
exascaleproject.org

Argonne Training Program
on Extreme-Scale Computing

ATPESC 2018

Russ Joseph
Associate Professor – Northwestern University

Q Center, St. Charles, IL (USA)
July 30, 2018

2

Evolution of Multicore Architectures

• Past decade has seen tremendous evolution in multicore designs
– Increasing sophistication of component cores
– Numerous ways to compose cores, caches, interconnect

• How can you benefit as a programmer?
– System architecture has many complex interactions with application
– Difficult to predict performance
– Knowledge of the microarchitecture can be useful to programmer!

• Focus on “basic” homogeneous elements
– No GPU
– No Vectorization

3

Bottom Up

• Lean heavily on system stack concept
– Layers built on top of layers
– For this talk start with transistors and work our way up
– Thinking about transistors…not necessary for day to day activity

• Why start with transistors?
– Gives you great insight and appreciation for why things are the way they are
– Helps you to understand trends

exascaleproject.org

Building With Transistors

5

Transistor: Switch Model

• Humble transistor: bedrock of our digital world

• Field Effect Transistors (FETs)

• CMOS is dominant design paradigm
– Two FET variants (PMOS and NMOS)

• As digital devices can be thought of as simple
switches

• Put transistors together for compute and memory
(state)

6

Transistors: Physical Properties

• Physical devices with measurable properties and
consequences:
– Dimensions => Die Area
– Switching Speed => Latency
– Power => Battery, Utility Costs, Temperature

• Circuit designer can optimize transistor parameters
to make tradeoffs
– For example, can pick transistors larger to improve speed

at some cost in area and power
– Apply different tradeoffs throughout the system

• Relevance for us: Physical constraints force
different design choices

7

Transistors : Logic Building Blocks

• Build basic logic gates out of transistors:
– NOT, NAND, NOR, AND, OR etc

• Compose logic gates to compute anything!

8

Transistor Building Blocks : State

• Use transistors as storage elements
– Retain state (hold data)

– 6-T Design for Static RAM (SRAM)

– 1-T Design for Dynamic RAM (DRAM)

• Many tradeoffs between latency, power, density
– Leads to different choice of state elements throughout system

• Wires have delay, too
– Dominant latency component for caches

exascaleproject.org

Inside The Core

10

Simple CPU

• Idea: Implement CPU with logic and state building blocks
• Obvious way to do this is sequential
• Bare minimum hardware resources = economical
• Fits naturally with programmer’s view

11

Simple Pipeline

• Idea: Overlap steps in instruction execution
– Known as a scalar pipeline

• Works because many of the steps are independent
– May stall when there are dependencies

• Increases throughput – no impact on latency
• Relatively low hardware demands over simple cpu

12

Superscalar Pipeline

• Idea: Some of these instructions are independent
and can be executed in parallel
– Known as superscalar execution

• Always limited by dependencies between
instructions

• Demands more hardware resources
– Some structures scalar linearly (e.g. execution units)
– Some quadratic (e.g. dependency check logic)

13

Out-of-Order Pipeline

• Idea: Detect dependencies dynamically and schedule
around them
– Known as out-of-order execution

• Can schedule execution in any order that maximizes
performance

• Hides long latency operations (e.g. some cache misses,
long FP operations)

• Expensive hardware requirements
– Queues and buffers hold waiting instructions
– Lots of temporary storage for in-flight operations
– Complicated logic to detect dependencies and schedule

14

Modern Core

• Pipeline is both deep and wide
• Huge buffers and queues
• Aggressive support for speculation

15

Hyperthreading

• Idea: Threads can share pipeline resources and execute
simultaneously
– Known originally as simultaneous multithreading (SMT)

• Multiple logical cores map to same physical core
• Works because many core resources are under utilized
• Slows down each thread by some amount but improves

throughput
• Modest hardware cost over non-HT

exascaleproject.org

Cache Organization

17

Caches

• Fast local storage structures which hold
instructions/data

• Most caches use SRAM (most commonly 6-
transistor cells)

• Primary benefits:
– Reduce average memory access time
– Reduce interconnect traffic
– Reduce contention on memory

• Fundamental tradeoff in cache capacity (size)
and access time
– Recall: Importance of wire delay

18

Cache Hierarchy

• Most program data does not fit in a low
access latency cache
– Quick access also implies small size

• Build memory hierarchy with
increasingly larger but slower caches
– Choose associativity and capacity of each

level

• In multi-core systems we have
additional choices:
– What parts of the hierarchy are shared?
– What type of interconnect?

19

Main Memory

• Contemporary systems use DRAM main memory
– Very slow…at least 200 cycles per access
– Off-chip (usually) and uses dense but slow 1-T cells

• Memory architecture has been a very vibrant area of architecture research over
last decade
– For some important workloads, there is no hope of fitting everything within even a very large

cache
– Many different ways to organize DRAM and schedule requests
– Don’t have time to do this justice here

20

I-Cache: What happens on a miss?

• Instruction stream is disrupted…no instructions to feed pipeline
• This is true for any I-Cache miss (even if it hits in next level)

21

D-Cache: What happens on a miss?

• If miss event is short…maybe nothing
– OOO easily hides the penalty

• If miss event is long…latency cannot be
hidden
– Buffers and queues fill up
– Cannot make progress until miss serviced

exascaleproject.org

Programming for Multicores

23

Limits to Parallelism

• Ideally, we’d like linear speedup
• But because of Amdahl’s Law we won’t get

there
– p=T(α+(1−α)/p)
– Where α represents the serial part of the computation

• Classic sources of inefficiency:
– Load imbalance
– Synchronization
– Communication

24

Types of Misses

• Most communication in the system comes through memory hierarchy
• Revisit cache misses:

– Cold / Compulsory – Data has not been accessed yet
– Conflict – Insufficient associativity
– Capacity – Data does not fit [Sharing Resources]
– Coherence – Data is being shared…system forces misses to maintain correct semantics

(RAW) [Sharing Data]

• In parallel workloads, sharing is critical

25

Cache Coherence

• Blocks are replicated throughout system to
facilitate local caching of data

• But when there are writes to data the system
needs to maintain correct version

• Track state of cache blocks
• Introduce invalidations (forcibly evict blocks) when

writes occur
• No programmer intervention required for

correctness

26

Coherence Misses

• Misses introduced by data sharing and enforcement
of coherence
– Cache block shared across P1 and P2

– P1 does write to block => system invalidates P2’s copy

– P2 misses on next read of block

• True Sharing: P1 writes to data word that P2 actually
uses

• False Sharing: P1 writes to one data word; P2 reads
from different word

27

Assumptions

• Have already applied all the classic cache optimizations
– Loop interchange
– Loop fusion
– Blocking

• Minimize load imbalance, apply appropriate task assignment, usually:
– Static: When tasks are homogeneous and work is predictable
– Dynamic: When there is variance and uncertainty

28

Maximizing Performance

• Start with basic implementation: Don’t get too cute!
• Understand key properties: Definitely profile!

– For each task: Latency, Data
– Relationship between tasks

• Try to figure out bottlenecks
• Will be an iterative process
• Obvious knobs you can turn:

– Thread count
– Mapping
– Data placement / arrangement

29

Fits Within Private Caches (L1/L2)

• Map threads to same physical core
• Separate logical cores with

Hyperthreading
• Low miss rate for private cache
• If data parallel will benefit from

common instruction working set
– Good instruction cache behavior

30

Fits Within Same LLC

• Map threads to different physical cores
within same chip

• Minimize off-chip accesses
• May still pay penalty for distant on-chip

access

31

Does NOT Fit Within LLC

• Map threads to different
chips/socket

• Do your best to make most of LLC
on each socket

32

Managing Communication Costs

• Some aspects of communication are intrinsic to the algorithm
– Example: Data sharing in matrix multiplication
– Try to reduce the associated costs (e.g. lower latency of sharing)

• Other aspects of communication are introduced by system
– Often caused by a mis-match between system architecture and implementation
– Try to eliminate these when we can

33

Managing Communication: Locality Awareness

• Identify threads that share objects / critical sections
– Coherence misses (true sharing) with data and synchronization variables
– Associated communication is intrinsic to algorithm (cannot avoid)

• Place threads as close as you can
– But still try to respect capacity issues
– Tradeoff of capacity misses versus coherence misses

34

Managing Communication: False Sharing

• False sharing occurs when threads have read/write access to same cache block
without exchanging data

• Architecture dependent and leads to unexpected performance issues
• Artifact of the system architecture

– Coherence messages try to maintain correct RAW semantics
– Block size is too coarse => mis-matched with structure of data

• Need to tune data layout of arrays/objects to suit block size

exascaleproject.org

Thank you!

