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Choice of works

• These papers are not typically discussed 
together but have some key issues in common
– required use of computers
– were in some sense enabled by limitations in 

computer resources
– were result of solving specific science problem
– Their impact took time and wasn’t initially obvious



Markov Chain Monte Carlo
• Equation of State Calculations on Fast Computing 

Machines, 1953, J. Chem Phys. 
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller

Metropolis Rosenbluth Rosenbluth Teller Teller



Before there was Bogdan …



Edward Teller



Deterministic Chaos

• Deterministic Nonperiodic Flow, 1963, Journal 
of the Atmospheric Sciences
Edward N. Lorenz 





ENIAC (1946)
• Electronic Numerical Integrator and Computer
• Could not store programs
• 17,480 tubes operating at 100,000 pulses per second
• 50K instructions, 300 multiplications per second
• Intended to compute ballistic trajectories before war ended
• Used  to study nuclear reactions





MANIAC (1952)
• Based on Von Neumann Architecture
• Built at Los Alamos by team led by Metropolis
• Used to design hydrogen bomb
• Pioneering developing of Monte Carlo methods (Ulam)
• Intended to compute ballistic trajectories before war ended
• Used  to study nuclear reactions



Metropolis et al driven by science goals 
– understanding phase transitions

“The purpose of this paper is to describe a 
general method, suitable for fast electronic 
computing machines, of calculating the 
properties of any substance which may be 
considered as composed of interacting 
particles” , Metropolis et al. (1953)



Role of Teller

“Teller made the crucial suggestion, pointing out that 
statistical mechanical averages could be performed by 
ensemble averaging instead of time averaging.  Time 
averaging required following the detailed kinematics of 
the interacting particles through the time integration
of Newton’s laws. Marshall comments that Metropolis’s 
computers as the others of the timed was not yet big 
enough and fast enough to do this.” Gubernatis (2005)

F =

R
Fe(�E/kT )dpdqR
e(�E/kT )dpdq



Computing Macroscopic Quantities

F =

R
Fe(�E/kT )dpdqR
e(�E/kT )dpdq

Particle positions and momenta
of dimension 3N for N particles!

energy of fluctuating
microstates follows
Boltzmann distribution Microstate values

Macroscopic value



Estimating the integral
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• For even small number of particles integral far too high 
dimensionality to discretize directly

• New approach then was Monte Carlo integration

• Pick a random configuration of particles, calculate 
energy of given configuration, and weight configuration 
by its probability



“Naïve” Monte Carlo Simulation

• Problem: each microstate was expensive on 
MANIAC, took several minutes to evaluate 

• Most states sample were in very low 
probability regions, contributed little or 
nothing to integral.

• Couldn’t get good estimate of macroscopic 
quantities
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“Instead of choosing configurations randomly, then 
weighting them with exp(−E/kT), we choose 
configurations with a probability exp(−E/kT) and
weight them evenly.” Metropolis et al (1953)

“... A simple way to do this sampling configurations with the
Boltzmann weight , as emerged after discussions with Teller, would be 
to make a trial move: if it decreased the energy of the system, allow it; 
if it increased the energy, allow it with probability exp(− E/kT) as 
determined by a comparison with a random number. Each step, after 
an initial annealing period, is counted as a member of the ensemble, 
and the appropriate ensemble average of any quantity determined.” 
Rosenbluth(2005)



Sampling from Boltzmann

• Not as easy as it sounds

• Don’t know energy until configuration is 
selected

• Technique has to be simple/inexpensive to 
compute



Start with arbitrary configuration and calculate
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Make Trial Move of first Particle



Calculate new energy: E1 =
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• If E1 < E0 accept move, calculate F of new 
configuration, and add to ensemble.

• If E1 > E0 accept move with probability e�(E1�E0)/kT

otherwise resample previous configuration

“It is, incidentally, clear from the above derivation that
after a forbidden move we must count again the initial
configuration. Not to do this would correspond in the
above case to removing from the ensemble those systems 
which tried to move from s to r and were forbidden. This 
would unjustifiably reduce the number in state s relative 
to r.”



Comments on proof

• The proof contained in text is not very 
mathematical but represents very clear and 
simple reasoning

• Kirkwood (LANL statistician) was skeptical

• Not clear authors understood result was not 
specific to the Boltzmann distribution



Linking to Modern Idea of MCMC

• Markov Chains are a simple idea:
– Given a state space c and transition probabilities 

between each pair of states, carry out random walk
– Under suitable conditions after burn-in period node 

visitations represent samples from some underlying 
distribution p(x).

– Can be discrete or continuous

Two state Markov Chain



Markov Chain Monte Carlo

• Idea is to rig Markov chain to sample from 

specified distribution.

• What is known as the “Metropolis Algorithm” 

does this for general p(x) as:

– Select an arbitrary stochastic trial matrix Q and 

starting state xi. For Metropolis Q is symmetric.

– For each step 1 … n

Sample candidate next state j from i’th row of Q
P (i ! j) = min[1, p(i)/p(j)]

P (i ! i) = 1�
X

i 6=j

p(i)/p(j)



Metropolis Algorithm

p(i)/p(j) = e(��E/kT )

Note that for Boltzmann:

so that for decreasing energy P(i,j) = 1

e�(�E)/kT > 1
with

for decreasing energy

This exactly matches algorithm in paper



Rosenbluth Algorithm
• Fifty years later, just before his death, Rosenbluth

asserted that he and Arianna did all of the work and 
that Metropolis only provided the computer time.

• When asked how he felt about changing the 
algorithm’s name, Rosenbluth wasn’t interested

“... life has been good to me. I feel rewarded in knowing 
that this algorithm will allow scientists to solve problems 
ranging from fluid flow to social dynamics to elucidating 
the nature of elementary particles.”



• 20,000 citations
• Only 3 in first 11 years!



Lorenz’s driving questions

• statistical vs. dynamic weather forecasts

• Could weather analogs be trusted?

• How do errors in initial conditions propogate
through scale and what are predictability limits?

• Study stability through numerical models



Lorenz 12-equation system
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• System still too large for numerical studies at the time

• Crazy idea at time 

• bought his own Royal Mcbee LGP-30, 60 Flop/s. 4Kb storage.



Lorenz 3-equation system

dx

dt

= c1(y � x)

dy

dt

= x(c2 � z)� y

dz

dt

= xy � c3z

Developed in collaboration with Barry Saltzman

Restarted simulation
to save time, with roundoff
error. Massive change in
solution was not expected. 
Recounted in Chaos by
James Gleick



Lorenz Attractor



Key discovery from 1969 paper: 
Non-limiting process

• “It is proposed that certain formally deterministic 
fluid systems which possess many scales of 
motion are observationally indistinguishable from 
indeterministic systems; specifically, that two 
states of the system differing initially by a small 
“observational error” will evolve into two states 
differing as greatly as randomly chosen states of 
the system within a finite time interval, which 
cannot be lengthened by reducing the amplitude 
of the initial error.” –Lorenz (1969)



Lorenz’s Contributions

• In discovering “deterministic chaos,” Dr. 
Lorenz established a principle that 
“profoundly influenced a wide range of basic 
sciences and brought about one of the most 
dramatic changes in mankind’s view of nature 
since Sir Isaac Newton,” said a committee that 
awarded him the 1991 Kyoto Prize for basic 
sciences.


