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Tutorial Software Installation
n The USB drives with Docker tools and images are provided for you to 

complete the tutorial software installation.
n The instructions are in the USB drives.

n After you run the tutorial_starter script, your web browser will open the 
jupyter notebook automatically. 

n If the jupyter notebook doesn’t run automatically, please copy/paste the 
URL, displayed in your terminal, to your web browser manually.

n Skip the step 4, “Edit IBM APIToken”, in the instruction since we don’t 
need to use IBM token for this tutorial.

n Disk space requirement: 12GB.

Raise your hand if you need any support.



Why Quantum Computing?
n Fundamentally change what is computable

q The only means to potentially scale computation exponentially with the 
number of devices

n Solve currently intractable problems in chemistry, simulation, and 
optimization
q Could lead to new nanoscale materials, better photovoltaics, better nitrogen 

fixation, and more

n A new industry and scaling curve to accelerate key applications
q Not a full replacement for Moore’s Law, but perhaps helps in key domains

n Lead to more insights in classical computing
q Previous insights in chemistry, physics and cryptography
q Challenge classical algorithms to compete w/ quantum algorithms
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NISQ
Now is a privileged time in the history of science and 
technology, as we are witnessing the opening of the NISQ 
era (where NISQ = noisy intermediate-scale quantum). 
– John Preskill, Caltech

413:29

IBM 
50 superconductor qubits

Google
72 supercond qubits

Innsbruck 
20 atomic ion qubits
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Closing the Gap: Software-Enabled 
Vertical Integration and Co-Design
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Goal
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Space-Time Product Limits
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Space-Time Product Limits
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“Good” Quantum Applications

n Compact problem representation
q Functions, small molecules, small graphs

n High complexity computation
n Compact solution 
n Easily-verifiable solution
n Co-processing with classical supercomputers
n Can exploit a small number of quantum 

kernels
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Quantum Compiler Optimizations

n Similar to circuit synthesis for classical ASICs
n Program inputs often known at compile time
n Manage errors and precision
n Scarce resources

q Every qubit and gate is important

13:29 13



Tool Flow
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https://github.com/epiqc/ScaffCC

Scaffold tools, 41K lines of code, open source
epiqc.cs.uchicago.edu



Increasing Parallelism
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n Compiler Optimizations:
q Loop unrolling, constant propagation, inlining, 

function cloning, DAG scheduling
[Heckey+ ASPLOS 2015] 



Microarchitecture
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[Fu+ Micro 2017 Best Paper] 



Breaking ISA Abstraction

n Multi-Qubit Operators for QAOA 
q Direct translation from compiler to control pulses
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[Joint work with David Schuster]



Static vs Dynamic: Mapping Data
n Static spectral and graph 

partitioners
n Map for clustering

q Probably necessary to get to 1000 
qubits

n Map for irregular physical 
constraints
q Qubit couplings, hardware defects

n Granularity of mappings
n Interaction with qubit reuse
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Spectral communities for 2-level 
Bravyi-Haah magic-state factory



How do I know if my QC program is 
correct?

n Check implementation against a 
formal specification

n Check general quantum 
properties
q No-cloning, entanglement, 

uncomputation
n Checks based on programmer 

assertions (quantum simulation)
n Heuristic bug-finding systems 

[Altadmri SIGCSE15]
n Can we check useful properties in 

polynomial time for programs with 
quantum supremacy?



What are the right abstractions?

n Specification Languages 
q Coq, Hamiltonians

n Programming Languages 
q Scaffold, Quipper, Q#, Quil …

n Instruction-Set Architectures 
q OpenQASM

n Physical Control 
q OpenPulse

20

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices



Specialization vs Abstraction
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