
Big	Data	Analytics:	The	Apache	
Spark	Approach

Michael Franklin
ATPESC

August 2017

Nearly	every	field	of	endeavor	is	transitioning	
from	“data	poor”	to	“data	rich”

Astronomy:	LSST

2

Physics:	LHC
Oceanography

Sociology:	The	Web

Biology:	Sequencing
Economics:	mobile,	

POS	terminals

Neuroscience:	EEG,	fMRI

Data-Driven	Medicine Sports

The Fourth Paradigm of Science
1. Empirical	+ experimental
2. Theoretical
3. Computational
4. Data-Intensive

3

Open	Source	Ecosystem	&	Context

4

���

2006-2010
Autonomic Computing & Cloud

UC BERKELEY

2011-2016
Big Data Analytics

Usenix HotCloud Workshop 2010

AMPLab	Project	Vision
“Making	Sense	of	Data	at	Scale”

Algorithms

• Machine	Learning,	Statistical	Methods
• Prediction,	Business	Intelligence

Machines

• Clusters	and	Clouds
• Warehouse	Scale	Computing

People

• Crowdsourcing,	Human	Computation
• Data	Scientists,	Analysts

Berkeley	Data	Analytics	Stack

In House Applications – Genomics, IoT, Energy, Cosmology

Access and Interfaces

Processing Engines

Resource Virtualization

Storage

Some	AMPLab	numbers
• Funding	– roughly	50/50	Govt/Industry	Split

– NSF	CISE	Expeditions,	DARPA,	DOE,	DHS
– Google,	SAP,	Amazon,	IBM	(Founding	Sponsors)	+	dozens	more

• Nearly	2M	visits	to	amplab.cs.berkeley.edu
• 200+	Papers	in	Sys,	ML,	DB,	…	3	ACM	Dissertation	Awards						

(1	+	2	HM);	Numerous	Best	Paper	and	Best	Demo	Awards
• 40+	Ph.D.s granted		(so	far);		Alumni	on	faculty	at	Berkeley,	

Harvey	Mudd,	Michigan,	MIT,	Stanford,	Texas,	Wisconsin,…
• 3	Spinout	companies	directly	from	AMPLab:	

– Databricks,	Mesosphere,	Alluxio
– Nearly	$250M	raised	to	date

• Many	industrial	products	&	services	based	on	or	using	Spark
• 3	Marriages	(and	numerous	long-term	relationships)

7

Apache	Spark	Meetups (August	2017)

8

618 groups with 391,371 members
spark.meetup.com

We	Hit	A	Data	Management	Inflection	
Point

• Massively	scalable processing	and	storage
• Pay-as-you-go processing	and	storage										

(a.k.a.	the	cloud)
• Flexible schema	on	read	vs.	schema	on	write
• Integration of	search,	query	and	analysis
• Sophisticated machine	learning/prediction
• Human-in-the-loop analytics
• Open	source	ecosystem driving	innovation	

BDAS	Unification	Strategy
• Specializing	MapReduce leads	to	stovepiped
systems

• Instead,	generalizeMapReduce:	

1.	Richer	Programming	Model
èFewer	Systems	to	Master

2.	Data	Sharing
èLess	Data	Movement		leads

to	Better	Performance	
Spark	showed	10x	performance	improvement	on	
existing	HDFS	data	with	no	migration.

Spark

St
re

am
ing

G
ra

ph
X

…Sp
ar

kS
Q

L

M
Lb

as
e

10

Abstraction:	Dataflow	Operators

• map

• filter

• groupBy

• sort

• union

• join

• leftOuterJoin

• rightOuterJoin

• reduce

• count

• fold

• reduceByKey

• groupByKey

• cogroup

• cross

• zip

sample

take

first

partitionBy

mapWith

pipe

save

...

11

Iteration	in	Map-Reduce

Training
Data

Map Reduce Learned
Model

w(1)

w(2)

w(3)

w(0)

Initial
Model

12

Cost	of	Iteration	in	Map-Reduce
Map Reduce Learned

Model

w(1)

w(2)

w(3)

w(0)

Initial
Model

Training
Data

Read 2
Repeatedly
load same data

13

Cost	of	Iteration	in	Map-Reduce
Map Reduce Learned

Model

w(1)

w(2)

w(3)

w(0)

Initial
Model

Training
DataRedundantly save
output between

stages

14

Dataflow	View

Training
Data

(HDFS)

Map

Reduc
e

Map

Reduc
e

Map

Reduc
e

15

Memory	Opt.	Dataflow

Training
Data

(HDFS)

Map

Reduc
e

Map

Reduc
e

Map

Reduc
e

Cached
Load

16

Memory	Opt.	Dataflow	View

Training
Data

(HDFS)

Map

Reduc
e

Map

Reduc
e

Map

Reduc
e

Efficiently
move data
between
stages

Spark:10-100× faster than Hadoop MapReduce17

Spark	Fault	Tolerance
• RDDs:	Immutable collections	of	objects	that	can	
be	stored	in	memory	or	disk	across	a	cluster
– Built	via	parallel	transformations	(map,	filter,	…)
– Automatically	rebuilt	on	(partial)	failure

M.	Zaharia,	et	al,	Resilient	Distributed	Datasets:	A	fault-tolerant	abstraction	for	in-memory	cluster	
computing,	NSDI	2012.	 18

messages = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

HadoopRDD
path	=	hdfs://…

FilteredRDD
func =	_.contains(...)

MappedRDD
func =	_.split(…)

DataFrames
(main	abstraction	in	Spark	2.0)	

employees

.join(dept,	employees("deptId")	=== dept("id"))	

.where(employees("gender")	===	"female")	

.groupBy(dept("id"),	dept("name"))

.agg(count("name"))

Notes:
1) Some people think this is an improvement over SQL J
2) Dataframes can be typed

19

Catalyst	Optimizer
• Typical	DB	optimizations	across	SQL	and	DF
– Extensibility	via	Optimization	Rules	written	in	Scala
– Open	Source	optimizer	evolution!

• Code	generation	for	inner-loops,	iterator	removal
• Extensible	Data	Sources:	CSV,	Avro,	Parquet,	JDBC,	…
via	TableScan (all	cols),	PrunedScan (project),	
FilteredPrunedScan(push	advisory	selects	and	projects)	
CatalystScan (push	advisory	full	Catalyst	expression	trees)
• Extensible	(User	Defined)	Types

20

M.	Armbrust,	et	al,	Spark	SQL:	Relational	Data	Processing	in	Spark,	SIGMOD	2015.	

An	interesting	thing	about	SparkSQL
Performance

21

Lambda	Architecture:	
one	way	to	combine	Real-Time	+	Batch

• lambda-architecture.net
22

Spark	Streaming
• Microbatch approach	provides	low	latency

Additional operators provide windowed operations

M.	Zaharia,	et	al,	Discretized	Streams:	Fault-Tollerant Streaming	Computation	at	Scale,		SOSP	2013
S.	Venketaraman et	al,	Azkar:		Fast	and	Adaptable	Stream	Processing	at	Scale,	SOSP	2017 23

Spark	Structured	Streams	(unified)

24

Batch Analytics

Streaming Analytics

25

SQL

Machine
Learning

Streaming

Putting	it	all	Together:	
Multi-modal	Analytics

27

From:	Spark	User	Survey	2016,	1615	respondents	from	900	organizations
http://go.databricks.com/2016-spark-survey

28

29

30

Spark	Ecosystem	Attributes

• Spark	focus	was	initially	on
– Performance +	Scalability with	Fault	Tolerance

• Eventually,	ease	of	development was	a	key	
feature
– especially	across	multiple	modalities:	DB,	Graph,	
Stream,	etc.

• This	was	true	of	most	Big	Data	software	of	that	
generation

• Low	Latency	(streaming)	and	Deep	Learning are	
also	garnering	significant	attention	lately

What’s	Next?
Innovation	in	(open	source)	Big	Data	Software	continues.
Performance,	Scalability,	and	Fault	Tolerance	remain	
important,	but	we	face	new	challenges,	including:	
Data	Science	Lifecycle

• Data	Acquisition,	Integration,	Cleaning	(i.e.,	wrangling)
• Data	Integration	remains	a	“wicked	problem”
• Model	Building
• Communicating	results,		Curation,	“Translational	Data	Science”

Ease	of	Development	and	Deployment
• Can	leverage	database	ideas	(e.g.,	declarative	query	optimization)
• New	components	for	“model	serving”	and	“model	management”

“Safe”	Data	Science
• end-to-end	Bias	Mitigation
• Security,	Ethics	and	Data	Privacy
• Explaining	and	influencing	decisions	
• Human-in-the-loop

33

Thanks and for More Info

Mike	Franklin
mjfranklin@uchicago.edu

