E\(E\\)P Argonne Training Program
e on Extreme-Scale Computing

ATPESC 2018

Russ Joseph
Associate Professor — Northwestern University

Q Center, St. Charles, IL (USA)
July 30, 2018

: N Office of
exascaleproject.org O ENERGY Science

Evolution of Multicore Architectures

» Past decade has seen tremendous evolution in multicore designs
— Increasing sophistication of component cores
— Numerous ways to compose cores, caches, interconnect

« How can you benefit as a programmer?
— System architecture has many complex interactions with application
— Difficult to predict performance
— Knowledge of the microarchitecture can be useful to programmer!

* Focus on “basic” homogeneous elements
— No GPU
— No Vectorization

"~ \
\ EXASCALE

) —) COMPUTING

PROJECT

Bottom Up

* Lean heavily on system stack concept
— Layers built on top of layers
— For this talk start with transistors and work our way up
— Thinking about transistors...not necessary for day to day activity

« Why start with transistors?
— Gives you great insight and appreciation for why things are the way they are
— Helps you to understand trends

"~ \
\ EXASCALE

) —) COMPUTING

PROJECT

cCP

EXASCALE COMPUTING PROJECT

Building With Transistors

4*‘:"“».,& U.S. DEPARTMENT OF Office Of

“\
exascaleproject.org \“/ENERGY | science N"SY“J

Transistor: Switch Model

#1 — 1
Gate —| #2
« Humble transistor: bedrock of our digital world aND v#2 \ #1
 Field Effect Transistors (FETs) 1
« CMOS is dominant design paradigm /
— Two FET variants (PMOS and NMOS) #2

 As digital devices can be thought of as simple
switches

 Put transistors together for compute and memory
(state)

Metal - 8
Poly-S1 p—-Well
rd
: I i o+ ‘| no-MOSFET:s
1 2

Transistors: Physical Properties

* Physical devices with measurable properties and
consequences:

— Dimensions => Die Area
— Switching Speed => Latency
— Power => Battery, Utility Costs, Temperature

« Circuit designer can optimize transistor parameters
to make tradeoffs

— For example, can pick transistors larger to improve speed
at some cost in area and power

— Apply different tradeoffs throughout the system

* Relevance for us: Physical constraints force
different design choices

32\

37\

Transistors : Logic Building Blocks

« Build basic logic gates out of transistors:
— NOT, NAND, NOR, AND, OR etc

« Compose logic gates to compute anything!

Transistor Building Blocks : State

« Use transistors as storage elements
— Retain state (hold data)
— 6-T Design for Static RAM (SRAM)
— 1-T Design for Dynamic RAM (DRAM)

« Many tradeoffs between latency, power, density
— Leads to different choice of state elements throughout system

« Wires have delay, too
— Dominant latency component for caches

BL

Address line

Transistor

Storage

bit line

VDD

capacitor

S I

Ground

WL

BL

T M6

.

"~ \
\ EXASCALE

) —) COMPUTING

PROJECT

cCP

EXASCALE COMPUTING PROJECT

Inside The Core

2 U.S. 1 J “
exascaleproject.org [©)ENERGY | socre NIS?:J

N ecurity Administrai

10

Simple CPU

* |dea: Implement CPU with logic and state building blocks
« Obvious way to do this is sequential
e Bare minimum hardware resources = economical

* Fits naturally with programmer’s view

EEEEEEEE
CCCCCCCCC
EEEEEEE

11

Simple Pipeline

 Idea: Overlap steps in instruction execution
— Known as a scalar pipeline

« Works because many of the steps are independent
— May stall when there are dependencies

 Increases throughput — no impact on latency

 Relatively low hardware demands over simple cpu

) EXASCALE
COMPUTING
PROJECT

Superscalar Pipeline

» |[dea: Some of these instructions are independent
and can be executed in parallel

— Known as superscalar execution

« Always limited by dependencies between
instructions

« Demands more hardware resources
— Some structures scalar linearly (e.g. execution units)
— Some quadratic (e.g. dependency check logic)

12

) EXASCALE
COMPUTING
PROJECT

Out-of-Order Pipeline

 Idea: Detect dependencies dynamically and schedule
around them

— Known as out-of-order execution

« Can schedule execution in any order that maximizes
performance

« Hides long latency operations (e.g. some cache misses,
long FP operations)

« Expensive hardware requirements
— Queues and buffers hold waiting instructions
— Lots of temporary storage for in-flight operations
— Complicated logic to detect dependencies and schedule

: \

"~ \
\ EXASCALE

) —) COMPUTING

PROJECT

14

Modern Core

 Pipeline is both deep and wide
« Huge buffers and queues

« Aggressive support for speculation

(80D) 95ng B3R Q USWWED

Front End Instruction
Cache Tag L1 Instruction Cache
HOP Cache 32KiB 8-Way Instruction
Tag TLB
16 Bytes/cycle
Branch -
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
MOP MOP MOP MOP MOP MOP %
Instruction Queue - \\
‘ (50, 2x25 entries) 2
o
MoP MoP MoP MoP MoP o
MicroCode 54Vay Decode
Seq;:chr |Comp|ex| Simple Simple Simple Simple
(MS ROM) Decoder || Decoder || Decoder || Decoder || Decoder
1-4 poPs por por por pnor
4 pOPs
5 pOP
Decoded Stream Buffer (DSB) i B
(LOP Cache) 6 HOPs
(1.5k uOPs; 8-Way)
(64 B window) MUX /

Allocation Queue (IDQ) (128, 2x64 pOPs)

) i pOP pOP pOP pOP pOP pOP |Branch Order Buffer
‘ Register Alias Table (RAT) ‘ ?hop (BOB) (48-entry)

e / Allocate / Retirement

Load
— Renam n - n
FP ReOrder Buffer (224 entries) | Ones Idioms] [Zeromg Idlomsl
I por pop popr popr por pop nor pop
b
i
i . Scheduler . .
Cint ntegertfsrwgsRl::Iistglss]ter Al Unified Reservation Station (RS) Vector‘zggs;;agli::e?ss)ter ik
Stord (97 entries)
N
[Port0] [Port1]| [Port5] [Port6]| [Port2z]| [Port3]| [Portd]| [Port7] c gr_
pop pop pop pop nop nor nopP poP %. ~ N
gl = Q
INT ALU T ALY INT ALU AGU AGU [Store Data] [AGU] nl & a
INT MUL_|[Vect Shuffie| Load Data| [Load Data = 5 =
- INT Vect ALU o 35
NT Vect MUL <
FP_FMA 256bit/cycle
Bit Scan E U s
Execution E ng' he Store Buffer & Forwarding
(56 entries) §
328/eycle \ 5
3
r Data TLB I Fy
T 1]
Load Buffer . " L1 D’:f‘ta Cache
(72 entries) | 32KiB 8-Way
B Line Fill Buffers (LFB)
(10 entries)
Memory Subsystem

32B/cycle

/ To L3

NG

15

Hyperthreading

 Idea: Threads can share pipeline resources and execute
simultaneously

— Known originally as simultaneous multithreading (SMT)
« Multiple logical cores map to same physical core
» Works because many core resources are under utilized

« Slows down each thread by some amount but improves
throughput

 Modest hardware cost over non-HT

) EXASCALE
COMPUTING
PROJECT

cCP

EXASCALE COMPUTING PROJECT

Cache Organization

w“:"“».,e U.S. DEPARTMENT OF Office Of

Q\
exascaleproject.org \“/ENERGY | science N"SY“J

Caches

313029 - - - o - . 13121110987 6543210

Index V Tag Data V Tag Data V Tag Data V Tag Data

 Fast local storage structures which hold
instructions/data

* Most caches use SRAM (most commonly 6-
transistor cells)

* Primary benefits:
— Reduce average memory access time
— Reduce interconnect traffic

— Reduce contention on memory

« Fundamental tradeoff in cache capacity (size)
and access time

— Recall: Importance of wire delay

17 \(

Hit

\
\ EXASCALE

) —) COMPUTING

PROJECT

Cache Hierarchy
Skylake-H (Core i7-6770HQ) Memory Hierarchy

L1 | CoreL1 Dl LTI | coreL1 Dl LTI o
A | E— e Y| | W— So— — —

« Most program data does not fit in a low . L2 L2 “eatnes

access latency cache

— Quick access also implies small size - LLC - Last Level Cache (1.5MB/core)
e Build memory hierarchy with R o = DiAM

iIncreasingly larger but slower caches Other e—| T e o

— Choose associativity and capacity of each T

level

Ring Architecture Mesh Architecture

* In multi-core systems we have | =m
additional choices: }‘T WX ‘ m
— What parts of the hierarchy are shared? | l‘; 3o 48 f &
— What type of interconnect? Lre =t 4

/;

|

Main Memory

« Contemporary systems use DRAM main memory
— Very slow...at least 200 cycles per access
— Off-chip (usually) and uses dense but slow 1-T cells

« Memory architecture has been a very vibrant area of architecture research over
last decade

— For some important workloads, there is no hope of fitting everything within even a very large
cache

— Many different ways to organize DRAM and schedule requests
— Don’t have time to do this justice here

"~ \
\ EXASCALE

) —) COMPUTING

PROJECT

’ \

20

I-Cache: What happens on a miss?

* Instruction stream is disrupted...no instructions to feed pipeline

* This is true for any I-Cache miss (even if it hits in next level)

instructions instrucions
cache miss bufferedin window re-enter
occurs decode PIP€ drains window

steady state |

N/

Instructions fill
miss delay > ‘4\

decode pipe

EEEEEEEE
CCCCCCCCC
EEEEEEE

D-Cache: What happens on a miss?

* |[f miss event is short...maybe nothing
— OOQO easily hides the penalty

* If miss event is long...latency cannot be
hidden

— Buffers and queues fill up
— Cannot make progress until miss serviced

21

d cache miss
occurs

\ ROB fills
ROB full
/ miss data

steady state
returns

commit

_ _ resumes;
~ window drains . \issue ramps
independent insns. back up to
steady state

l(—miss delay—bl

"~ \
\ EXASCALE

) —) COMPUTING

PROJECT

cCP

EXASCALE COMPUTING PROJECT

Programming for Multicores

&> .‘""’u,,e U.S. DEPARTMENT OF Offlce Of

Q\
exascaleproject.org \WJ/ENERGY | science N"SY“J

Limits to Parallelism

* |[deally, we'd like linear speedup 0 e 7 <%

« But because of Amdahl’'s Law we won’t get

there

— p=T(a+(1-a)/p)
— Where a represents the serial part of the computation

Speedup symmetric

 Classic sources of inefficiency: |
| 16 32 64 128 256

— Load imbalance
— Synchronization (b)
— Communication

o~
\\ EXASCALE

) —) COMPUTING
PROJECT

23

24

Types of Misses

* Most communication in the system comes through memory hierarchy

* Revisit cache misses:

Cold / Compulsory — Data has not been accessed yet
Conflict — Insufficient associativity
Capacity — Data does not fit [Sharing Resources]

Coherence — Data is being shared...system forces misses to maintain correct semantics

(RAW) [Sharing Data]

* In parallel workloads, sharing is critical

"~ \
\ EXASCALE

) —) COMPUTING

PROJECT

25

Cache Coherence

 Blocks are replicated throughout system to
facilitate local caching of data

« But when there are writes to data the system
needs to maintain correct version

* Track state of cache blocks

* Introduce invalidations (forcibly evict blocks) when
writes occur

* No programmer intervention required for
correctness

The Cache Coherence Problem

’// /O devices
@)

EEEEEEEE
CCCCCCCCC
EEEEEEE

Coherence Misses

* Misses introduced by data sharing and enforcement
of coherence

— Cache block shared across P1 and P2
— P1 does write to block => system invalidates P2’s copy
— P2 misses on next read of block

* True Sharing: P1 writes to data word that P2 actually
uses

« False Sharing: P1 writes to one data word; P2 reads
from different word

"~ \
\ EXASCALE

) —) COMPUTING

PROJECT

. \

27

Assumptions

« Have already applied all the classic cache optimizations
— Loop interchange
— Loop fusion
— Blocking

* Minimize load imbalance, apply appropriate task assignment, usually:
— Static: When tasks are homogeneous and work is predictable
— Dynamic: When there is variance and uncertainty

"~ \
\ EXASCALE

) —) COMPUTING

PROJECT

28

Maximizing Performance

« Start with basic implementation: Don’t get too cute!

« Understand key properties: Definitely profile!
— For each task: Latency, Data
— Relationship between tasks

 Try to figure out bottlenecks
« Will be an iterative process

« Obvious knobs you can turn:
— Thread count
— Mapping
— Data placement / arrangement

—

) EXASCALE
COMPUTING
PROJECT

Fits Within Private Caches (L1/L2)

Map threads to same physical core

Separate logical cores with
Hyperthreading

Low miss rate for private cache

If data parallel will benefit from
common instruction working set

— Good instruction cache behavior

. Processor |

. Graphics &

: Systeﬁi
Agent’sd||
Memory |

= controlter|

including

Display;

DMl and
v Misc: I/0

| r.q of oo & l-'|.lIl|||'l|
easmansmanoy Memory Controller 1/0 messsrmas

o~
\\) EXASCALE
) COMPUTING
PROJECT

Fits Within Same LLC

« Map threads to different physical cores
within same chip

* Minimize off-chip accesses

i Processor

. . . ¥ el e = L3 i ; Controller
« May still pay penalty for distant on-chip TP i v
Display;
access : |- St

14

W

X
\ EXASCALE

jr—) —, COMPUTING
\ PROJECT
S

Does NOT Fit Within LLC

« Map threads to different
chips/socket

* Do your best to make most of LLC
on each socket

31

A
L

' Processor

4 Graphics.t
e -
p

» ‘. E
‘_,wn-_w-m o 2y Memory Controller l/0

A]
‘_.»www-m o Memory Controller 10

.| System-||
Agent 88| |
Memory: |
Controller

including
Display;
DMl and
Misc: [/0

System-||
Agent 88| |
Memory: |
Controller

including
Display;
DMl and
Misc: [/0

EXASCALE

—, COMPUTING

PROJECT

32

Managing Communication Costs

« Some aspects of communication are intrinsic to the algorithm
— Example: Data sharing in matrix multiplication
— Try to reduce the associated costs (e.g. lower latency of sharing)

« Other aspects of communication are introduced by system
— Often caused by a mis-match between system architecture and implementation
— Try to eliminate these when we can

"~ \
\ EXASCALE

) —) COMPUTING

PROJECT

33

Managing Communication: Locality Awareness

* |dentify threads that share objects / critical sections
— Coherence misses (true sharing) with data and synchronization variables
— Associated communication is intrinsic to algorithm (cannot avoid)

* Place threads as close as you can
— But still try to respect capacity issues
— Tradeoff of capacity misses versus coherence misses

) EXASCALE
COMPUTING
PROJECT

34

Managing Communication: False Sharing

 False sharing occurs when threads have read/write access to same cache block
without exchanging data

 Architecture dependent and leads to unexpected performance issues

« Artifact of the system architecture
— Coherence messages try to maintain correct RAW semantics
— Block size is too coarse => mis-matched with structure of data

* Need to tune data layout of arrays/objects to suit block size

EEEEEEE

cCP

EXASCALE COMPUTING PROJECT

Thank you!

. Q\
exascaleproject.org EﬁMERTMREEFY gg'::czf N A'Sg.l.ﬁ

National Nuclear Security Administration

