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§ “If our R&D is going to be relevant ten years from now, we need to shift 
our attention to parallel computer architectures”

§ “Los Alamos has a Denelcor HEP: let’s experiment with it”

MCS Division meeting c. 1983
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Parallel Platform Paradox
“The average time required to implement a moderate-sized 
application on a parallel computer architecture is equivalent to 
the half-life of the latest parallel supercomputer.”

“Although a strict definition of “half-life” could be argued, no computational 
physicist in the fusion community would dispute the face that most of the time 
spent implementing parallel simulations was focused on code maintenance, 
rather than on exploring new physics.  Architectures, software environments, 
and parallel languages came and went, leaving the investment in the new 
physics code buried with the demise of the latest supercomputer.  There had to 
be a way to preserve that investment.”

POOMA Project: 1996
John Reynders
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ATPESC Dinner Talk: 2014

Today…
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Quantum?  
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Microsoft Catapult

FPGAs:
• Biggest win:  SDN goes into FPGA/NIC
• All servers since 2015 deploy this
• Cloud providers recognize we need ”fluid” 

systems, but HPC lags behind…

Andrew
Putnam

FPGA….
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Intel Myriad NVIDIA TX2

Google TensorFlow Processors
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Amazon
DeepLens

Google
Edge TPU

July 2018

“Edge TPUs are designed to 
complement our Cloud TPU 
offering, so you can accelerate 
ML training in the cloud, then 
have lightning-fast ML 
inference at the edge. Your 
sensors become more than 
data collectors — they make 
local, real-time, intelligent 
decisions.”
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Equal Work is not Equal Time

Courtesty Bilge Acun: Dissertation, UIUC, 2018
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§ OPM (Other People’s Math (libraries))
§ Encapsulation

– Parallelism & Messaging & I/O

§ Embedded Capabilities
– Debugging
– Performance Monitoring
– Correctness Detection
– Resilience

§ The Two Workflow Views
– Science: (problem setup, analysis, etc.)
– Programmer: (mod, testing, document, commit)

§ Automation
– A+ Build system, nightly test and build, configuration
– Embedded versioning and metadata

§ Community: web, tutorial, email, bug tracking, etc

Pete’s
Investment
Recommendations



Pete Beckman   Argonne National Laboratory            14

Memory
Heterogeneity
Variability




