Charles, IL (USA)
Date 08/04/2017

http://deathofdrawing.com/wp-content/gallery/raimund-abraham/RA-House-With-Three-Walls.jpg

ATPESC 2017, July 30 – August 11, 2017 2

When Do We Need New Architectures

• Long-lasting architectural advances occur when a “wall” must be
overcome

• 1st Wall – Mid 90s: the Memory Wall

• 2nd Wall – 2004: the Power Wall

• 3rd Wall – Now: the Locality Wall

And this is largely due to emergence of apps with
Data Intensive Characteristics

ATPESC 2017, July 30 – August 11, 2017 3

What Do I Mean by Data Intensive?

• Computation dominated by data access & movement – not flops

• Large sets of data often persistent

– but little reuse during computation

• No predictable regularity

• Significantly different scaling

• Streaming becoming important

The “Locality” we have come to expect
from our apps is disappearing

ATPESC 2017, July 30 – August 11, 2017 4

This Talk

• Moore’s Law and the Prior Walls

• Today’s Architectures

• Evidence of a New “Locality” Wall

– Benchmarks

– A Big Data Application

• Migrational Computing: a Possible Architectural Fix

ATPESC 2017, July 30 – August 11, 2017 5

Technology, Moore’s Law, and Beyond

• Moore’s Law: 2D transistors get smaller & faster

– From 10um to 5nm feature size: 2,000X smaller & faster

• Cores get smaller, faster, lower power

– Power density approx. constant as long as Vdd declines

• Memory arrays get denser

– To maximize density, access time drops at best slowly

– Can increase bandwidth, but power skyrockets

• After Moore’s Law: we’re going 3D!

– With a mix of die types

http://www.micron.com/products/hybrid-memory-cube

ATPESC 2017, July 30 – August 11, 2017 6

The Memory Wall (mid 1990s)

http://www.extremetech.com/wp-content/uploads/2014/07/140364245678419.jpg

• Core clock speeds outran memory latency

• Breaking the Wall: Use extra transistors for

– Bigger on-chip SRAM caches

– More ILP to find more memory accesses

– Add additional floating point capability

• Enablers: Applications had plenty of locality

• Example: Ax=b, A is large, dense, matrix

– Tremendous temporal locality

– Assume caches can save nxn patch of A

– O(n2) to read nxn patch of A to cache

– O(n3) operations on this patch

• With big enough cache, don’t care how slow memory is

ATPESC 2017, July 30 – August 11, 2017 7

The Power Wall (2004)

• Flattening Vdd increased power density

– Bigger chips meant more logic to dissipate

• Result: at 120Watts, cooling uneconomical

• Breaking the wall:

– Lower the clock rate

– Use multiple simpler cores

– Increase SIMD-style parallelism

• Side-effect: need more bandwidth

• Solution for dense apps: again bigger caches

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1985 1990 1995 2000 2005 2010 2015 2020 2025

V
d

d

High Perf Low Power DRAM

Vdd flattened

Power ~ CFV2

1

10

100

1,000

1
/1

/8
0

1
/1

/8
4

1
/1

/8
8

1
/1

/9
2

1
/1

/9
6

1
/1

/0
0

1
/1

/0
4

1
/1

/0
8

1
/1

/1
2

T
o

ta
l
D

ie
 P

o
w

e
r

 (
W

a
tt

s
)

10

100

1,000

10,000

1
/1

/8
0

1
/1

/8
4

1
/1

/8
8

1
/1

/9
2

1
/1

/9
6

1
/1

/0
0

1
/1

/0
4

1
/1

/0
8

1
/1

/1
2

C
lo

c
k

 (
M

H
z
)

2004: Power/Chip
Flattened

2004: Clock Growth
Stopped

ATPESC 2017, July 30 – August 11, 2017 8

2004: Emergence of Multi-core

1

10

100

1990 1995 2000 2005 2010 2015 2020

C
o

re
s

p
e

r
So

ck
e

t

http://www.guru3d.com/index.php?ct=news&action=file&id=19577

https://cdn.arstechnica.net/wp-content/uploads/sites/3/2017/05/voltablockdiagram.png

28 cores

84 SM cores
5376 CUDA cores

ATPESC 2017, July 30 – August 11, 2017 9

Today’s Hybrid Multi/Many Core/Socket Architecture

• Nothing is uniform about memory
references

• Multiple memory domains

• Multiple memory ports & types

• Multiple different link protocols

• Higher bandwidth parts needed (at
energy costs)

• Growing “width” of data returned
from an access (spatial locality)

General
Purpose
Socket

DDR4

DDR4

General
Purpose
Socket

DDR4

DDR4

.

.

.

.

.

.

General
Purpose
Socket

DDR4

DDR4

General
Purpose
Socket

DDR4

DDR4

.

.

.

.

.

.

Network Interface Chip

GPU

Socket

GDDR

GDDR

.

.

.

GPU

Socket

GDDR

GDDR

.

.

.

ATPESC 2017, July 30 – August 11, 2017 10

Energy Tightly Tied to Locality

Greg Asfalk, HP

• Increasing with Non-Locality

• Largely unchanged by new

technologies

Perhaps 5 pJ in best of today

Exascale goal of 20 pJ per flop
unreachable if any memory
references need to be made

ATPESC 2017, July 30 – August 11, 2017 11

Need for More Memory Bandwidth – Multi-level Memories

https://cdn.arstechnica.net/wp-content/uploads/sites/3/2017/05/NVIDIA-Telsa-V100.jpg http://www.amd.com/PublishingImages/graphics/illustrations/570px/6315-hbm-stacks-diagram.png

HBMs: 4-5X bandwidth, but wider transfer/access

ATPESC 2017, July 30 – August 11, 2017 12

Benchmark Name

LINPACK

HPCG: Hi Perf Cong.

Grad.

SpMV: Sparse Mat. Vec.

BFS: Breadth First

Search

FireHose

And Apps Are Changing – Lets look at some Benchmarks

Function Performed

Solve Ax=b;

A is dense

Ax=b; A sparse but regular

Ab; A sparse & irregular

Find all reachable vertices from

root

Find “events” in streams of

data

ATPESC 2017, July 30 – August 11, 2017 13

Performance vs Time
Peak Flops

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

01/01/10 01/01/11 01/01/12 12/31/12 01/01/14 01/01/15 01/01/16 12/31/16

GT
EP

S

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Graph 500

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

01/01/14 01/01/15 01/01/16 12/31/16

HP
CG

 F
lo

ps
 (G

F/
s)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

HPCG

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

01/01/92 01/01/96 01/01/00 01/01/04 01/01/08 01/01/12 01/01/16

Rm
ax

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Top 500 Rmax

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

01/01/92 01/01/96 01/01/00 01/01/04 01/01/08 01/01/12 01/01/16

Pe
ak

 F
lo

ps
 (G

F/
s)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Rapid increase driven by

Moore’s Law: Cache size

& # FPUs

Flatness implies

bound by

something else

ATPESC 2017, July 30 – August 11, 2017 14

Performance/Byte of B/W vs Time
Peak Flops

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

01/01/14 01/01/15 01/01/16 12/31/16

HP
CG

 F
lo

ps
 (G

F/
s)

 p
er

 P
ea

k
Ba

nd
w

id
th

(G

B/
s)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG
1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

01/01/10 01/01/11 01/01/12 12/31/12 01/01/14 01/01/15 01/01/16 12/31/16
GT

EP
S

pe
r P

ea
k

Ba
nd

w
id

th
 (G

B/
s)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Graph 500 HPCG

Top 500 Rmax

1.E+02

1.E+03

1.E+04

1.E+05

01/01/92 01/01/96 01/01/00 01/01/04 01/01/08 01/01/12 01/01/16

Pe
ak

 F
lo

ps
 (G

F/
s)

 p
er

 P
ea

k
Ba

nd
w

id
th

(G

B/
s)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Increase due to bigger caches

in cores do more flops

for same memory reads

Flatness of top systems

implies memory

bandwidth bound

1.E+02

1.E+03

1.E+04

1.E+05

01/01/92 01/01/96 01/01/00 01/01/04 01/01/08 01/01/12 01/01/16

Rm
ax

 p
er

 P
ea

k
Ba

nd
w

id
th

 (G
B/

s)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

ATPESC 2017, July 30 – August 11, 2017 15

Perf./Byte of B/W vs Perf.
Peak Flops

Graph 500 HPCG

Top 500 Rmax

1.E+02

1.E+03

1.E+04

1.E+05

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Rm
ax

 p
er

 P
ea

k
Ba

nd
w

id
th

 (G
B/

s)

Rmax

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG1.E+02

1.E+03

1.E+04

1.E+05

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Pe
ak

 F
lo

ps
 (G

F/
s)

 p
er

 P
ea

k
Ba

nd
w

id
th

(G

B/
s)

Rmax

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

HP
CG

 F
lo

ps
 (G

F/
s)

 p
er

 P
ea

k
Ba

nd
w

id
th

(G

B/
s)

HPCG Flops (GF/s)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG 1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
GT

EP
S

pe
r P

ea
k

Ba
nd

w
id

th
 (G

B/
s)

GTEPS

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Bigger systems have newer cores

with bigger caches to do more

flops for same memory reads

HPCG is Memory

Bandwidth Bound

Decline vs size due to

loss of injection bandwidth

in bigger systems

ATPESC 2017, July 30 – August 11, 2017 16

Performance per Watt vs Time

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

01/01/92 01/01/96 01/01/00 01/01/04 01/01/08 01/01/12 01/01/16

Pe
ak

 F
lo

ps
 (G

F/
s)

 p
er

 P
ow

er
 (K

W
)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG
1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

01/01/92 01/01/96 01/01/00 01/01/04 01/01/08 01/01/12 01/01/16

Rm
ax

 p
er

 P
ow

er
 (K

W
)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

01/01/14 01/01/15 01/01/16 12/31/16

HP
CG

 F
lo

ps
 (G

F/
s)

 p
er

 P
ow

er
 (K

W
)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG
1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

01/01/10 01/01/11 01/01/12 12/31/12 01/01/14 01/01/15 01/01/16 12/31/16

GT
EP

S
pe

r P
ow

er
 (K

W
)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Peak Flops

Graph 500 HPCG

Top 500 Rmax

Rapid Increase because

ratio dependent on logic

technology alone; more flops/s

per socket

Flat probably because near

perfect weak scaling

and no real memory

improvement

ATPESC 2017, July 30 – August 11, 2017 17

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

GT
EP

S
pe

r P
ow

er
 (K

W
)

GTEPS

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Perf. per Watt vs Perf.

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Rm
ax

 p
er

 P
ow

er
 (K

W
)

Rmax

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Pe
ak

 F
lo

ps
 (G

F/
s)

 p
er

 P
ow

er
 (K

W
)

Rmax

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Pe
ak

 F
lo

ps
 (G

F/
s)

 p
er

 H
PC

G
Fl

op
s (

GF
/s

)

HPCG Flops (GF/s)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Peak Flops

Graph 500 HPCG

Top 500 Rmax

Regular neighbor traffic places

little demands on networking as

system scales

Traffic again regular;

Near perfect weak scaling

Random irregular traffic reduces

node injection B/W as system scales

ATPESC 2017, July 30 – August 11, 2017 18

Green-GRAPH500

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E-02 1.E+00 1.E+02 1.E+04 1.E+06

GT
EP

S/
W

at
t

Edges (G)

GPUs where problem

fits in GPU Memory

ATPESC 2017, July 30 – August 11, 2017 19

Sparsity & Conventional Scalability

0.001

0.01

0.1

1

10

100

1000

1 10 100 1,000 10,000 100,000

Pe
rfo

rm
an

ce
 N

or
m

al
ze

d
to

 P
ea

k
Si

ng
le

 D
om

ai
n

Domains
HPCG:Unconv HPCG:Conv SpMV:Sparse7 SpMV:Sparse49 SpMV:Sparse73 BFS

Across all benchmarks, it takes 10-1000

nodes of distributed memory systems to

equal best of single domain systems for the

sparsest problems

Bylina et al., “Performance Analysis of Multicore and Multinodal Implementation of SpMV Operation”, 2014. www.graph500.org. http://www.hpcg-benchmark.org/

Observation: Extreme Sensitivity to

• Level of Sparsity

• # of physically separate memory domains

ATPESC 2017, July 30 – August 11, 2017 20

Firehose Streaming Benchmark

• http://firehose.sandia.gov/

• Datum: Comma separated ASCII string
– Key: ASCII string representing 64b uint (IP adr)

– Value: depends on benchmark variant

– Truth flag: was the stream from this key biased

• Event: detection of 24 datums with same “key”

• Anomaly: value distribution biased towards 0s
– 3 variants defined

• Performance metric: Datums/sec

Extract

Datum

Parse

Datum

Compute

Hash

Probe

Table

Update

Counts

Prepare

Report

Clear

Entry

Initialize

Entry

=24 Hit

Miss

Packet

Stream

0

2

4

6

8

10

12

14

0 2 4 6 8 10

D
at

u
m

s/
se

c
(M

il
li

o
n

s)

Number of Cores in Analysis

Waterslide

Python

C++

Phish

Solid: Anomaly2

Hollow: Anomaly1

Single Node Performance

Terrible Scaling

ATPESC 2017, July 30 – August 11, 2017 21

Large Scale Anomaly 1 Processing

• SNL SkyBridge, Cray-CS300 1848 2-socket nodes at

16 cores/node

• From “Stateful Streaming in Dist. Memory

Supercomputers,” Berry & Porter, CLSAC 2016

• MPI with PHISH runtime library

• Approx 2.75 M datums/s per node

• Or about 220 M/s per rack

Scaling line is fairly linear

BUT at 2.75M datums/s per 32 core node,

0.09M datums/s per core is 1/60 that of a single core

ATPESC 2017, July 30 – August 11, 2017 22

Benchmark Name

LINPACK

HPCG: Hi Perf Cong.

Grad.

SpMV: Sparse Mat. Vec.

BFS: Breadth First

Search

FireHose

Summary: Basic Benchmarks
– Non-traditional Have Locality Issues

Function Performed

Solve Ax=b;

A is dense

Ax=b; A sparse but regular

Ab; A sparse & irregular

Find all reachable vertices from

root

Find “events” in streams of

data

Performance

Limiters

Cache size & # FPUs

Memory B/W

Memory B/W; some

Network

Network B/W; Remote

atomics

Managing the streaming

ATPESC 2017, July 30 – August 11, 2017 23

Real World Challenge Data Intensive Problem
(From Lexis Nexis)

• 2012: 40+ TB of Raw Data

• Periodically clean up & combine to
4-7 TB

• Weekly “Boil the Ocean” to
precompute answers to all
standard queries

– Does X have financial difficulties?

– Does X have legal problems?

– Has X had significant driving
problems?

– Who has shared addresses with X?

– Who has shared property ownership
with X?

Auto Insurance Co: “Tell me about giving auto policy to Jane Doe” in < 0.1sec

“Jane Doe has no indicators
But
she has shared multiple addresses
with Joe Scofflaw
Who has the following negative
indicators ….”

Look up answers to precomputed
queries for “Jane Doe”, and combine

Relationships

ATPESC 2017, July 30 – August 11, 2017 24

Traditional Approach: Runaway Intermediate Data

14.2B recs

325 B/rec

4.6TB
Project

14.2B recs

100+ B/rec

1.5TB

Join on

Address

1.6T recs

200+ B/rec

300+TB

Sort &

Remove

Duplicates

1.5T recs

30B/rec

45TB

• Compute adr hash

• Compare lnames

• Init score to 3

• Project

1.6T recs

30 B/rec

48+TB

Group by

ID pairs &

Sum scores,

Lname_match

{(ID1, ID2,

adrhash, score,

lname_match)}

{(ID, lname, adr)}

Hash ID1,2

& Distribute

12B recs

16B/rec

200GB

Select on

Score &

Lname_match

1.2T recs

16B/rec

20TB

{(ID1, ID2, score, lname_match)}

800M distinct IDs

400M distinct IDs

Send between

nodes via TCP/IP

datagrams

“h”
“t”

“J”

“D”

ATPESC 2017, July 30 – August 11, 2017 25

2012: 400 2-socket nodes (10 racks)

2013 study looked at “future” alternatives:

• Upgrades to conventional

• “Lightweight” systems

– Lower power, lower performance cores

– Study assumed Calxeda 4-core ARMs

– but systems like HP Moonshot similar

• Sandia’s X-Caliber project

– Heavyweight with HMC-like memories

– Resembles Intel’s Knights Landing

• All processing on bottom of 3D stack

– System = “sea” of stacks

Projecting Performance for LexisNexis’ Implementation

(b) X-caliber Node Mockup

ATPESC 2017, July 30 – August 11, 2017 26

Heavyweight Alternatives Using LN’s App Flow

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

s U
se

d/
no

de
 (s

ec
)

Step #
Disk CPU Memory Network

Baseline: 1026s
10 racks

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

s U
se

d/
no

de
 (s

ec
)

Step #
Disk CPU Memory Network

Upgrade all but Processor
355s, 10 racks

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

s U
se

d/
no

de
 (s

ec
)

Step #
Disk CPU Memory Network

Upgrade all inc. Processor
126s, 10 racks

Performance Options:

• Socket: 6C to 24C

• Memory B/W by 3X

• Disk to SSD or RAMDisk

• Network to Infiniband

No one option grows

performance more than 45%

ATPESC 2017, July 30 – August 11, 2017 27

Unconventional Alternatives

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

s U
se

d/
no

de
 (s

ec
)

Step #
Disk CPU Memory Network

Baseline: 1026s
10 racks

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

s U
se

d/
no

de
 (s

ec
)

Step #
Disk CPU Memory Network

Lightweight
1184s, 2 racks

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

s U
se

d/
no

de
 (s

ec
)

Step #
Disk CPU Memory Network

2-level memory
1068s, 3 racks

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

s U
se

d/
no

de
 (s

ec
)

Step #
Disk CPU Memory Network

3D Stack Only
5s, 1 rack

ATPESC 2017, July 30 – August 11, 2017 28

Migrational Computing: An Alternative Architecture

• Thread Migration: move site of a thread’s execution

• Rationale: make memory reference LOCAL!

• Today: either invisible (e.g. during I/O call) or explicit (as in Chapel)

• New idea: make migration automatic on remote memory access

https://i.ytimg.com/vi/i7qrs2Db2l0/maxresdefault.jpg
https://images8.alphacoders.com/428/thumb-350-428007.jpg

ATPESC 2017, July 30 – August 11, 2017 29

A Migrational Architecture

Memory
Channel

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Memory

Memory
Front End

Core(s)

Network

Nodelet: New unit of parallelism

Threads execute here

Until they make a non-local reference
And then moved to correct nodelet

. . .

And they are free to spawn
independent children

All memory in single
global address space

Smart Memory
Controllers
that also do atomics

ATPESC 2017, July 30 – August 11, 2017 30

A Real Migrational System

MFE

GCore

GCore

GCore

GCore

Memory

(a) Nodelet

N/W
I/F

I/O
I/F

SC

N
odelet

N
odelet

N
odelet

Migration Engine

… …

(b) Node
Up Links

Intra Supernode
Switch

…

No
de

No
de

…
(c) SuperNode

Migrating Threads

are major traffic

on Network

Multi-Threaded

Cores Stationary Core

Runs OS, Launches

Jobs

Atomics run

in Memory

Front End (MFE)

ATPESC 2017, July 30 – August 11, 2017 31
31

Near Term Scaling

Emu Chick
• 8 Nodes, 64 Memory Channels
• Copy room environment

Emu1 Memory Server
• 256 nodes, 2048 Memory Channels
• Server room environment

The node boards
are the same!

ATPESC 2017, July 30 – August 11, 2017 32

Sparse Matrix-Dense Vector with Migrating Threads

struct Aelt {

 int col;

 Aelt *next_rowelt};

Thread carries i, sum,

nextj with it

nextj = Ahdr[i];

sum=0;

while (nextj != 0) {

 sum += x[(*nextj).col];

 nextj = (*nextj).next_rowelt;

};

q[i] = sum;

q

x

r

p

A[i,*]
header

… …

Nodelet 0 Nodelet 1 Nodelet P-1 Nodelet P

Migration before access

No migration before access

One Aelt for each non-zero in some row of A
• Non-zero value
• Column index
• Pointer to next non-zero

ATPESC 2017, July 30 – August 11, 2017 33

SpMV with Migrating Threads

0.01

0.1

1

10

1 10 100 1000

flo
ps

/B
yt

e
of

 M
em

.
Ch

 B
/W

Number of Memory Channels

s=398

s=73

s=49

s=7

Hybrid

Per row for migrating threads:

• Stinger-like multiple CSR

blocks

• 32s+108 bytes

• At most s+1 migrations

ATPESC 2017, July 30 – August 11, 2017 34

Firehose with Migration

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12

Da
tu

m
s/

se
c (

M
ill

io
ns

)

Number of Cores in Analysis

Python C++ Phish/C++ Waterslide Emu 1

Extract

Datum

Parse

Datum

Compute

Hash

Probe

Table

Update

Counts

Prepare

Report

Clear

Entry

Initialize

Entry

=24Hit

Miss

Packet

Stream

1 Emu thread per datum

• 1 Emu Chick (64 nodelets) = 88X a CS300 node

• 1 Emu Rack (2048 nodelets) = 35X a CS300 rack

Single Blade Multi-Core
Emu

Cray

CS300

Multi-Blade

Emu Nodelet Bounds:

• Memory access: 20.4 M/s

• Network bound: 18M/s

• Instr. Rate bound: 3.8M/s

ATPESC 2017, July 30 – August 11, 2017 35

Ultimate Scaling: Sea of Memory Stacks

• Add Cores below each vault

• Upgrade off-stack interfaces
to full peer-peer protocol

• Add in second stack of non-
volatile

• Result: standalone stack with
32 independent nodelets

35

http://www.micron.com/products/hybrid-memory-cube

X

Migrating Threads

Migrating Threads are the Glue!
X

ATPESC 2017, July 30 – August 11, 2017 36

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

ov
er

 2
01

2
Ba

se
lin

e

Racks
HeavyWeight Lightweight Next-Gen Compute Emu

Projection for Massive “Batch-Mode”LexisNexis Problem

Emu1

Emu2

Emu3

Baseline

Upgrades

Emu1 assumes 400MHz GCs

2400 MT/s DRAM Channels

ARM servers

KNL-Like

Real-Time Streaming Version Even Better

ATPESC 2017, July 30 – August 11, 2017 37

Conclusions

• Non-locality increasing rapidly in real apps

• Current architectures becoming badly inefficient

• The problem is in the memory & scaling

• Growing need for “remote functions”

• Migrating threads greatly simplify all

• Natural projection to 3D systems

ATPESC 2017, July 30 – August 11, 2017 38

Acknowledgements

Benchmark Analysis in part by:

• NSF grant CCF-1642280

• US Dept. of Energy, Award# DE-NA0002377, as part of Center for
Shock-Wave Processing of Advanced Reactive Materials (C-
SWARM) at the Univ. of Notre Dame, Notre Dame, IN

Emu hardware design by Emu Solutions, Inc

