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Tutorial Software Installation

= The USB drives with Docker tools and images are provided for you to
complete the tutorial software installation.

m [ heinstructions are in the USB drives.

docker_images
docker_installer

™ Instruction-Linux.pdf

"™ Instruction-Mac.pdf

" Instruction-Windows.pdf

m After you run the tutorial starter script, your web browserwill open the
jupyter notebook automatically.

= [f the jupyter notebook doesn’trun automatically, please copy/paste the
URL, displayed in your terminal, to your web browser manually.

= Skip the step 4, “Edit IBM APIToken”, in the instruction since we don't
needto use IBM token for this tutorial.

m Disk spacerequirement: 12GB.

Raise your hand if you need any support.




‘Why Quantum Computing? . i
i

Fundamentally change what is computable

o Theonly meansto potentially scale computation exponentially with the
number of devices

Solve currently intractable problems in chemistry, simulation, and

optimization

o Could lead to new nanoscale materials, better photovoltaics, better nitrogen
fixation, and more

A new industry and scaling curve to accelerate key applications
o Not a full replacementfor Moore’s Law, but perhaps helps in key domains
Lead to more insights in classical computing

o Previousinsights in chemistry, physics and cryptography
o Challenge classical algorithms to compete w/ quantum algorithms




| NISQ

Now is a privileged time in the history of science and
technology, as we are witnessing the opening of the NISQ
era (where NISQ = noisy intermediate-scale quantum).

— John Preskill, Caltech

IBM Innsbruck Google
\ 50 superconductor qubits 20 atomic ion qubits 72 supercond qubits /
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‘ The Algorithms to Machines Gap
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‘ Closing the Gap: Software-Enabled
Vertical Integration and Co-Design
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‘ Goal

Develop co-designed algorithms, SW, and HW to
close the gap between algorithms and devices by
100-1000X, accelerating QC by 10-20 years.

1000000

Grovers Algorithm (Database search) Algorithms
100000

Shor’s Factoring Alg. (Crypto) Prog Lang

10000 Quantum Sim, Result: Compiler

Q Chem, Crossover
1000 QAOA by 2023! Architecture
”’ :
100 Gap' > /’ _ Modeling
- Devices
—

1995 2000 2005 2010 2015 2020 2025



| Space-Time Product Limits

Gates

N
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‘ Space-Time Product Limits

128x1024

Gate Error ~ 10

Gates

Qubits
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“Good” Quantum Applications

s Compact problem representation
o Functions, small molecules, small graphs

» High complexity computation
= Compact solution

= Easily-verifiable solution
m Co-processing with classical supercomputers

s Can exploit a small number of quantum
kernels
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‘ Quantum Compiler Optimizations

s Similar to circuit synthesis for classical ASICs
s Program inputs often known at compile time
s Manage errors and precision

m Scarce resources
o Every qubit and gate is important
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Tool Flow
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Architectural Simulator

epigc.cs.uchicago.edu
https://github.com/epigc/ScaffCC

Scaffold tools, 41K lines of code, open source

LLVM Infrastructure
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Increasing Parallelism

s Compiler Optimizations:

o Loop unrolling, constant propagation, inlining,
function cloning, DAG scheduling
[Heckey+ ASPLOS 2015]
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Microarchitecture

Main Memory (instructions & data)
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‘ Breaking ISA Abstraction
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s Multi-Qubit Operators for QAOA

o Direct translation from compiler to control pulses
[Joint work with David Schuster]
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‘ Static vs Dynamic: Mapping Data

s Static spectral and graph
partitioners

= Map for clustering

o Probably necessary to getto 1000
qubits

= Map for irregular physical
constraints
o Qubit couplings, hardware defects

s Granularity of mappings

= Interaction with qubit reuse Spectral communities for 2-level
Bravyi-Haah magic-state factory
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How do I know if my QC program is

correct?

Check implementation against a
formal specification

Check general quantum

properties

o No-cloning, entanglement,
uncomputation

Checks based on programmer
assertions (quantum simulation)

Heuristic bug-finding systems
[Altadmri SIGCSE195]

Can we check useful properties in
polynomial time for programs with
quantum supremacy?




| What are the right abstractions?

m Specification Languages
o Coqg, Hamiltonians

= Programming Languages
a Scaffold, Quipper, Q#, Quil ...

m Instruction-Set Architectures
o OpenQASM

= Physical Control
o OpenPulse

Algorithms

Prog Lang

Compiler

Architecture

Modeling

Devices
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‘ Specialization vs Abstraction

Gap?
Short-term SW M Long-term SW
100 1000 10000 100000

qubits
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