Sandia
Exceptional service in the national interest @ National

Laboratories

Hardware/Software Co De5|gn for ngh Performance
Interconnects for Extreme-Scale Systems

....'..2 .
< (‘ R Ron Brightwell, R&D Manager
(N

Center for Computing Research Center for Computing Research
@ij} ErNED SN VIS Sandia National Laboratories i It laborat d and ted by Sandia C ti holl d subsidi f Lockheed Martin C tion, for the U.S. Departi it of El "
& R andia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
% @ EN ERGY ///’ v A D ﬂ National Nuclear Security Administration under contract DE-AC04-94AL85000.

Portals Interconnect Programming Interface

Developed primarily by Sandia, U. New Mexico, Intel

Deployed on several production massively parallel processing (MPP) and cluster systems

1993:
1997:
1999:
2005:
2009:
2017:

Focused on providing POrtq IS

1800-node Intel Paragon (SUNMOS)
10,000-node Intel ASCI Red (Puma/Cougar)
1800-node Cplant cluster (Linux)

10,000-node Cray Sandia Red Storm (Catamount)
18,688-node Cray XT5 — ORNL Jaguar (Linux)

Bull BXI interconnect

Lightweight “connectionless” model for massively parallel systems

Low latency, high bandwidth

http://www.cs.sandia.gov/Portals/

Independent progress

Overlap of computation and communication

Scalable buffering semantics
Protocol building blocks to support higher-level application protocols and libraries and system services

At least three hardware implementations currently under development
Portals influence can be seen in InfiniBand APIs and libfabric (Intel & others)

2
I

Intel Paragon Node (Circa 1993)

I 2
Intel Paragon™ Supercomputers ,¢’, E Message Processor. When an applicalion GP NODE :
/’ I decides to send a mesage, the node’s i860 XP =n H

e , o i message processor handles message-protocol _I i
Emﬁ // ! processing and frees the application processor to _m i
— /’ i continue with numeric computing. Messaging __I !
ol I software is executed from the message !

’/' ! processor’s internal cache, enabling overlapped I E

*z_' L "E communication and application processing to H H

H | occur without incurring expensive context- - I i

i i switching delays. The message processor is also Sowarec i

z i | I used to implement efficient global operations Somiz 1
intgl e i E such as synchronization, broadcasting and global General-Purpose Node. Each E
| I reduction calculations (e.g., global sum). GP node dedicates one i860 XP !

- "‘~~-,' Message Routing. The actual transmission of processor to user applications i

i messages is carried out by an independent and one 1o message processing. :

! routing system of custom-designed Mesh Router The GP node’s expansion port i

Mo E Controllers (MRCs), one for each node, arranged allows the olkilition of on 10 or)

‘~~J. in a two-dimensional mesh. These fixed-function aeruuiing atirfiuns. E

Intel ASCI Red (TFLOPS) Compute Node

Boot Support
Expansion
Connector

Pentium Pro processor §| Pentium Pro processor

L2 Cache CPu L2 Cache CPU Bt'ifgge

- = - - - Memo

NIC Contro

Two 64-bit Local
buses

ICF link NIC Conie

g

170

; Bridge
ti re pr Pentium Pro processor .
Pentium Pro processor P Expansion

Connector

PCl bus

L2 Cachy CPU L2 Cache CPU
a— - Boot Support

Figure 3: The ASCI Option Red supercompater Kestrel Board. This board inchides two compute nodes chaired together through their NIC's.
Ore of the NIC's comects to the MRC on the backplare thvoagh the ICF Link.

4
|

Paragon/TFLOPS Network Interface Controller (NIC)

= Attached to the memory bus
= Cache coherent with the processor(s)
= Programmed by the operating system (OS)

= Device driver was embedded in the OS
= Driver consisted of programming DMA engines and memory-mapped registers
= |nterrupt-driven

= An interrupt would be generated for:
= Arrival of an incoming message
= Completion of an incoming message
= Completion of an outgoing message

= Messages initiation via system call trap

= Source-routed, circuit-switched, wormhole routed network
= Message header contained route to destination
= Message body was one contiguous block

Basic Assumptions About Networking for MPPs

= Asingle low-level network APl is needed
= Compute node may not have a TCP/IP stack

= System is space-shared
= Compute node application should own all network resources

= Applications will use multiple protocols simultaneously
= Can’t focus on just MPI
= Runtime system, system call forwarding, I/O protocols too

= Need to support communication between unrelated processes

= Client/server communication between application processes and system services

= Need to support general-purpose interconnect capabilities

= Can’t assume special collective network hardware

= |nterconnect hardware limitations can’t be fixed in software

6
I

Key Network Capabilities

Independent progress
= Data should move without requiring polling from user-level library
= Adhere to the strong progress rule interpretation of MPI

Overlap
= Decouple the host processors from the network as much as possible
= Enable overlap of computation and communication as well as communication and
communication
Scalable use of memory resources
= Buffer space for MPI unexpected messages
= Memory use should be independent of the number of peers

High performance
= Maximize bandwidth by avoiding memory-to-memory copies
= Minimize latency by avoiding OS interaction

Design Philosophy: Don’t Arbitrarily Constrain

Connectionless
= Easy to do connections over connectionless
= |mpossible to do vice-versa

One-sided

= Easy to do two-sided over one-sided

= Hard to do vice-versa

Matching

= Needed to enable flexible independent progress

= Otherwise matching and progress must be done by upper layers

Offload
= Straightforward to onload API designed for offload
= Hard to do vice-versa (see TCP Offload Engines [TOE])

Progress
= Must be implicit 8

Kernel-Level Networking

= UNIX IP sockets (UDP/IP, TCP/IP)
= Kernel contains a ring of send and receive buffers

= Send
= Application calls write() system call
= Kernel copies data from user-space into kernel buffer or network device memory
= System call returns number of bytes sent

= Receive
= Network device interrupts OS when data arrives
= Kernel copies data from network device into kernel buffers
= Kernel copies data from kernel buffers to user memory during read()
= System call returns number of bytes received
= Checking for incoming data
= Use select() or poll() system calls to see if data can be read (or written)
= Use sigaction()/fcntl() to receive a SIGIO signal when data can be read

9
I

User-Level Networking

= Network device is directly controlled by application process after initial setup
= Send
= Application process writes a command to the network device
= Network device copies data directly from user-space onto the network
= Receive
= Application process provides buffer(s) to the network device before data arrives
= Network device copies data directly from network into user-space
= Checking for incoming data
= Poll memory location (application memory or network device memory)
®= No mechanism for OS-generated signals
= Significant performance advantage over kernel-level approach
® |ncreases bandwidth by eliminating memory copies
= Decreases latency by avoiding system calls
= Provides the opportunity to overlap data movement with computation
= Must coordinate with virtual memory system (page pinning)

Programmable User-Level Networks Enabled API Exploration

= Myrinet (~1994)

= First commercially available Gb/s standalone network

= Based on technology developed for Intel MPP networks

Processor Memory
= [nitially available for Sun SPARC SBus, later for PCl-based PCs I | Mermory
= Custom embedded MIPS-based programmable processor (LANai) Briollge Bus
= Myrinet Control Program (MCP) software development environment | ool
= Destination routed, maximum message size (packets) | Bus
= Numerous APIs and MCPs: AM, FM, GM, PM, MX NiC
= Quadrics QSNet (~2001) Network

= Qutgrowth of technology developed for Meiko MPP networks
= Offered several different APIs for user-level networking
" Provided a development environment for running user-level functions on NIC

Fixing Semantic Mismatch Between Layers

Majority of interconnect software R&D is spent on dealing with the semantic
mismatch between what the upper-layer protocols need and what the low-level
network software and the underlying hardware provide

RDMA (e.g. InfiniBand Verbs) MPI Point-to-Point
= RDMA (e.g. InfiniBand Verbs) = Two-sided
= One-sided = Short messages are copied
= Allows process to read/write remote memory implicitly * Long messages need rendezvous
= Zero-copy data transfer = CPUinvolved in every message
= No need for intermediate buffering in host memory ®* Message matching
= Low CPU overhead = Unexpected messages
= Decouples host processor from network * Need flow control
= Fixed memory resources = Completion may be non-local
* No unexpected Messages * Need control messages

= Supports unstructured, non-blocking data transfer
= Completionis a local event

12
I

ow to Implement MPI over RDMA (2002-2008)

Mvapich-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand, Int'l Conference on Parallel and Distributed Computing, Miami, FL, Apr.
2008

Designing Passive Synchronization for MPI-2 One-Sided Communication to Maximize Overlap, Int'l Conference on Parallel and Distributed Computing,
Miami, FL, Apr. 2008

MPI-2 One Sided Usage and Implementation for Read Modify Write operations: A case study with HPCC, EuroPVM/MPI 2007, Sept. 2007.

Zero-Copy Protocol for MPI using InfiniBand Unreliable Datagram, IEEE International Conference on Cluster Computing (Cluster'07), Austin, TX, September
2007.

High Performance MPI over iWARP: Early Experiences, Int'l Conference on Parallel Processing, XiAn, China, September 2007.

High Performance MPI Design using Unreliable Datagram for Ultra-Scale InfiniBand Clusters, 21st Int'l ACM Conference on Supercomputing, June 2007.

Reducing Connection Memory Requirements of MPI for InfiniBand Clusters: A Message Coalescing Approach, Int'l Symposium on Cluster Computing and the
Grid (CCGrid), Rio de Janeiro - Brazil, May 2007

Hot-Spot Avoidance With Multi-Pathing Over InfiniBand: An MPI Perspective, Int'l Symposium on Cluster Computing and the Grid (CCGrid), Rio de Janeiro -
Brazil, May 2007

High Performance MPI on IBM 12x InfiniBand Architecture, International Workshop on High-Level Parallel Programming Models and Supportive
Environments (HIPS), held in conjunction with IPDPS '07, March 2007.

High-Performance and Scalable MPI over InfiniBand with Reduced Memory Usage: An In-Depth Performance Analysis, SuperComputing (SC 06), November,
2006.

Efficient Shared Memory and RDMA based design for MPI_Allgather over InfiniBand, EuroPVM/MPI, September 2006.

Memory il ion of the Next ation Intel Bensley Platform with InfiniBand, Hot Interconnect (HOTI 06), August, 2006.

MPI over uDAPL: Can High Performance andPortability Exist Across Architectures?, Int'l Sympsoium on Cluster Computing and the Grid (CCGrid), Singapore,
May 2006.

Shared Receive Queue based Scalable MPI Design for InfiniBand Clusters, Int'l Parallel and Distributed Processing Symposium (IPDPS '06), April 2006, Rhode
Island, Greece.

Adaptive Connection Management for Scalable MPI over InfiniBand , International Parallel and Distributed Processing Symposium

Efficient SMP-Aware MPI-Level Broadcast over InfiniBand's Hardware Multicast , Communication Architecture for Clusters (CAC) Workshop, to be held in
conjunction with Int'l Parallel and Distributed Processing Symposium (IPDPS '06), April 2006, Rhode Island, Greece.

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits , Symposium on Principles and Practice of Parallel
Programming,

High Performance RDMA Based All-to-all Broadcast for InfiniBand Clusters, International Conference on High Performance Computing (HiPC 2005)

Supporting MPI-2 One Sided C on Multi-Rail Infinil Clusters: Design Challenges and Performance Benefits , International Conference on
High Performance Computing (HiPC 2005), December 18-21, 2005, Goa, India.

Designing a Portable MPI-2 over Modern Interconnects Using uDAPL Interface, EuroPVM/MPI 2005, Sept. 2005.

Efficient Hardware Multicast Group Management for Multiple MPI Communicators over InfiniBand, EuroPVM/MPI 2005, Sept. 2005.

Design Alternatives and Performance Trade-offs for Implementing MPI-2 over InfiniBand, EuroPVM/MPI 2005, Sept. 2005.

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems?, Hot Interconnect (HOTI 05), August, 2005.

Analysis of Design Considerations for Optimizing Multi-Channel MPI over InfiniBand , Workshop on Communication Architecture on Clusters

Scheduling of MPI-2 One Sided Operations over Infini Workshop on C ication Architecture on Clusters (CAC 05) in conjunction with International
Parallel and Distributed Processing Symposium

Building Multirail InfiniBand Clusters: MPI-Level Design and Performance Evaluation. SuperComputing Conference, Nov 6-12, 2004, Pittsburgh, Pennsylvania.

Efficient Barrier and Allreduce on IBA clusters using hardware multicast and adaptive algorithms, IEEE Cluster Computing 2004, Sept. 20-23 2004, San Diego,
California.

Zero-Copy MPI Derived Datatype Communication over InfiniBand, EuroPVM/MPI 2004, Sept. 19-22 2004, Budapest, Hungary.

Efficient Implementation of MPI-2 Passive One-Sided Communication on InfiniBand Clusters , EuroPVM/MPI 2004, Sept. 19-22 2004, Budapest, Hungary.

Efficient and Scalable All-to-All Exchange for InfiniBand-based Clusters. International Conference on Parallel Processing (ICPP-04), Aug. 15-18, 2004,
Montreal, Quebec, Canada.

Design and ion of MPICH2 over Infinil with RDMA Support. Int'l Parallel and Distributed Processing Symposium (IPDPS 04), April, 2004.

Fast and Scalable MPI-Level Broadcast using InfiniBand's Hardware Multicast Support. Int'l Parallel and Distributed Processing Symposium (IPDPS 04), April,
2004.

High Performance Implementation of MPI Datatype Communication over InfiniBand. Int'l Parallel and Distributed Processing Symposium (IPDPS 04), April,
2004.

Implementing Efficient and Scalable Flow Control Schemes in MPI over Infinil Workshop on Ct Architecture for Clusters (CAC 04)

High Performance MPI-2 One-Sided Communication over InfiniBand. IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 04),
April, 2004,

Fast and Scalable Barrier using RDMA and Multicast Mechanisms for InfiniBand-Based Clusters. Euro PVM/MPI Conference, September 29-Oct 2, 2003,
Venice, Italy.

High Performance RDMA-Based MPI Implementation over InfiniBand. 17th Annual ACM International Conference on Supercomputing. San Francisco Bay
Area. June, 2003.

Impact of On-Demand Connection Management in MPI over VIA , Cluster '02, Sept. 2002.

Network Portability Abstraction Layers Abound

------- o MPLinterface <o —=============- MPlinterface =============-
Open MPI v1.3 @ MPI Layer D
Machine-independent Derived Datatype Group
Collectives Management Management
................................. ADI3 interface oo \)
--------- Abstract Device Interface (ADI) ————————
; @ D
BML Devices CH3 BG/L | Quadrics (11 CHa
o Openi £ CH4 Core
BTL BTL O I e N CH3 interface -
8 Architecture-specific Active Message
Fcache Reache Channels a M ... Collectives Fallback CH3 PAMID
Netmods Shmmods
MPICH2
OFl | ucx | Portals

| | J)

Goals o GASNet Design Overview:
— System Architecture

« Two-Level architecture is mechanism for portability i .

IBM System Technology Group IBM
Parallel Active Message Interface

= Provide a common low-level scalable,
robust, portable, simple and
performance driven communication API
for multiple parallel programming
models over modern network interfaces

- GASNet Core API Complerspecifc unime systern
- Most basic required primitives, narrow and general

. L - Implemented directly on each network

‘ Increasmg code reusab"'ty and - Based on Active Messages lightweight RPC paradigm

reducing development effort

* GASNet Extended API

— Wider interface that includes higher-level operations
— puts and gets w/ flexible sync, split-phase barriers, collective operations, etc

* Include performance/power
measurement capabilities in a central
location

| DMADevice | Colective Device | GiDevice | Shmem Device |
— Have reference implementation of the extended API in terms of the core API Message Layer Core (C++)

— Directly implement selected subset of interface for performance
— leverage hardware support for higher-level operations

Recent Efforts to Develop Lower-Level Transport APIs

OPEN MPI STRUCTURE

A High-level Overview

ORTE
component

not shown Applications

e —
(N 2
0B1 OSHMEM o s) - High Level AP
e OSHUEM, " LA
not shown e i M
-

Community property but a specific
owner/maintainer

I community property

Vendor supported/developed
part of Open MPI

- Vendor (including OFED) . .
[J—— OFI - Libfabric

g\OAK RIDGE
National Laborstory
OpenFabrics Alliance Workshop 2916 S
MPICH Open MPI | Open MPI ‘ Sandia Clang rsockets
Intel MPI GASNet
(d) (MTL/BTL) SHMEM | SHMEM | upc ES-API
Libfabric Enabled Middleware
libfabric
Control Communication Completion Data Transfer Services
Services Services Services é
Discovery Sappecton [Event Queues J Message l RMA J ~= 3
Management Queues 15
P T Tag | he
Address Vectors Counters N Atomics E -
Matching A

Intel Cr Mellanox
ath NI MXM

Introduction to MPI, Argonne (06/06/2014) 7

Motivation for Low-Level Transport APIs

= Targeting a single programming model target is too limiting (top down approach)
= MPI - MPICH, OpenMPI
= PGAS - GasNet, OpenSHMEM
= |/O
= Big Data
= Desire to reduce development costs
" Provide one network abstraction for all ULPs
= Large porting effort is a strong indication of the semantic mismatch
= “Thinisin”
= Optimize to a semantic mismatch
= Get as close to the functionality you don’t really want as possible
= Communication as well as memory management (page pinning)
= Vendor differentiation
= Which really defeats the portability goal

Some Fundamental Principles

= More layers of software degrades performance (and scalability)
= Hardware almost always outperforms software
= Software fixes to hardware are usually really slow

[EEN
|

Red Storm — Prototype for Cray XT Series

Architected by Sandia, engineered jointly with Cray

= Sandia contributed to the design of the SeaStar network
interface and router

Sandia also developed
= Lightweight kernel compute node OS
= Scalable parallel job launching system

= Portals high-performance interconnect programming
interface

= SeaStar firmware

140+ systems to 80 different customers worldwide
= |ncluding ORNL, NERSC, and LANL

Following Red Storm, Cray’s market share rose from
6% in 2002 to 21% in 2007*

Revenue of $1B +
Basis of Cray’s business today

| SeaStar was a
PowerPC-Based
System-on-a-Chip
| (SOC)

ccR=Rasy

Cumulative Cabinet Deliveries

WMRS WXT3 mXT4 wXTS w@Series6

‘sasrpoassss fob280000089 IIIIILD
!ai:faJffiﬁeri!!&!ff;3$f¢!ii$§f

Ship Dates

o

*Source: IDC #209251 Technical Computing Systems: Competitive Analysis, November 2007 18

Onload Versus Offload Argument (~2005)

Why design a custom NIC for offload?

Just dedicate a core

= A 3 GHz Xeon will outperform a 500 MHz embedded processor on network protocol processing
= A custom ASIC is way too expensive (especially for the small HPC market)

Cost will go down as core count increases
= Cores won’t be getting slower, right?

=
H

Core Clock Frequency Stalled in ~2007

7 » .

10 ; : § ; § ; § . -7, Transistors
: : : : : : : : . (thousands)
6 :
10
5
10 ,
. Single-thread
4 . Performance
10 " (SpecINT)
3 : Frequency
10 T (MHz)
2 Typical Power
10 T (Watts)
1 Number of
10 - Cores
0
10

1975 1980 1985 1990 1995 2000 2005 2010 2615

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

20
I

Cray Core Specialization

= Dedicate “OS” cores to handle MPI progress
= MPI progress threads run on a dedicated set of cores

S3D Time Step Summary

PROCEEDINGS OF THE GAAY USER GAOUP, 2012 '

Leveraging the Cray Linux Environment Core
Specialization Feature to Realize MPI
Asynchronous Progress on Cray XE Systems
Howard Pritchard, Duncan Roweth, David Henseler, and Paul Cassella

Witn CoreSpec, most coes an a noce
ara dodicatod to running 1 paral appicaton wie 0B or Mare coes & reserved for O and sarvics tveads.
The MPICHZ P! impiementatin has been envanced fo mae use of tis CoreSpe feaure © Dettar support WP
independent progress. In s paper, we Pl CoreSpsc

features of the XE Gemini Nemork Inteiace 15 oblain overiap of MPI communicaton wih computason for mic
benchmarks and appicatons.

Index Torms P, CLE, core speciaizaton, asynchronous progress

1 INTRODUCTION alized host software-based approaches which
The importance of overlapping computation :,’: ﬁ‘:}"ﬁ;‘f‘ of modem multi-core proces-
;‘%szug:ﬁmj;;‘gxgvsﬁ The Cray XE Gemini ROMA-capable net
known (see, for example [3], 9], [15]), even ifin pror & 292Pter tures intended to assist in
practice, many MPI applications are not struc-
tured to take advantage of such capabilities.

the implementation of effective host software-
based approaches for providing independent
: progression of MPI and for allowing for over-
Many different approaches have m.‘m’; Iap of communication with computation. To
since provide for more effective implementation of
for this capability, including hardware-based Jyy nogt software-based approaches, Cray
approaches in which the nework adapter tsell D100 eranecd the. Cray, i Baviron.
handles much of the MPL protocol [3], hy- any (CLE) Core Specialization feature to facil-
brid approaches in which the network adapter i (L) Core BPeuiRaton e 0 el
and network adapter device driver together o goq for this approach. This paper describes
offfoad the MPI protocol from the applica~ o combination of Gemini hardware features,

tion [4], host software-based approaches to : g
assist RDMA-capable, but MPL-unaware, net. 1, - Core Specialization feature, and en
work adapters [10] 18], as well as more gener-

hancements made to MPICH2 to realize this.
capability.

‘The rest of this paper is organized as follows.
First, an overview of the Core Specialization
feature is presented. Features of mini
il netywork adapter that are significant for this

work are described in Section 3. Section 4
describes the approach Cray has taken with
R the MPICH2 implementation of MPI to realize

s better support for independent progress and
communication/computation overlap. In sec-

Application
Threads

Progression
disabled

Progression
enabled

14

4.77

3.93

15

4.68

4.05

16

4.59

4.06

MILC Run Time Summary(secs)

Run Type 4096 | 8192

ranks | ranks

No progression 2165 | 1168

Progression (phase 1) | 2121 | 1072

Progression (phase 2) | 3782 | 2138

Progression (phase 1)
no reserved cores 3560 | 2210

Progression (phase 1)
reserve core but no 2930 | 2070
corespec

21

Portals 4 Reference Implementation

= QOpenFabrics Verbs, UDP, shared memory transports

= |nitial implementation by System Fabric Works

= Provides a high-performance reference implementation for experimentation
= Help identify issues with API, semantics, performance, etc.

= |ndependent analysis of the specification

= Enables development of ULPs

22
I

Reference implementation issues

Extra layer of software between ULP and hardware
= |mpacts latency performance
= We are violating one of our fundamental principles ©

= Needs a progress thread
= |mpacts latency performance
= |ssues when ULP wants a progress thread too

= Do we modify API for hardware we have or continue to design for hardware we
need?

= Portals should be slow or we’re not doing our job ©

Portals Hardware and Co-Desi

BXI application environment

BXI comes with a complete software stack to »
provide optimal performance and reliability
to all traditional HPC components.

-

BXI Computing stack

For more information:

Parallel applications can take full ad-
vantage of the capabilities of the BXI
network using MPI, SHMEM or UPC
communication libraries.

All components are implemented direct-
ly using the Portals 4 API.

Kernel services are also implemented using
the kernel Portals 4 implementation.

A Portals 4 LND (Lustre Network Driver)
provides the Lustre parallel filesystem
with a direct / native access to Portals 4.

Please contact hpc@atos.net

Your business technologists. Powering progress

» The IPoPtl (IP over Portals) component
makes it possible to have large scale, ef-
ficient and robust IP communication for
legacy software.

BXI NIC

BXI Kernel services

ATOS

FASTFORWARD NIC SOFTWARE STACK

4 Portals 4 API chosen for initial investigation
— Supports multiple programming models: PGAS, MPI

4 \mplemented in thin software layer over hardware

interface

4 Leverage existing ULPs that have Portals 4

implementations
— GASNet
— Open MPI

Interfaces

| uLe

Open MPI

HSA-like
NIC I/F

RESULTS
AMDOD

Components

PGAS Apps

Runtime SW

Simulated NIC

—Full Support for HSA

—Low-level RDMA network programming API
currently supported by:

gn Activities

EXPERIMENTAL FRAMEWORK

Accelerating Intercommunication in Highty Parallel Systems 09

- e IM,“..,M

— 1 Imn

Message.
processor

r _,I cere

Fig.6. Portals Accelerator Processor (PAC).

el the wntid functional abstracion eve s descibed i Ca a0d Gejki 20081
in which the low-level timing details are hidden so as to accelerate the simulation

6. The function-

novel PAC sys hown in Fi

321

port, depending on whetber i iftinto o Fesponts 1 bus
comnget PAC to OVP's virtual bus,we uilized both the l.nnnvlhve CPU vxmzer o

API for obal Address spaces and the Peripheral Programming Model (PPADS
20d, writs opersions of the Master and v Forta
er ports the read and write

API for lose, read
lCluun o P5015] Srnelly thves e

vy

322 Ths
potstriggeing th scclrator when thre different types of incoming Portala mos-

froeipin memory writes to sppropriate adresses.In this way,the o mmm of the host-
processor is since it can return t after it writes
m.w.mmammmmm The master ports, nnthm.hnh.nd do

empending il ey paces T o o s Seoeage Bt f s
Nmocs-mx,usa_sm’ bytes; when the message buffer gets full an interrupt is
raised to the processor.

Message Processor. The Portals Me ssor (PMP) orchestrates
me inia o thvn;h all PACY ompontata besedson e somizol ow mposcd by
each Portals com Initially, when & requset meseagn in placed st the ool
o, PARE dovades th commons ope and heniihes s hemmage (Header amd pos.
by Palead) postion i e Global Addres Spaces Hmne eties the ‘message
M

o the Global Ad-

SOV PP s an application modeling the interfaces and the connections (bus ports, and the lke) to the

Publication date Decesber 2016

AMD1

CPU and Memory Configuration

AAIl data collected in gem5!€! cPUType
—System call emulation mode (no OS) :’::::
—~AMD GPU model”! L3-Cache

DRAM

—Tightly coupled system
GPUType
D-Cache
A Portals 4-based NIC model(8 +Cache
L2-Cache

- MPICH, Open MPI, GASNet, Berkeley UPC, GNU UPC, and others LinkSpeed
. . Network APl
—XTQ implemented as an extension of the Portals 4

remote Put operation

19 | EXTENDED,

| aveusTio 207 Rl

8-wide 000, 4Ghz, 8 cores
64K, 2-way, 1 cycle

2M8, 8-way, 4 cycles
16MB, 16-way, 20 cycles
DDR3, 4 Channels, B0OMHz

GPU Configuration

1Ghz, 24 Compute Units

16kB, 648 line, 16-way, 4 cycles
32kB, 648 line, 8-way, 4 cycles
768KkB, 648 line, 16-way, 24 cycles

NIC Configuration

100ns/ 100Gbps
Portals 4

Active Messages (AM)

= T.von Eicken, et al.: “Active Messages: A Mechanism for Integrated Communication
and Computation” (1992)

= |ots of different flavors

= Pure active messages
= QOrigin sends message to target containing code and data
= Target invokes code on that data

= Generalized active messages
= QOrigin sends message to target containing function id and data
= Function id maps to existing code in target’s address space

= Similar to remote procedure invocation without returning a result to origin

= Semantically equivalent to blocking a thread on an incoming message and invoking
a handler when the message arrives

25
I

Issues with Active Messages

= Data delivery
= Who determines where the data goes — origin or target?
= How much data can be delivered?
= Handlers
= When are resources allocated — a priori or on arrival?
* What can be called?
= Where do they run (context)?
= When do they run relative to message delivery?
= How long do they run?
= Why?
* One-sided messages decouple processor from network

= Active messages tightly couple processor and network
— Active messages aren’t one-sided
— Memory is the endpoint, not the cores

= Lightweight mechanism for sleeping/waking thread on memory update
— Why go through the network API for this?

= Scheduling lots of unexpected thread invocations leads to flow control issues

Is There a Better Way to Get AM Semantics?

Cores are slower, more energy-efficient

= Modern cores require 15-20 ns to access L3 cache
= Haswell — 34 cycles
= Skylake - 44 cycles

Terabit per second networks are coming
= 400 Gib/s can deliver a 64-byte message every 1.2 ns

Need to remove processor from network processing path (offload)

RDMA only supports data transfer between virtual memory spaces

= Datais placed blindly into memory
= Need varying levels of steering the data at the target

streaming Processing In the Network (sPIN)

handlers

manage

NN
I

15
92
=)
T
(<})
=
O
(7]
e
(<)
=
o
©
o

arriving
packets

Hoefler, Di Girolamo, Taranov, Grant, Brightwell. “sPIN: High-Performance Streaming Processing in the Network,” in Proceedings of SC”17, November 2017. 28

SPIN is not Active Messages

Tightly integrated NIC packet processing

AMs are invoked on full messages
= sPIN works on packets
= Allows for pipelining packet processing

AM uses host memory for buffering messages
= sPIN stores packets in fast buffer memory on the NIC
= Accesses to host memory are allowed but should be minimized

AM messages are atomic
= sPIN packets can be processed atomically

SPIN Approach

= Handlers are executed on NIC Handler Processing Units (HPUs)
= Simple runtime manages HPUs

= Each handler owns shared memory that is persistent for the lifetime of a message
= Handlers can use this memory to keep state and communicate

= NIC identifies all packets belonging to the same message

= Three handler types
= Header handler — first packet in a message
= Payload handler — all subsequent packets
= Completion handler — after all payload handlers complete

= HPU memory is managed by the host OS
= Host compiles and offloads handler code to the HPU
= Handler code is only a few hundred instructions

sPIN Approach (cont’d)

= Handlers are written in standard C/C++ code

= No system calls or complex libraries

= Handlers are compiled to the specific Network ISA

= Handler resources are accounted for on a per-application basis

= Handlers that run too long may stall NIC or drop packets

= Programmers need to ensure handlers run at line rate

= Handlers can start executing within a cycle after packet arrival
= Assuming an HPU is available

= Handlers execute in a sandbox relative to host memory
= They can only access application’s virtual address space
= Access to host memory is via DMA

Expect More Hardware Specialization in HPC

Connectivity

ey 3
Quad ARM® Cortex™-Ag Gore MMC 4.4/ mmfgc
32 KB |-Cache 32 KB D-Cache
Core | per Core

S/PDIF

PCle 2.0
(1-Lane)

N
)
T

MLB150 +

2N DTCP
|1000p30£nelboc| I ASRC I 3.3V GPIO ‘ 1 Gb Ethemet

1| + IEEE® 1588 SRAM Cache

Memory

N
=)

Power Management

-
=Y

Internal Memory

of Accelerator Blocks

o)

(BCH40)

A5 A6 A7 A8
I J | J

DuakCore CPU Maltiel Consulting Our estimates
estimates [Y. Shao 2015]

LV-DDR3 Quad-Core GPU
533 MHz

SmartPhone SoC circa 2016 Dozens of kinds of integrated HW acceleration

SDRAM Interface

[www.anandtech.com/show/8562/chipworks-a8]

Apple A8 SoC

Open Source Hardware

COMPUTER
‘ Seoeor \What's Next? GSA 2016
The Rise of Open Source Software: Will Hardware Follow Suit?

Open Source Software Open Source Hardware

D
80% of companies run] U
Open Source Software ' @

A

i
1991 Today
Linux 1.0 and the rise Open Source Software
of Open Source Software ubiquitous

* Rapid growth in the adoption and number of open source software projects
*« More than 95% of web servers run Linux variants, approximately 85%

of smartphones run Android variants
« Will open source hardware ignite the semiconductor industry?

Is RISC-V the hardware industry’s Linux?

DARPA Effort to Enable Open Source Hardware

Building a Universal Silicon Compiler

Andreas Olofsson
Program Manager
Defense Advanced Research Project Agency (DARPA) 0Lull) IDEA Program Objective

Machine generated
chip and package layout Machine generated

The Salishan Conference on High Speed Computing,
Gleneden Beach, Oregon
April 24

(1Lull) Why now? (how this approach is different)

Today IDEA
Intent 4o Designer provides manual constraints -
ntent driven to layout person (or EDA tool) - o e tiiy
system generation Max 10um from main supply, 0.5um width el e) J

IDEA will create a no-human-in-the-loop hardware
compiler for translating source code to layouts of

System-On-Chips, System-In-Packages, and Printed Auto create
Circuit Boards in less than 24 hours Laov:slata s by (Lulgl) Reinventing the Chip IP Stack
e s mapry 1 Dstrution Satemert " s for Pble ek, Ottt k) 16 dlassifying Current SoC
circuit patterns Hardware Design
qLUL EE' and applying
b LT A3 & T strategies from|
L N ° knowledge
elelile 0 database.
Centroid Mirroring Isolation
Examy
$158+ Tt Software PP
Open Stack
Source Cassandra Jenkins
Infinite
Layer
Stack | LINUX | | 1P Vendors I
POSH will create a viable open source hardware design
and verification ecosystem that enables cost effective
design of ultra-complex SoCs.
Dtbubon Saiement A" (Agoroved 1o PUDIC Relnss, DR TouAor UnIreied))

34

Acknowledgments

= Sandia
= Ryan Grant
= Scott Hemmert
= Kevin Pedretti

= ETH Zurich

= Torsten Hoefler
= Salvatore Di Girolamo
= Konstantin Taranov

35
I

