
LLNL-PRES-747560
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Building things:
Spack, Software, and Sustainable Communities in HPC

ATPESC: Argonne Training Program on Extreme-Scale Computing

Todd GamblinAugust 2, 2018
Q Center, St. Charles, IL Computer Scientist

@spackpmgithub.com/spack

2
LLNL-PRES-747560

@spackpmgithub.com/spack

Scientific software is becoming extremely complex

3
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Half of this DAG is external (blue); more than half of it is open source

§ Nearly all of it needs to be built specially for HPC to get the best performance

Even proprietary codes are based on many open source libraries

ARES

tcl

tkscipy

python

cmake

hpdf

opclient

boost

zlib

numpy

bzip2

LAPACK

gsl

HDF5

gperftools papi

GA

bdivxml

sgeos_xmlScallop

rng perflib memusage timers

SiloSAMRAI

HYPRE

matprop

overlink qd

LEOS

MSlibLaser

CRETIN

tdf

Cheetah DSD

Teton

Nuclear

ASCLaser

MPI

ncurses

sqlite readline openssl BLAS

Physics Utility Math External

Types of Packages

4
LLNL-PRES-747560

@spackpmgithub.com/spack

The Exascale Computing Project is building an entire ecosystem

§ Every application has its own stack of dependencies.
§ Developers, users, and facilities dedicate (many) FTEs to building & porting.
§ Often trade reuse and usability for performance.

80+ software packagesx
5+ target architectures/platforms

Xeon Power KNL
NVIDIA ARM Laptops?

x

Up to 7 compilers
Intel GCC Clang XL

PGI Cray NAG
x

= up to 1,260,000 combinations!

15+ applications

x
10+ Programming Models

OpenMPI MPICH MVAPICH OpenMP CUDA
OpenACC Dharma Legion RAJA Kokkos

2-3 versions of each package +
external dependencies

x

We must make it easier to rely on others’ software!

5
LLNL-PRES-747560

@spackpmgithub.com/spack

How to install software on a Mac laptop, circa 2013

6
LLNL-PRES-747560

@spackpmgithub.com/spack

How to install software on a supercomputer, circa 2013

c
o
n
f
i
g
u
r
e

m
a
k
e

F
i
g
h
t

w
i
t
h

c
o
m
p
i
l
e
r
.
.
.

m
a
k
e

T
w
e
a
k

c
o
n
f
i
g
u
r
e

a
r
g
s
.
.
.

m
a
k
e

i
n
s
t
a
l
l

m
a
k
e

c
o
n
f
i
g
u
r
e

c
o
n
f
i
g
u
r
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

c
m
a
k
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

1. Download all 16
tarballs you need

2. Start building!

3. Run code
4. Segfault!?
5. Start over…

7
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Most supercomputers deploy some form of environment modules
— TCL modules (dates back to 1995) and Lmod (from TACC) are the most popular

§ Modules don’t handle installation!
— They only modify your environment (things like PATH, LD_LIBRARY_PATH, etc.)

§ Someone (likely a team of people) has already installed gcc for you!
— Also, you can only `module load` the things they’ve installed

What about modules?

$ gcc
-bash: gcc: command not found

$ module load gcc/7.0.1
$ gcc –dumpversion
7.0.1

8
LLNL-PRES-747560

@spackpmgithub.com/spack

What’s a package manager?

§ Package manager
— Does not a replace Cmake/Autotools
— Packages built by Spack can have any

build system they want

§ PMs manage dependencies
— Drive package-level build systems
— Or installs pre-built binaries
— Ensures consistent configuration

§ Determining magic configure lines
takes time
— PMs cache the work of others
— Provide a way to encode recipes so that

you can reuse others’ effort!

• Manages package installation
• Manages dependency relationships
• Drives package-level build systems

Package Manager

• Cmake, Autotools
• Handle library abstractions
• Generate Makefiles, etc.

High Level Build
System

• Make, Ninja
• Handles dependencies among
commands in a single build

Low Level Build
System

9
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Traditional binary package managers don’t support combinatorial versioning
— RPM, yum, apt, yast, etc.

— Designed to manage a single stack.

— Install one version of each package in a single prefix (/usr).

— Seamless upgrades to a stable, well tested stack

§ Neither, typically, do port systems
— BSD Ports, portage, Macports, Homebrew, Gentoo portage, etc.

— Minimal support for builds parameterized by compilers, dependency versions.

§ Issues:
— HPC people want to experiment

— Many of these typically require root access, can’t have root on a supercomputer

— Binaries aren’t optimized

• typically built for lowest-common-denominator hardware

§ System package managers mostly used for low level system, not the HPC stack

So why didn’t these things catch on in HPC?

10
LLNL-PRES-747560

@spackpmgithub.com/spack

§ My frustrations:
1. Constantly rebuilding graduate students’ software for them
2. Facilities spend lots of time building a comparatively small number of software packages
• Quickly goes out of date
• Not built with the right compiler, MPI, dependency version, etc.
• App teams end up rebuilding anyway!

3. Hard to distribute performance tools!
• My research was going unused because it was hard to install.

§ Requirements for a good solution:
— Target users, admins, and developers (many roles in HPC)
— Easy to use commands, no tedious build steps
— Easy to contribute: package recipes should be in a language that HPC people already know
— Rapidly build many different versions of software, experiment with performance options

HPC needed a better way to build software

11
LLNL-PRES-747560

@spackpmgithub.com/spack

§ How to install Spack (works out of the box):

§ How to install a package:

§ HDF5 and its dependencies are installed
within the Spack directory.

§ Unlike typical package managers, Spack can also
install many variants of the same build.
— Different compilers
— Different MPI implementations
— Different build options

Spack is a flexible package manager for HPC

Get Spack!
http://github.com/spack/spack

$ git clone https://github.com/spack/spack
$. spack/share/spack/setup-env.sh

$ spack install hdf5

@spackpm

https://github.com/LLNL/spack.git

12
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

§ Spec syntax is recursive
— Full control over the combinatorial build space

Spack provides the spec syntax to describe custom configurations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3” setting compiler flags
$ spack install mpileaks@3.3 os=CNL10 target=haswell setting target for X-compile
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

13
LLNL-PRES-747560

@spackpmgithub.com/spack

`spack list` shows what packages are available

$ spack list

§ Spack has over 2,800 packages now.

$ spack list
==> 303 packages.
activeharmony cgal fish gtkplus libgd mesa openmpi py-coverage py-pycparser qt tcl
adept-utils cgm flex harfbuzz libgpg-error metis openspeedshop py-cython py-pyelftools qthreads texinfo
apex cityhash fltk hdf libjpeg-turbo Mitos openssl py-dateutil py-pygments R the_silver_searcher
arpack cleverleaf flux hdf5 libjson-c mpc otf py-epydoc py-pylint ravel thrift
asciidoc cloog fontconfig hwloc libmng mpe2 otf2 py-funcsigs py-pypar readline tk
atk cmake freetype hypre libmonitor mpfr pango py-genders py-pyparsing rose tmux
atlas cmocka gasnet icu libNBC mpibash papi py-gnuplot py-pyqt rsync tmuxinator
atop coreutils gcc icu4c libpciaccess mpich paraver py-h5py py-pyside ruby trilinos
autoconf cppcheck gdb ImageMagick libpng mpileaks paraview py-ipython py-pytables SAMRAI uncrustify
automaded cram gdk-pixbuf isl libsodium mrnet parmetis py-libxml2 py-python-daemon samtools util-linux
automake cscope geos jdk libtiff mumps parpack py-lockfile py-pytz scalasca valgrind
bear cube gflags jemalloc libtool munge patchelf py-mako py-rpy2 scorep vim
bib2xhtml curl ghostscript jpeg libunwind muster pcre py-matplotlib py-scientificpython scotch vtk
binutils czmq git judy libuuid mvapich2 pcre2 py-mock py-scikit-learn scr wget
bison damselfly glib julia libxcb nasm pdt py-mpi4py py-scipy silo wx
boost dbus glm launchmon libxml2 ncdu petsc py-mx py-setuptools snappy wxpropgrid
bowtie2 docbook-xml global lcms libxshmfence ncurses pidx py-mysqldb1 py-shiboken sparsehash xcb-proto
boxlib doxygen glog leveldb libxslt netcdf pixman py-nose py-sip spindle xerces-c
bzip2 dri2proto glpk libarchive llvm netgauge pkg-config py-numexpr py-six spot xz
cairo dtcmp gmp libcerf llvm-lld netlib-blas pmgr_collective py-numpy py-sphinx sqlite yasm
callpath dyninst gmsh libcircle lmdb netlib-lapack postgresql py-pandas py-sympy stat zeromq
cblas eigen gnuplot libdrm lmod netlib-scalapack ppl py-pbr py-tappy sundials zlib
cbtf elfutils gnutls libdwarf lua nettle protobuf py-periodictable py-twisted swig zsh
cbtf-argonavis elpa gperf libedit lwgrp ninja py-astropy py-pexpect py-urwid szip
cbtf-krell expat gperftools libelf lwm2 ompss py-basemap py-pil py-virtualenv tar
cbtf-lanl extrae graphlib libevent matio ompt-openmp py-biopython py-pillow py-yapf task
cereal exuberant-ctags graphviz libffi mbedtls opari2 py-blessings py-pmw python taskd
cfitsio fftw gsl libgcrypt memaxes openblas py-cffi py-pychecker qhull tau

14
LLNL-PRES-747560

@spackpmgithub.com/spack

§ All the versions coexist!
— Multiple versions of same

package are ok.

§ Packages are installed to
automatically find correct
dependencies.

§ Binaries work regardless of
user’s environment.

§ Spack also generates
module files.
— Don’t have to use them.

`spack find` shows what is installed
$ spack find
==> 103 installed packages.
-- linux-redhat6-x86_64 / gcc@4.4.7 --------------------------------
ImageMagick@6.8.9-10 glib@2.42.1 libtiff@4.0.3 pango@1.36.8 qt@4.8.6
SAMRAI@3.9.1 graphlib@2.0.0 libtool@2.4.2 parmetis@4.0.3 qt@5.4.0
adept-utils@1.0 gtkplus@2.24.25 libxcb@1.11 pixman@0.32.6 ravel@1.0.0
atk@2.14.0 harfbuzz@0.9.37 libxml2@2.9.2 py-dateutil@2.4.0 readline@6.3
boost@1.55.0 hdf5@1.8.13 llvm@3.0 py-ipython@2.3.1 scotch@6.0.3
cairo@1.14.0 icu@54.1 metis@5.1.0 py-nose@1.3.4 starpu@1.1.4
callpath@1.0.2 jpeg@9a mpich@3.0.4 py-numpy@1.9.1 stat@2.1.0
dyninst@8.1.2 libdwarf@20130729 ncurses@5.9 py-pytz@2014.10 xz@5.2.0
dyninst@8.1.2 libelf@0.8.13 ocr@2015-02-16 py-setuptools@11.3.1 zlib@1.2.8
fontconfig@2.11.1 libffi@3.1 openssl@1.0.1h py-six@1.9.0
freetype@2.5.3 libmng@2.0.2 otf@1.12.5salmon python@2.7.8
gdk-pixbuf@2.31.2 libpng@1.6.16 otf2@1.4 qhull@1.0

-- linux-redhat6-x86_64 / gcc@4.8.2 --------------------------------
adept-utils@1.0.1 boost@1.55.0 cmake@5.6-special libdwarf@20130729 mpich@3.0.4
adept-utils@1.0.1 cmake@5.6 dyninst@8.1.2 libelf@0.8.13 openmpi@1.8.2

-- linux-redhat6-x86_64 / intel@14.0.2 -----------------------------
hwloc@1.9 mpich@3.0.4 starpu@1.1.4

-- linux-redhat6-x86_64 / intel@15.0.0 -----------------------------
adept-utils@1.0.1 boost@1.55.0 libdwarf@20130729 libelf@0.8.13 mpich@3.0.4

-- linux-redhat6-x86_64 / intel@15.0.1 -----------------------------
adept-utils@1.0.1 callpath@1.0.2 libdwarf@20130729 mpich@3.0.4
boost@1.55.0 hwloc@1.9 libelf@0.8.13 starpu@1.1.4

15
LLNL-PRES-747560

@spackpmgithub.com/spack

Users can query the full dependency configuration
of installed packages.

§ Architecture, compiler, versions, and variants may differ between builds.

$ spack find callpath
==> 2 installed packages.
-- linux-x86_64 / clang@3.4 ———————— -- linux-x86_64 / gcc@4.9.2 -------------
callpath@1.0.2 callpath@1.0.2

Expand dependencies
with spack find -d

$ spack find -dl callpath
==> 2 installed packages.
-- linux-x86_64 / clang@3.4 ----------- -- linux-x86_64 / gcc@4.9.2 -----------
xv2clz2 callpath@1.0.2 udltshs callpath@1.0.2
ckjazss ^adept-utils@1.0.1 rfsu7fb ^adept-utils@1.0.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4
qqnuet3 ^dyninst@8.2.1 tmnnge5 ^dyninst@8.2.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4

$ spack find -dl callpath
==> 2 installed packages.
-- linux-x86_64 / clang@3.4 ----------- -- linux-x86_64 / gcc@4.9.2 -----------
xv2clz2 callpath@1.0.2 udltshs callpath@1.0.2
ckjazss ^adept-utils@1.0.1 rfsu7fb ^adept-utils@1.0.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4
qqnuet3 ^dyninst@8.2.1 tmnnge5 ^dyninst@8.2.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4

16
LLNL-PRES-747560

@spackpmgithub.com/spack

Spack packages are templates: they define how to build a spec

from spack import *

class Dyninst(Package):
"""API for dynamic binary instrumentation.""”

homepage = "https://paradyn.org"
url = "http://www.paradyn.org/release8.1.2/DyninstAPI-8.1.2.tgz"

version('8.2.1', 'abf60b7faabe7a2e’)
version('8.1.2', 'bf03b33375afa66f’)
version('8.1.1', 'd1a04e995b7aa709’)

depends_on("cmake", type="build")

depends_on("libelf", type="link")
depends_on("libdwarf", type="link")
depends_on("boost @1.42: +multithreaded")

def install(self, spec, prefix):
with working_dir('spack-build', create=True):

cmake('-DBoost_INCLUDE_DIR=‘ + spec['boost'].prefix.include,
'-DBoost_LIBRARY_DIR=‘ + spec['boost'].prefix.lib,
'-DBoost_NO_SYSTEM_PATHS=TRUE’

'..')
make()
make("install")

Metadata at the class level

Versions

Install logic in instance methods

Dependencies

Patches, variants, resources, conflicts, etc.
(not shown)

Simple Python DSL
— Packages are classes (ala Homebrew)
— Directives use the same spec syntax

17
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Each unique dependency graph is a unique
configuration.

§ Each configuration installed in a unique directory.
— Configurations of the same package can coexist.

§ Hash of entire directed acyclic graph (DAG) is
appended to each prefix.

§ Installed packages automatically find dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set LD_LIBRARY_PATH
— Things work the way you built them

Spack handles combinatorial software complexity.

spack/opt/
linux-x86_64/

gcc-4.7.2/
mpileaks-1.1-0f54bf34cadk/

intel-14.1/
hdf5-1.8.15-lkf14aq3nqiz/

bgq/
xl-12.1/

hdf5-1-8.16-fqb3a15abrwx/
...

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Installation Layout

Dependency DAG

Hash

18
LLNL-PRES-747560

@spackpmgithub.com/spack

§ mpi is a virtual dependency

§ Install the same package built with two
different MPI implementations:

§ Virtual deps are replaced with a valid
implementation at resolution time.
— If the user didn’t pick something and there are

multiple options, Spack picks.

Depend on interfaces (not implementations)
with virtual dependencies

$ spack install mpileaks ^mvapich

$ spack install mpileaks ^openmpi@1.4:

mpileaks

mpi

callpath dyninst

libdwarf

libelf

class Mpileaks(Package):
depends_on("mpi@2:")

class Mvapich(Package):
provides("mpi@1” when="@:1.8")
provides("mpi@2” when="@1.9:")

class Openmpi(Package):
provides("mpi@:2.2" when="@1.6.5:")

Virtual dependencies can be versioned:

dependent

provider

provider

19
LLNL-PRES-747560

@spackpmgithub.com/spack

Concretization fills in missing parts of requested specs.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Concretize

§ Workflow:
1. Users input only an abstract spec with some constraints
2. Spack makes choices according to policies (site/user/etc.)
3. Spack installs concrete configurations of package + dependencies

§ Dependency resolution is an NP-complete problem!
— Different versions/configurations of packages require different

versions/configurations of dependencies
— Concretizer searches for a configuration that satisfies all the

requirements
— This is basically a SAT/SMT solve

20
LLNL-PRES-747560

@spackpmgithub.com/spack

Dependency Resolution is an NP-complete problem!

§ Different versions of packages require different
versions of dependencies
— Concretizer searches for a configuration that satisfies all

the requirements
— Can show that SAT/SMT solve is equivalent problem

§ Resolution is NP-complete for *just* package and
version metadata
— Concretization also includes compilers, variants,

architecture, optional dependencies, virtual
dependencies

— We have some leeway because multiple stacks can
coexist within Spack (unlike system PMs)

— Even within one DAG there can be issues!

https://research.swtch.com/version-sat

Unsatisfiable!

21
LLNL-PRES-747560

@spackpmgithub.com/spack

Contributions to Spack have taken off

§ 300 contributors on GitHub so far!

§ Outside organizations make most of the package
contributions, but all can leverage

§ LLNL packages comprise < 20% of total

Core

Documentation

SC15 paper presentation

22
LLNL-PRES-747560

@spackpmgithub.com/spack

#16 most contributed-to
Python project on GitHub

https://krihelinator.xyz/languages/Python

23
LLNL-PRES-747560

@spackpmgithub.com/spack

Spack is now used worldwide!

§ 400-500 downloads per day

§ Over 2,800 package recipes

§ 7,800 unique users on docs site
in the past year
— Probably a (large) overestimate
— Hard to get good numbers

§ There is steady interest in Spack!

24
LLNL-PRES-747560

@spackpmgithub.com/spack

Spack is being used on many of the top HPC systems

§ At HPC sites for reproducible software stack+ modules
— Reduced Summit deploy time from 2 weeks to 12 hrs.
— EPFL deploys its software stack with Jenkins + Spack
— NERSC, LLNL, ANL, other US DOE sites
— SJTU in China

§ Within ECP as part of their software release process
— ECP-wide software distribution
— SDK workflows

§ Within High Energy Physics (HEP) community
— HEP (Fermi, CERN) have contributed many features to support

their workflow

§ Many others

They wouldn’t let me put a sticker on it…

25
LLNL-PRES-747560

@spackpmgithub.com/spack

xsdk

alquimia

petsc

hypresuperlu-dist

trilinos

pflotran mfem

magma

sundials

cmake

hdf5

openmpi

ncursesopenssl

pkgconfzlib

hwloc

libxml2

xz

openblas

metis

parmetispython

bzip2

readline

sqlite

boost

glm

matio netcdf

m4

libsigsegv

Under ECP, “SDK” teams manage releases
using Spack
§ xSDK pioneered the SDK concept

— 8 member projects, 22 required dependencies
— Includes many major solver library teams
— Next release will have 10+ additional packages

§ Teams work together on regular releases
— Helps to work out compatibility issues
— Gets developers talking to each other
— Encourages teams to factor into smaller libraries

§ ECP is establishing more SDKs for different areas
— SDKs will be released using Spack
— Each will be its own meta-package like xSDK

Member

Build Dependency

Link Dependency

26
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Mostly luck, and also by lowering barriers
for people to join.

§ Without git & GitHub, we wouldn’t be able
to manage contributions from nearly as
many people
— Git handles concurrent development easily with

forks and branches

§ Many people are familiar with how to
contribute to github projects
— Pull requests are well understood and

accessible

How did we build a community?

27
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Recent GitHub survey showed that
users are much more inclined to
use a well documented project
— Obvious? Maybe.

§ readthedocs.org makes hosting
documentation easy
— Sphinx .rst files are fairly easy to write
— Auto-generate docs from the main

GitHub repository
— Built-in versioning

§ Remember that users can
contribute docs!
— Make it easy for them.

Documentation is critical for recruiting users and contributors

spack.readthedocs.io

28
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Spack currently uses Travis CI to test Spack itself.
— Every contribution is tested against regression tests in the cloud.
— We only merge pull requests if they pass Spack’s test suite
— Also enforce style guidelines

§ The contribution process is also documented.

§ Travis is free and easy!
— Commit a single, short .travis.yml file to your repo
— Tests are run automatically

§ We would never be able to handle so many
contributions if we had to do all this manually.

Testing and Continuous Integration are critical
for scaling a large project.

29
LLNL-PRES-747560

@spackpmgithub.com/spack

Spack Roadmap

1. Infrastructure for binary distribution
— Source mirror with archives for all projects in Spack
— Cloud-based build farm for relocatable binary packaging

2. “Environments” for developer dependency management
— Ability to have separate contexts in Spack
— Manifest/lockfile model supported in Spack

3. We are developing a new concretizer for Spack
— Needed to support the above two roadmap elements

30
LLNL-PRES-747560

@spackpmgithub.com/spack

We are building more extensive CI infrastructure
to enable testing real package builds

User

Amazon S3
source mirror

Source archives

Binary packages

Amazon S3
binary mirror

HPC Centers

Pull requests

31
LLNL-PRES-747560

@spackpmgithub.com/spack

§ CI at HPC centers is notoriously difficult
— Security concerns prevent most CI tools from being run by staff or by users
— HPC centers really need to deploy trusted CI services for this to work

§ Contracted Onyx Point to develop a secure CI system for HPC centers:
— Setuid runners (run CI jobs as users); Batch integration (similar, but parallel jobs); multi-center runner support

§ This effort required cooperation from 6 labs and ECP!

§ Getting everyone on the same page about requirements was key to enabling the project.

Through ECP, we are working with Onyx Point to deliver
continuous integration for HPC centers

User checks out / commits

code

Two-factor authentication

Fast mirroring

Setuid runner Batch runner

Trusted runners at HPC facility

32
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Package managers are used to install packages needed before a build

§ Also used by HPC facilities to manage system software on
supercomputers
— OS level (RPM, yum, yast, OpenHPC, etc.)
— Scientific software level (increasingly Spack, Easybuild)

§ Manifest / Lockfile model pioneered by Bundler is becoming standard
— Lockfile can be used to exactly reproduce a prior installation
— Many language-specific examples: Bundler, Cargo, npm, pipenv, etc.

§ This model is very similar to Spack’s concretization!

Package managers are a key part of reproducible workflows

Excerpt from a .travis.yml file

install build

project
Manifest file with names

of required dependencies
Lockfile describes

exact versions installed

Dependency

packages

33
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Ability to manage multiple environments independently
— On the command line with regular spack commands, or
— Projects can have a spackfile.yaml describing dependencies

§ Lock file contains complete provenance
— Lock file can be used to reproduce the same build on the same machine
— Or to reproduce a “close as possible” build on a different machine

Spack environments will support the manifest/lockfile model

install build
project

spackfile.yaml Full provenance in
spackfile.lock

Environment prefix with
dependencies linked in

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

34
LLNL-PRES-747560

@spackpmgithub.com/spack

§ Currently, Spack looks only at command line and package files for constraints
— Does not make special efforts to reuse already-installed binaries

§ For both environments and binary packaging, we need to reuse:
— Available packages in a binary mirror
— Available packages in the current environment

§ New concretizer needs to do solves not just for package/version but also:
— Build options (potentially multi-valued)
— Compilers and compiler versions
— Virtual dependencies
— Binary compatibility and compiler constraints

§ This is like existing manifest/lockfile solvers, but with many more constraints

Binary packaging and environments require
improvements to concretization

35
LLNL-PRES-747560

@spackpmgithub.com/spack

Summary: Insights from Spack

§ Don’t be afraid to tackle problems that are somewhat outside your
primary domain.
— I didn’t expect to be working on a build system!

§ If you think your project could have impact, build a community!
— Think about more than just your use case
— Even if your contributors’ needs are different, they can help your project
— Every new Spack package gets us more core contributions, more robustness

§ General open source guidelines:
— Documentation!
— Continuous integration!
— Use a language the community knows
— Delegate and spread the work out to your contributors

§ Be open to putting more work in. You could get much more out.

https://spack.io

@spackpm

github.com/spack

Get stickers!

Visit us!

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

