Summit at the Oak Ridge Leadership Computing Facility

Judy Hill Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory

July 30, 2018 Argonne Training Program on Extreme-Scale Computing

ORNL is managed by UT-Battelle for the US Department of Energy

Outline

- OLCF Roadmap to Exascale
- Summit Architecture Details
- Programming Considerations for Heterogeneous Systems
- Early Summit Application Results

What is the Leadership Computing Facility (LCF)?

- Collaborative DOE Office of Science program at ORNL and ANL
- Mission: Provide the computational and data resources required to solve the most challenging problems.
- 2-centers/2-architectures to address diverse and growing computational needs of the scientific community

- Highly competitive user allocation programs (INCITE, ALCC).
- Projects receive 10x to 100x more resource than at other generally available centers.
- LCF centers partner with users to enable science & engineering breakthroughs (Liaisons, Catalysts).

Oak Ridge Leadership Computing Facility Mission

The OLCF is a DOE Office of Science National User Facility whose mission is to enable breakthrough science by:

- Fielding the most powerful capability computers for scientific research,
- Building the required infrastructure to facilitate user access to these computers,
- Selecting a few time-sensitive problems of national importance that can take advantage of these systems,
- And partnering with these teams to deliver breakthrough science.

COAK RIDGE LEADERSHIP National Laboratory

Competitive procurement asking for: 50–100× application performance of Titan

Support for traditional modeling and simulation, high-performance data analysis, and artificial intelligence applications

Peak performance of at least 1300 PF

Smooth transition for existing and future applications

The Exascale Computing Project has emphasized that Exascale is a measure of application performance, and this RFP reflects that, asking for nominally 50× improvement over Sequoia and Titan.

-- Design Reviewer

COAK RIDGE LEADERSHIP National Laboratory

ORNL's "Titan" Hybrid System: Cray XK7 with AMD Opteron and NVIDIA Tesla processors

SYSTEM SPECIFICATIONS:

- Peak performance of 27 PF
- 18,688 Compute Nodes each with:
 - 16-Core AMD Opteron CPU
 - NVIDIA Tesla "K20x" GPU
 - 32 + 6 GB memory
- 512 Service and I/O nodes
- 200 Cabinets
- 710 TB total system memory
- Cray Gemini 3D Torus Interconnect

COMPUTING ACCULT

• 9 MW peak power

Cray XK7 Compute Node

XK7 Compute Node Characteristics

AMD Opteron 6274 "Interlagos" 16 core processor @ 2.2GHz

NVIDIA Tesla K20X "Kepler" 1.31 TF 6GB GDDR5 ECC memory 250 GB/s Memory BW 2688 CUDA cores

Host Memory 32GB 1600 MHz DDR3 ECC memory

Gemini High Speed Interconnect

Four compute nodes per XK6 blade. 24 blades per rack

Coming Soon: Summit is replacing Titan as the OLCF's leadership supercomputer

Summit i newest s

Summit, an IBM Power System AC922 at the U.S. Department of Energy / SC / Oak Ridge National Laboratory, TN, USA

is ranked

No. 1

among the World's TOP500 Supercomputers with 122.3 PFlop/s Linpack Performance on the TOP500 List published at ISC High Performance, June 25, 2018

Congratulations from the TOP500 Editors

Erich Struhmaler

NERSC/Berkeley Lab

Jack Dongarira University of Tennessee Horst Simon NERSC/Berkeley Lab

Martin Meuer ISC Group

Mad

Coming Soon: Summit is replacing Titan as the OLCF's leadership supercomputer

- Many fewer nodes
- Much more powerful nodes
- Much more memory per node and total system memory
- Faster interconnect
- Much higher bandwidth between CPUs and GPUs
- Much larger and faster file system

Feature	Titan	Summit
Application Performance	Baseline	5-10x Titan
Number of Nodes	18,688	4,608
Node performance	1.4 TF	42 TF
Memory per Node	32 GB DDR3 + 6 GB GDDR5	512 GB DDR4 + 96 GB HBM2
NV memory per Node	0	1600 GB
Total System Memory	710 TB	>10 PB DDR4 + HBM2 + Non-volatile
System Interconnect	Gemini (6.4 GB/s)	Dual Rail EDR-IB (25 GB/s)
Interconnect Topology	3D Torus	Non-blocking Fat Tree
Bi-Section Bandwidth	112 TB/s	115.2 TB/s
Processors	1 AMD Opteron™ 1 NVIDIA Kepler™	2 IBM POWER9™ 6 NVIDIA Volta™
File System	32 PB, 1 TB/s, Lustre [®]	250 PB, 2.5 TB/s, GPFS™
Power Consumption	9 MW	13 MW

Summit Overview

Compute Node

2 x POWER9 6 x NVIDIA GV100 NVMe-compatible PCIe 1600 GB SSD

25 GB/s EDR IB- (2 ports) 512 GB DRAM- (DDR4) 96 GB HBM- (3D Stacked) **Coherent Shared Memory**

NVIDIA GV100

• 7 TF

Components

IBM POWER9 22 Cores • 4 Threads/core NVLink

- 16 GB @ 0.9 TB/s
- NVLink

Compute Rack

18 Compute Servers Warm water (70°F direct-cooled components) RDHX for air-cooled components

39.7 TB Memory/rack 55 KW max power/rack

Compute System

10.2 PB Total Memory 256 compute racks 4,608 compute nodes Mellanox EDR IB fabric 200 PFLOPS ~13 MW

GPFS File System 250 PB storage 2.5 TB/s read, 2.5 TB/s write (**2.5 TB/s sequential and 2.2 TB/s random I/O)

COAK RIDGE LEADERSHIP

Summit Node Overview: System Balance Ratios

	Summit	Titan
Memory subsystem to Intra-node conn	ectivity ratios	;
HBM BW : DDR BW	15.8	4.9
HBM BW : CPU-GPU BW	18	39
Per HBM BW : GPU-GPU BW	18	
DDR BW : CPU-GPU BW	1.13	8
HBM capacity : GPU-GPU BW	0.32	
Memory subsystem to FLOPS ratios		
Memory capacity : GFLOPS	0.01	0.03
Interconnect subsystem to FLOPS ratio	os	
Injection BW : GFLOPS	0.0006	0.004
Other ratios		
Filesystem : Memory capacity	89	42
FLOPS : Power (MW)	15.4	3

Reference: Vazhkudai, et. al. The Design, Deployment, and Evaluation of the CORAL Pre-Exascale Systems. SC18 Proceedings. To appear.

IBM Power9 Processor

- Up to 24 cores
 - CORAL has 22 cores for yield optimization on first processors
- PCI-Express 4.0
 - Twice as fast as PCIe 3.0
- NVLink 2.0
 - Coherent, high-bandwidth links to GPUs
- 14nm FinFET SOI technology
 - 8 billion transistors
- Cache
 - L1I: 32 KiB per core, 8-way set associative
 - L1D: 32KiB per core, 8-way
 - L2: 258 KiB per core
 - L3: 120 MiB eDRAM, 20-way

COAK RIDGE LEADERSHIP

Stream benchmark: Summit vs Titan

 A simple synthetic benchmark program that measures achievable memory bandwidth (in GB/s) under OpenMP threading.

System Cores	Peak (Summit) 44	Titan 16	System	Peak (Summit)	Titan
Сору	274.6	34.9	Сору	789	181
Scale	271.4	35.3	Scale	788	181
Add	270.6	33.6	Add	831	180
Triad	275.3	33.7	Triad	831	180
Peak (theoretical)	340	51.2	Peak (theoretical)	900	250
Fraction of Peak	82%	67%	Fraction of Peak	92%	72%

DRAM Bandwidth

For Peak (Summit):

- GCC compiler
- Best result in 1000 tests

Slide courtesy of Wayne Joubert, ORNL

• Runtime variability up to 9%

GDDR Bandwidth

NVIDIA Volta Details

Note: The performance numbers are peak and not representative of Summit's Volta

COAK RIDGE LEADERSHIP

NVLink Bandwidth

 Measured from core 0 the achieved CPU-GPU NVLink rates with a modified bandwidthTest from NVIDIA CUDA Samples

0	1	2	3	4	5	peak
45.93	45.92	45.92	40.63	40.59	40.64	50
45.95	45.95	45.95	36.60	36.52	35.00	50
86.27	85.83	77.36	66.14	65.84	64.76	100
	0 45.93 45.95 86.27	0145.9345.9245.9545.9586.2785.83	01245.9345.9245.9245.9545.9545.9586.2785.8377.36	012345.9345.9245.9240.6345.9545.9545.9536.6086.2785.8377.3666.14	0123445.9345.9245.9240.6340.5945.9545.9536.6036.5286.2785.8377.3666.1465.84	01234545.9345.9240.6340.5940.6445.9545.9536.6036.5235.0086.2785.8377.3666.1465.8464.76

Single Node Single GPU NVLink Rates (GB/s)

• Not necessarily a use case that most applications will employ

Slide courtesy of Wayne Joubert, ORNL

NVLink Bandwidth

 Measured the achieved CPU-GPU NVLink rates with a modified bandwidthTest from NVIDIA CUDA Samples using multiple MPI process evenly spread between the sockets.

MPI Process Count	1	2	3	4	5	6	Peak (6)
Host to Device	45.93	91.85	137.69	183.54	229.18	274.82	300
Device to Host	45.95	91.90	137.85	183.80	225.64	268.05	300
Bi-Directional	85.60	172.59	223.54	276.34	277.39	278.07	600

NVLink Rates with MPI Processes (GB/s)

Ultimately limited by the CPU memory bandwith

• 6 ranks driving 6 GPUs is an expected use case for many applications

NVLink Bandwidth

 Measured the achived NVLink transfer rates between GPUs, both within a socket and across them, using p2pBandwidthLatencyTest from NVIDIA CUDA Samples. (Peer-to-Peer communication turned on).

Socket	0	1	Cross	Peak
Uni-Directional	46.33	46.55	25.89	50
Bi-Directional	93.02	93.11	21.63	100

NVLink Rates for GPU-GPU Transfers (GB/s)

 Cross-socket bandwidth is much lower than that between GPUs attached to the same CPU socket

> COAK RIDGE LEADERSHIF National Laboratory

Slide courtesy of Wayne Joubert, ORNL

Summit is still in pre-production

• We expect to accept the machine in Fall of 2018, allow early users on this year, and allocate our first users through the INCITE program in January 2019.

Outline

- OLCF Roadmap to Exascale
- Summit Architecture Details
- Programming Considerations for Heterogeneous Systems
- Early Summit Application Results

Summit Programming Environment

- Compilers supporting OpenMP and OpenACC
 - IBM XL, PGI, LLVM, GNU, NVIDIA
- Libraries
 - IBM Engineering and Scientific Subroutine Library (ESSL)
 - FFTW, ScaLAPACK, PETSc, Trilinos, BLAS-1,-2,-3, NVBLAS
 - cuFFT, cuSPARSE, cuRAND, NPP, Thrust

- Debugging
 - Allinea DDT, IBM Parallel Environment Runtime Edition (pdb)
 - Cuda-gdb, Cuda-memcheck, valgrind, memcheck, helgrind, stacktrace
- Profiling
 - IBM Parallel Environment Developer Edition (HPC Toolkit)

CAK RIDGE National Laboratory

 VAMPIR, Tau, Open|Speedshop, nvprof, gprof, Rice HPCToolkit

Summit vs Titan PE comparison

Compiler	Titan	Summit
PGI	Yes	Yes
GCC	Yes	Yes
XL	No	Yes
LLVM	No	Yes
Cray	Yes	No
Intel	Yes	No

Debugger	Titan	Summit
DDT	Yes	Yes
cuda-gdb, -memcheck	Yes	Yes
Valgrind, memcheck, helgrind	Yes	Yes
Stack trace analysis tool	Yes	Yes
pdb	No	Yes

Performance Tools	Titan	Summit
Open SpeedShop	Yes	Yes
TAU	Yes	Yes
CrayPAT	Yes	No
Reveal	Yes	No
HPCToolkit (IBM)	No	Yes
HPCToolkit (Rice)	Yes	Yes
VAMPIR	Yes	Yes
nvprof	Yes	Yes
gprof	Yes	Yes

The majority of tools available on Titan are also available on Summit. A few transitions may be necessary.

CAK RIDGE LEADERSHIP National Laboratory

More Information on Compilers

On Titan

- Unaccelerated code
 - PGI, GCC, Cray, Intel
- OpenMP code
 - PGI, GCC, Cray, Intel
- OpenACC code
 - PGI, Cray, GCC (under development)
- CUDA code
 - PGI, GCC, Intel
- CUDA Fortran code
 - <u>PGI</u>

On Summit

- Unaccelerated code
 - PGI, GCC, XL, LLVM
- OpenMP code
 PGI, GCC, XL, LLVM
- OpenACC code
 - PGI, GCC (under development)
- CUDA code - PGI, GCC
- CUDA Fortran code
 PGI, XL
- Users of compilers on Titan that are not available on Summit will require transitioning to one of the supported compilers.

Summit vs Titan Math Library Comparison

Library	OSS or Proprietary	CPU Node	CPU Parallel	GPU
IBM ESSL	Proprietary	\checkmark		\checkmark
FFTW	OSS	\checkmark		\checkmark
ScaLAPACK	OSS		\checkmark	
PETSc	OSS		\checkmark	√*
Trilinos	OSS		\checkmark	√*
BLAS-1, -2, -3	Proprietary (thru ESSL)			\checkmark
NVBLAS	Proprietary			\checkmark
cuFFT	Proprietary			\checkmark
cuSPARSE	Proprietary			\checkmark
cuRAND	Proprietary			\checkmark
NPP	Proprietary			\checkmark
Thrust	Proprietary			\checkmark

* Available GPU capabilities in the OSS library will be optimized.

COMPUTING ACILITY

Supporting Other Programming Models

- IBM PAMI (low-level communications interface) will support a variety of established non-MPI programming models
 - Global Arrays (GA) and Aggregate Remote Memory Copy Interface (ARMCI)
 - Charm++
 - GASNet
 - OpenSHMEM
- These programming models are similar to research directions for exascale
- Will support accelerators and node-local NVRAM as communication endpoints

COAK RIDGE LEADERSHIP National Laboratory

Programming Multiple GPUs

• Multiple paths, with different levels of flexibility and sophistication

- Simple model looks like Titan
- Additional models expose the node-level parallelism mode directly
- Low-level approaches are available, but not what we would recommend to users unless there is a particular reason
- Exposing more (node-level) parallelism is key to scalable applications from petascale up

COAK RIDGE LEADERSHIP

One GPU Per MPI Rank

- Deploy one MPI rank per GPU (6 per node)
 - Bind each rank to a specific GPU
- This model looks like Titan
- MPI ranks can use OpenMP (or pthreads) to utilize more of the CPU cores
 - CPU is only a small percentage of the total FLOPS

One GPU Per MPI Rank

- Expect this to be the most commonly used approach.
- Pros:
 - Straightforward extension for those already using Titan
- Cons:
 - Assumes similar amount of work to be done by all ranks
 - Potentially leaves a core on the Power9 unoccupied (or available to do something else)

Multiple GPUs Per MPI Rank

- Deploy one MPI rank per 2-6 GPUs
 - Likely configurations:
 - 3 ranks/node (1:2)
 - 2 ranks/node (1:3)
 - 1 rank/node (1:6)
- Use threads and/or language constructs to offload to specific devices
- Multiple approaches possible, depending on language

Multiple GPUs Per MPI Rank, Explicit Control

OpenMP+OpenACC

- Launch one OpenMP thread per GPU
- Within each thread make OpenACC calls using acc_set_device_num()
- OpenMP 4 (accelerator target)
 - device_num() **clause**
- OpenACC
 - acc_set_device_num()
 - (Need to add similar clause for directives)
 - Eventually: compiler+runtime could break up large offload tasks across multiple GPUs automatically
- CUDA
 - cudaSetDevice() method

Multiple GPUs Per MPI Rank, Implicit Control

- OpenMP and OpenACC
 - Eventually: compiler+runtime could break up large offload tasks across multiple GPUs automatically
- Task-based execution models are available for CUDA, OpenMP and under development for OpenACC
 - Provide more flexibility to distribute work to multiple GPUs
- Multi-GPU aware libraries
 - CUBLAS
 - CUFFT

Application Portability

- Portability has been a concern since the beginning of the Titan project
 - Accelerators vs multi-core node architecture
- OLCF has been advocating directive-based programming approaches, and helping to develop them
 - Base code written for multi-core architecture
 - Directives to selectively offload computation to accelerator
 - OpenACC is the primary embodiment of this approach
 - Conceptual spin-off of OpenMP and planned to merge back into OpenMP in time
- CORAL/NERSC-8 systems don't fundamentally change this
 - More GPU accelerators or more cores per node
 - But flattening of memory access times will greatly increase programmability of both architectures

COAK RIDGE LEADERSHIP

Outline

- OLCF Roadmap to Exascale
- Summit Architecture Details
- Programming Considerations for Heterogeneous Systems
- Early Summit Application Results

FLASH

- FLASH is a publicly available, component-based, massively parallel, adaptive mesh refinement (AMR) code that has been used on a variety of parallel platforms.
- The code has been used to simulate a variety of phenomenon, including thermonuclear and core-collapse supernovae, galaxy cluster formation, classical novae, the formation of proto-planetary disks, and high-energy-density physics. FLASH's multi-physics and AMR capabilities make it an ideal numerical laboratory for investigations of nucleosynthesis in supernovae.

Targeted for CAAR

- 1.Nuclear kinetics (burn unit) threading and vectorization, including Jacobian formation and solution using GPU-enabled libraries
- 2. Equation of State (EOS) threading and vectorization
- 3. Hydrodynamics module performance

Slide courtesy of Bronson Messer, ORNL

FLASH Early Summit Results

- FLASH: Component-based, massively parallel, adaptivemesh refinement code
 - Widely used in astrophysics community (>1100 publications from >600 scientists)
- CAAR work primarily concerned with increasing physical fidelity by accelerating the nuclear burning module and associated load balancing.
- Summit GPU performance fundamentally changes the potential science impact by enabling large-network (i.e. 160 or more nuclear species) simulations.
 - Heaviest elements in the Universe are made in neutron-rich environments – small networks are incapable of tracking these neutron-rich nuclei
 - Opens up the possibility of producing precision nucleosynthesis predictions to compare to observations
 - Provides detailed information regarding most astrophysically important nuclear reactions to be measured at FRIB

Slide courtesy of Bronson Messer, ORNL

Preliminary results on Summit GPU+CPU vs. CPU-only performance on Summit for 288-species network : 2.9x

P9: 24.65 seconds/step P9 + Volta: 8.5 seconds/step

288-species impossible to run on Titan

NASA, ESA, J. Hester and A. Loll (Arizona St. Univ.)

Time for 160-species (blue) run on Summit **roughly equal** to 13species "alpha" (red) network run on Titan

>100x the computation for identical cost

- QMCPACK: Accurate quantum mechanics based simulation of materials, including high temperature superconductors.
- QMCPACK runs correctly and with good initial performance on up to 1024 nodes (>20% Summit)
- A Summit node is 50-times faster than a Titan node for this problem, indicating a ~3.7x increase in the complexity of materials (electron count) computable in the same walltime as Titan.
- Summit exceeds performance gains expected based on peak flops by a factor of 1.57x
- New developments for even better Summit utilization:
 - Delayed updates increase compute intensity on GPUs (Blas-2 \rightarrow Blas-3)
 - Spline buffer (95% of static memory) splitting over multiple GPUs can be used to increase compute density (more walkers) or to enable currently impossibly large systems (6 x 16GB = 96 GB of effective GPU memory)

Slide courtesy of Andreas Tillack, ORNL

QMCPACK v3.4.0 NiO 128 atom cell. Power CPU reference uses 2 MPI tasks, 42 OpenMP threads each and optimized "SoA" version.

CoMet: ExaOp Comparative Genomics on Summit

Dan Jacobson, Wayne Joubert (ORNL)

- Modified 2-way CCC algorithm uses NVIDIA Volta Tensor Cores and cuBLAS library to compute counts of bit values
- Near-ideal weak scaling to 4000 nodes (87% of Summit) <u>1.8 EF</u> mixed precision performance reached; 234 quadrillion element comparisons / sec attained
- <u>4.5X faster</u> than previous optimized bitwise CCC/sp code on Summit
- <u>80 TF</u> mixed precision achieved per GPU for full algorithm cuBLAS performance per GPU nearly <u>100 TF</u>
- Expect <u>2+ EF mixed precision achievable</u> on full Summit system

Summit allows us to:

- Discover co-evolutionary relationships across a population of genomes at an unprecedented scale
- Discover epistatic interactions for Opioid Addiction
 - Gordon Bell Prize submission

W. Joubert, J. Nance, S. Climer, D. Weighill, D. Jacobson, "Parallel Accelerated Custom Correlation Coefficient Calculations for Genomics Applications," arxiv 1705.08213 [cs], *Parallel Computing*, accepted.

Acknowledgements

- Entire OLCF Team, specifically OLCF Scientific Computing Group
 - Wayne Joubert, Bronson Messer, Andreas Tillack, Dmitry Liakh, Mark Berrill, Reuben Budiardjia, Matt Norman, and many others
- Additional Reference:
 - Vazhkudai, *et. al.* The Design, Deployment, and Evaluation of the CORAL Pre-Exascale Systems. SC18 Proceedings. To appear.
- For more Summit info, OLCF will be hosting Summit training, tentatively scheduled for December and February.

https://www.olcf.ornl.gov/for-users/training/training-calendar/

This work was performed under the auspices of the U.S. DOE by Oak Ridge Leadership Computing Facility at ORNL under contracts DEAC05-00OR22725

