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Evolution of Multicore Architectures

» Past decade has seen tremendous evolution in multicore designs
— Increasing sophistication of component cores
— Numerous ways to compose cores, caches, interconnect

« How can you benefit as a programmer?
— System architecture has many complex interactions with application
— Difficult to predict performance
— Knowledge of the microarchitecture can be useful to programmer!

* Focus on “basic” homogeneous elements
— No GPU
— No Vectorization
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Bottom Up

* Lean heavily on system stack concept
— Layers built on top of layers
— For this talk start with transistors and work our way up
— Thinking about transistors...not necessary for day to day activity

« Why start with transistors?
— Gives you great insight and appreciation for why things are the way they are
— Helps you to understand trends
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Transistor: Switch Model

#1 — 1
Gate —| #2
« Humble transistor: bedrock of our digital world aND v#2 \ #1
 Field Effect Transistors (FETs) 1
« CMOS is dominant design paradigm /
— Two FET variants (PMOS and NMOS) #2

 As digital devices can be thought of as simple
switches

 Put transistors together for compute and memory
(state)
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Transistors: Physical Properties

* Physical devices with measurable properties and
consequences:

— Dimensions => Die Area
— Switching Speed => Latency
— Power => Battery, Utility Costs, Temperature

« Circuit designer can optimize transistor parameters
to make tradeoffs

— For example, can pick transistors larger to improve speed
at some cost in area and power

— Apply different tradeoffs throughout the system

* Relevance for us: Physical constraints force
different design choices
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Transistors : Logic Building Blocks

« Build basic logic gates out of transistors:
— NOT, NAND, NOR, AND, OR etc

« Compose logic gates to compute anything!




Transistor Building Blocks : State

« Use transistors as storage elements
— Retain state (hold data)
— 6-T Design for Static RAM (SRAM)
— 1-T Design for Dynamic RAM (DRAM)

« Many tradeoffs between latency, power, density
— Leads to different choice of state elements throughout system

« Wires have delay, too
— Dominant latency component for caches
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Simple CPU

* |dea: Implement CPU with logic and state building blocks
« Obvious way to do this is sequential
e Bare minimum hardware resources = economical

* Fits naturally with programmer’s view
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Simple Pipeline

 Idea: Overlap steps in instruction execution
— Known as a scalar pipeline

« Works because many of the steps are independent
— May stall when there are dependencies

 Increases throughput — no impact on latency

 Relatively low hardware demands over simple cpu
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Superscalar Pipeline

» |[dea: Some of these instructions are independent
and can be executed in parallel

— Known as superscalar execution

« Always limited by dependencies between
instructions

« Demands more hardware resources
— Some structures scalar linearly (e.g. execution units)
— Some quadratic (e.g. dependency check logic)
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Out-of-Order Pipeline

 Idea: Detect dependencies dynamically and schedule
around them

— Known as out-of-order execution

« Can schedule execution in any order that maximizes
performance

« Hides long latency operations (e.g. some cache misses,
long FP operations)

« Expensive hardware requirements
— Queues and buffers hold waiting instructions
— Lots of temporary storage for in-flight operations
— Complicated logic to detect dependencies and schedule
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Modern Core

 Pipeline is both deep and wide
« Huge buffers and queues

« Aggressive support for speculation
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Hyperthreading

 Idea: Threads can share pipeline resources and execute
simultaneously

— Known originally as simultaneous multithreading (SMT)
« Multiple logical cores map to same physical core
» Works because many core resources are under utilized

« Slows down each thread by some amount but improves
throughput

 Modest hardware cost over non-HT
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Caches

313029 - - - o - . 13121110987 6543210

Index V Tag Data V Tag Data V Tag Data V Tag Data

 Fast local storage structures which hold
instructions/data

* Most caches use SRAM (most commonly 6-
transistor cells)

* Primary benefits:
— Reduce average memory access time
— Reduce interconnect traffic

— Reduce contention on memory

« Fundamental tradeoff in cache capacity (size)
and access time

— Recall: Importance of wire delay
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Cache Hierarchy
Skylake-H (Core i7-6770HQ) Memory Hierarchy

L1 | CoreL1 Dl LTI | coreL1 Dl LTI o
A | E— e Y| | W—  So— — —

« Most program data does not fit in a low . L2 L2 “eatnes

access latency cache

— Quick access also implies small size - LLC - Last Level Cache (1.5MB/core)
e Build memory hierarchy with R o = DiAM

iIncreasingly larger but slower caches Other e—| T e o

— Choose associativity and capacity of each T

level

Ring Architecture Mesh Architecture

* In multi-core systems we have | =m
additional choices: }‘T WX ‘ m
— What parts of the hierarchy are shared? | l‘; 3o 48 f &
— What type of interconnect? Lre =t 4
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Main Memory

« Contemporary systems use DRAM main memory
— Very slow...at least 200 cycles per access
— Off-chip (usually) and uses dense but slow 1-T cells

« Memory architecture has been a very vibrant area of architecture research over
last decade

— For some important workloads, there is no hope of fitting everything within even a very large
cache

— Many different ways to organize DRAM and schedule requests
— Don’t have time to do this justice here
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I-Cache: What happens on a miss?

* Instruction stream is disrupted...no instructions to feed pipeline

* This is true for any I-Cache miss (even if it hits in next level)

instructions instrucions
cache miss bufferedin  window re-enter
occurs decode PIP€  drains window

steady state |

N/

Instructions fill
miss delay > ‘4\

decode pipe
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D-Cache: What happens on a miss?

* |[f miss event is short...maybe nothing
— OOQO easily hides the penalty

* If miss event is long...latency cannot be
hidden

— Buffers and queues fill up
— Cannot make progress until miss serviced
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d cache miss
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\ ROB fills
ROB full
/ miss data
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returns

commit

_ _ resumes;
~ window drains . \issue ramps
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Limits to Parallelism

* |[deally, we'd like linear speedup 0 e 7 <%

« But because of Amdahl’'s Law we won’t get

there

— p=T(a+(1-a)/p)
— Where a represents the serial part of the computation

Speedup symmetric

 Classic sources of inefficiency: |
| 16 32 64 128 256

— Load imbalance
— Synchronization (b)
— Communication
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Types of Misses

* Most communication in the system comes through memory hierarchy

* Revisit cache misses:

Cold / Compulsory — Data has not been accessed yet
Conflict — Insufficient associativity
Capacity — Data does not fit [Sharing Resources]

Coherence — Data is being shared...system forces misses to maintain correct semantics

(RAW) [Sharing Data]

* In parallel workloads, sharing is critical
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Cache Coherence

 Blocks are replicated throughout system to
facilitate local caching of data

« But when there are writes to data the system
needs to maintain correct version

* Track state of cache blocks

* Introduce invalidations (forcibly evict blocks) when
writes occur

* No programmer intervention required for
correctness

The Cache Coherence Problem
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Coherence Misses

* Misses introduced by data sharing and enforcement
of coherence

— Cache block shared across P1 and P2
— P1 does write to block => system invalidates P2’s copy
— P2 misses on next read of block

* True Sharing: P1 writes to data word that P2 actually
uses

« False Sharing: P1 writes to one data word; P2 reads
from different word
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Assumptions

« Have already applied all the classic cache optimizations
— Loop interchange
— Loop fusion
— Blocking

* Minimize load imbalance, apply appropriate task assignment, usually:
— Static: When tasks are homogeneous and work is predictable
— Dynamic: When there is variance and uncertainty
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Maximizing Performance

« Start with basic implementation: Don’t get too cute!

« Understand key properties: Definitely profile!
— For each task: Latency, Data
— Relationship between tasks

 Try to figure out bottlenecks
« Will be an iterative process

« Obvious knobs you can turn:
— Thread count
— Mapping
— Data placement / arrangement

—
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Fits Within Private Caches (L1/L2)

Map threads to same physical core

Separate logical cores with
Hyperthreading

Low miss rate for private cache

If data parallel will benefit from
common instruction working set

— Good instruction cache behavior
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Fits Within Same LLC

« Map threads to different physical cores
within same chip

* Minimize off-chip accesses

i Processor

. . . ¥ el e = L3 i ; Controller
« May still pay penalty for distant on-chip TP i v
Display;
access : |- St
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Does NOT Fit Within LLC

« Map threads to different
chips/socket

* Do your best to make most of LLC
on each socket
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Managing Communication Costs

« Some aspects of communication are intrinsic to the algorithm
— Example: Data sharing in matrix multiplication
— Try to reduce the associated costs (e.g. lower latency of sharing)

« Other aspects of communication are introduced by system
— Often caused by a mis-match between system architecture and implementation
— Try to eliminate these when we can
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Managing Communication: Locality Awareness

* |dentify threads that share objects / critical sections
— Coherence misses (true sharing) with data and synchronization variables
— Associated communication is intrinsic to algorithm (cannot avoid)

* Place threads as close as you can
— But still try to respect capacity issues
— Tradeoff of capacity misses versus coherence misses
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Managing Communication: False Sharing

 False sharing occurs when threads have read/write access to same cache block
without exchanging data

 Architecture dependent and leads to unexpected performance issues

« Artifact of the system architecture
— Coherence messages try to maintain correct RAW semantics
— Block size is too coarse => mis-matched with structure of data

* Need to tune data layout of arrays/objects to suit block size
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