
Intro and Motivation:
Closing the Gap Between Quantum Algorithms

and Hardware through Software-Enabled
Vertical Integration and Co-Design

Fred Chong
Seymour Goodman Professor
Department of Computer Science
University of Chicago

Lead PI, the EPiQC Project,
an NSF Expedition in Computing

With Margaret Martonosi, Ken Brown, Peter Shor, Eddie Farhi, Aram
Harrow, Diana Franklin, David Schuster, John Reppy, and Danielle
Harlow (UChicago, MIT, Princeton, Duke, UCSB)

Tutorial Software Installation
n The USB drives with Docker tools and images are provided for you to

complete the tutorial software installation.
n The instructions are in the USB drives.

n After you run the tutorial_starter script, your web browser will open the
jupyter notebook automatically.

n If the jupyter notebook doesn’t run automatically, please copy/paste the
URL, displayed in your terminal, to your web browser manually.

n Skip the step 4, “Edit IBM APIToken”, in the instruction since we don’t
need to use IBM token for this tutorial.

n Disk space requirement: 12GB.

Raise your hand if you need any support.

Why Quantum Computing?
n Fundamentally change what is computable

q The only means to potentially scale computation exponentially with the
number of devices

n Solve currently intractable problems in chemistry, simulation, and
optimization
q Could lead to new nanoscale materials, better photovoltaics, better nitrogen

fixation, and more

n A new industry and scaling curve to accelerate key applications
q Not a full replacement for Moore’s Law, but perhaps helps in key domains

n Lead to more insights in classical computing
q Previous insights in chemistry, physics and cryptography
q Challenge classical algorithms to compete w/ quantum algorithms

3

NISQ
Now is a privileged time in the history of science and
technology, as we are witnessing the opening of the NISQ
era (where NISQ = noisy intermediate-scale quantum).
– John Preskill, Caltech

413:29

IBM
50 superconductor qubits

Google
72 supercond qubits

Innsbruck
20 atomic ion qubits

The Algorithms to Machines Gap

5

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

#Qubits

#Qubits Needed

#Qubits Buildable

The Algorithms to Machines Gap

6

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

#Qubits

#Qubits Needed

#Qubits Buildable

Quantum Sim,
Q Chem,
QAOA

The Algorithms to Machines Gap

7

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

#Qubits

#Qubits Needed

#Qubits Buildable

Quantum Sim,
Q Chem,
QAOA

Co-Design

Closing the Gap: Software-Enabled
Vertical Integration and Co-Design

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

Quantum Sim,
Q Chem,
QAOA

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices

Co-Design

Goal

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

Quantum Sim,
Q Chem,
QAOA

Result:
Crossover
by 2023!

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices

Develop co-designed algorithms, SW, and HW to
close the gap between algorithms and devices by
100-1000X, accelerating QC by 10-20 years.

C
o-D

esign

Space-Time Product Limits

13:29 10

Qubits

Gates

1024x1

1x1024

Gate Error ~ 10-3

32x32

Space-Time Product Limits

13:29 11

Qubits

Gates

Gate Error ~ 10-5

128x1024

“Good” Quantum Applications

n Compact problem representation
q Functions, small molecules, small graphs

n High complexity computation
n Compact solution
n Easily-verifiable solution
n Co-processing with classical supercomputers
n Can exploit a small number of quantum

kernels

12

Quantum Compiler Optimizations

n Similar to circuit synthesis for classical ASICs
n Program inputs often known at compile time
n Manage errors and precision
n Scarce resources

q Every qubit and gate is important

13:29 13

Tool Flow

13:29 14

LLVM Infrastructure

M
od

ifi
ed

 C
la

ng
 P

ar
se

r

C
on

ve
rs

io
n

to
 R

ev
er

si
bl

e
C

irc
ui

t

C
la

ss
ic

al
 C

on
tr

ol
 R

es
ol

ut
io

n

LL
VM

 In
te

rm
ed

ia
te

 R
ep

re
se

nt
at

io
n

R
es

ou
rc

e
E

st
im

at
io

n

M
od

ul
e

In
lin

in
in

g
an

d
Fl

at
te

ni
ng

N
o-

C
lo

ni
ng

V

er
ifi

ca
tio

n

Q
ub

it
R

ed
un

da
nc

y

Compilation Program
Checks

Fa
ul

t-
To

le
ra

nt

G
at

e
C

on
ve

rs
io

n

Sc
af

fo
ld

 Q
ua

nt
um

 P
ro

gr
am

D
ec

om
po

si
ng

to

 S
ta

nd
ar

d
G

at
es

Ze
ro

 S
ta

te
s

fo
r E

C
C

Fault-Tolerant Redundancies

M
ag

ic
 S

ta
te

s
fo

r T
 G

at
es

E
P

R
 s

ta
te

s
fo

r
Te

le
po

rt
at

io
n

Architectural Simulator

Lo
gi

ca
l

Q
A

S
M

 G
en

er
at

io
n

LP
FS

 S
ch

ed
ul

er

Logical
Backend

Lo
gi

ca
l S

ch
ed

ul
e

Ph
ys

ic
al

 S
ch

ed
ul

e

P
hy

si
ca

l Q
A

S
M

 G
en

er
at

io
n

Physical
Backend

P
hy

si
ca

l S
ch

ed
ul

er

C
om

m
un

ic
at

io
n

O
pt

im
iz

er

https://github.com/epiqc/ScaffCC

Scaffold tools, 41K lines of code, open source
epiqc.cs.uchicago.edu

Increasing Parallelism

13:29 15

n Compiler Optimizations:
q Loop unrolling, constant propagation, inlining,

function cloning, DAG scheduling
[Heckey+ ASPLOS 2015]

Microarchitecture

16

[Fu+ Micro 2017 Best Paper]

Breaking ISA Abstraction

n Multi-Qubit Operators for QAOA
q Direct translation from compiler to control pulses

17

[Joint work with David Schuster]

Static vs Dynamic: Mapping Data
n Static spectral and graph

partitioners
n Map for clustering

q Probably necessary to get to 1000
qubits

n Map for irregular physical
constraints
q Qubit couplings, hardware defects

n Granularity of mappings
n Interaction with qubit reuse

18

Spectral communities for 2-level
Bravyi-Haah magic-state factory

How do I know if my QC program is
correct?

n Check implementation against a
formal specification

n Check general quantum
properties
q No-cloning, entanglement,

uncomputation
n Checks based on programmer

assertions (quantum simulation)
n Heuristic bug-finding systems

[Altadmri SIGCSE15]
n Can we check useful properties in

polynomial time for programs with
quantum supremacy?

What are the right abstractions?

n Specification Languages
q Coq, Hamiltonians

n Programming Languages
q Scaffold, Quipper, Q#, Quil …

n Instruction-Set Architectures
q OpenQASM

n Physical Control
q OpenPulse

20

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices

Specialization vs Abstraction

13:29 21

Short-term SW Long-term SW

100 1000 10000 100000

qubits

Gap?

