
Intel® FPGA
OpenCL for FPGA Compute Acceleration

Argonne Training Program on Extreme Scale Computing

July 30, 2018

Programmable Solutions Group 2

Legal Notices & disclaimers
This document contains information on products, services and/or processes in development. All information provided here is subject to change without
notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at
intel.com, or from the OEM or retailer. No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual
performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about
performance and benchmark results, visit http://www.intel.com/performance.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance
varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at
intel.com.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel, the Intel logo, and Stratix10 are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

© Intel Corporation.

http://www.intel.com/performance

PROGRAMMABLE SOLUTIONS GROUPProgrammable Solutions Group

Intel Programmable Solutions Group

FPAG/CPLD
Lowest Cost,

Lowest Power

PowerSoCs
High-efficiency

Power Management

FPGA
Cost/Power Balance
SoC & Transceivers

Development
Kits

Embedded Soft and
Hard Processors

FPGA
Mid-range FPGAs

SoC & Transceivers

FPGA
Optimized for

High Bandwidth

Intellectual
Property (IP)

 Industrial

 Computing

 Enterprise

Design
Software

Nios® II

Resources

ARM®

3

PROGRAMMABLE SOLUTIONS GROUPProgrammable Solutions Group

What iS an fpga?

4

• An advanced, multi-function accelerator

• Flexible for highly differentiated products

• Reprogrammable as market dynamics or standards change

Programmable Solutions Group 5

What is an FPGA?

An FPGA is an advanced, user-customizable chip

 An FPGA’s functions can be reprogrammed based on the

computing workload

DSPs

 Dedicated single-precision floating point multiply and

accumulators

Block RAMs

 Small embedded memories that can be stitched to form an

arbitrary memory system

Programmable Interconnect

 Programmable logic and routing that can build arbitrary

topologies

X

+

DSP Block

Block RAM

Interconnect

Logic

Programmable Solutions GroupProgrammable Solutions Group

Intel FPGA Portfolio Options
Low Cost Mid Range High End

F
e

a
tu

re
s

 2 – 50 KLE

 Non Volatile

 Dual Config

 Analog hard IP

 DDR3 memory

 Nios II soft CPU

• 160 – 1,150 KLE

• 25-Gbps SERDES

• 53 Mb embedded

memory

• DDR4 memory

controllers

• PCIe Gen3 x8 (4)

• Hard FP DSP

• ARM HPS or Nios II

soft CPU

• 768 user I/O

• 378 – 5,510 KLE

• GHz core fabric

• 28/56-Gbps SERDES

• 137 Mb embedded

memory

• DDR4 memory

• PCIe Gen3 x16 (6)

• HBM DRAM

• Hard FP DSP

• ARM HPS or Nios II

soft CPU

• 1,640 user I/O

• 6 – 220 KLE

• 12.5-Gbps SERDES

• 11 Mb embedded

memory

• DDR3/L memory

controllers

• PCIe Gen2 x4

• Hard FP DSP

• Nios II soft CPU

• 284 user I/O

 40 – 2210 LE

 Non Volatile

 8Kb User Flash

Performance

6

MAX® V

Programmable Solutions GroupProgrammable Solutions Group 7

Typical FPGA Design Flow (1/2)

Synthesis (Mapping)
- Translate design into device specific primitives

- Optimization to meet required area & performance constraints

- Intel® Quartus® Prime Software synthesis or those available from

3rd party vendors

- Result: Post-synthesis netlist

Design specification

RTL coding (VHDL or Verilog)
• Behavioral or structural description of design

• Possibly with the help of high level tools

RTL functional simulation

- Mentor Graphics ModelSim* - Intel® FPGA

Edition or other 3rd party simulators

- Verify logic model & data flow

(no timing delays)

LE
DSP

M9K I/O

Programmable Solutions GroupProgrammable Solutions Group 8

Typical FPGA Design Flow (2/2)

Timing analysis
- Verify performance specifications were met

- Static timing analysis

PC board simulation & test
- Simulate board design

- Program & test device on board

- Use on-chip tools for debugging

tclk

Place & route (Fitting)
- Map primitives to specific locations inside

target technology with reference to area &

performance constraints

- Specify routing resources to be used

- Result: Post-fit netlist

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions GroupProgrammable Solutions Group 10

Agenda

Approaches to Parallel Programming

Data Sharing and Synchronization

Overview of OpenCL™

OpenCL Platform and Host-side Software

Executing OpenCL Kernels

Compiling software into circuits

The Intel® FPGA SDK for OpenCL™

Hands-on Example

Programmable Solutions GroupProgrammable Solutions Group 11

Need for Parallel Computing

Power Wall

Unable to scale power consumption with reduction in process node
Maximum processor frequency capped

Instruction-Level Parallelism Wall

Compilers and processors can’t extract enough parallelism from a single
instruction stream to keep processor architecture busy

Memory Wall

Memory architectures have limited bandwidth
Can’t keep up with the processor

Programmable Solutions GroupProgrammable Solutions Group 12

Heterogeneous Computing Systems

 Modern systems contain more than one kind of processor

 Applications exhibit different behaviors

– Control (Searching, parsing, etc…)

– Data intensive (Image processing, data mining, etc…)

– Compute intensive (Iterative methods, financial modeling, etc…)

 Gain performance by utilizing specialized processing capabilities of dissimilar
processors to handle different application behaviors

Programmable Solutions GroupProgrammable Solutions Group 13

Traditional Approach to Heterogeneous
Computing
 Write software for each software programmable architecture CPU, GPU, DSP

– Using different languages and vendor specific tools

 Develop custom parallel hardware for FPGA

– Fine-grained parallelism

– Write HDL, Simulate, close timing, in-system debug, etc.

CPUs DSPs GPUs FPGAs

Visual
Studio

Code C
Studio

CUDA
VHDL /
Verilog

Programmable Solutions GroupProgrammable Solutions Group 14

Programmer-Specified Parallelism

Allow software programmer to define and control parallelism

 Programmers know the algorithm the best

 Allow programmers to find activities that can be executed in parallel

 Expressed explicitly or implicitly

 Expressed at different levels that are higher than instruction-level parallelism

 Likely more effective than compiler/processor extracted parallelism

Programmable Solutions GroupProgrammable Solutions Group 15

Types of Parallelism

 Data Parallelism

– Input data separated and sent to parallel resources, results recombined

– Scatter-gather

 Task Parallelism

– Decompose problem into sub-problems that run well on available
compute resources

– Divide-and-conquer

 Pipeline Parallelism

– Task parallelism where tasks have a producer consumer relationship

– Different tasks operate in parallel on different data

Programmable Solutions GroupProgrammable Solutions Group 16

Data Parallelism

Same operation(s) applied across different data in parallel

 Single Program Multiple Data (SPMD)

 Single Instruction Multiple Data (SIMD)

for (i = 0; i < N ; i++)

c[i] = a[i] * b[i]

c[0]

c[1]

c[2]

X

X

X

a[0]
b[0]

a[1]
b[1]

a[2]
b[2]

… … …

Programmable Solutions GroupProgrammable Solutions Group 17

Task Parallelism

Decompose problem into sub-problems (tasks)

 Tasks operate on same or different data

 Example: Multi-CPU system where each CPU execute a different thread

 A.K.A. Simultaneous Multithreading (SMT), Thread/Function Parallelism

Problem

Sub-problem

Task 1

CPU 1

Sub-problem

Task 2

CPU 2

Programmable Solutions GroupProgrammable Solutions Group 22

Pipeline Parallelism

Task parallelism where tasks have a producer consumer relationship

 Operates on pipelined data

– Different tasks operate in parallel on different data

 Example

– Task 1 – FFT, Task 2 – Frequency Filter, Task 3 – Inverse FFT

Task 1

FFT

Task 2

H Filter

Task 3

iFFT

Data 3

Data 4

Data 2 Data 1

Data 0

Programmable Solutions GroupProgrammable Solutions Group 23

Agenda

Approaches to Parallel Programming

Data Sharing and Synchronization

Overview of OpenCL™

OpenCL Platform and Host-side Software

Executing OpenCL Kernels

Compiling software into circuits

The Intel® FPGA SDK for OpenCL™

Hands-on Example

Programmable Solutions GroupProgrammable Solutions Group 24

Data Sharing and Synchronization

 Fundamental challenge of parallel programming

 Tasks that do not share data can run in parallel without synchronization

 Data dependencies require synchronization

– Input of one task dependent on result of another

– Intermediate results are shared

 Synchronization mechanisms

– Barriers

– Stop tasks at certain point until all tasks reach the barrier

– Locks (mutex)

– Enforce limits on access of particular resources

– Parallel computing environment must handle this effectively

Programmable Solutions GroupProgrammable Solutions Group 25

Shared Memory Model

 Operates on Global view of memory accessible by tasks

– Used for inter-task communication

– Maybe guarded by semaphores or mutexes (barriers and locks)

Drawback

The overhead of shared busses and
coherency becomes the limiting factor

Advantage

Programmer not required to manage data
movement, so code development is simpler

Shared Memory

Task 0 Task 1 Task 2 Task 3

Programmable Solutions GroupProgrammable Solutions Group 26

Message Passing Model

 Explicit communication between concurrent tasks

Drawbacks

 Programmer needs to explicitly manage
communications

 Difficult to make portable since it uses
specific libraries

Advantage

 Scalable

– Tasks can run on an arbitrary
number of devices

Task 0 Task 1

Dat

a

Dat

a

Programmable Solutions GroupProgrammable Solutions Group 27

Agenda

Approaches to Parallel Programming

Data Sharing and Synchronization

Overview of OpenCL™

OpenCL Platform and Host-side Software

Executing OpenCL Kernels

Compiling software into circuits

The Intel® FPGA SDK for OpenCL™

Hands-on Example

Programmable Solutions GroupProgrammable Solutions Group 28

What is OpenCL™?

 Open Computing Language (OpenCL) - Framework for
heterogeneous computing

– General purpose programming model for multiple
platforms

– Host API and kernel language

– Low-level Programming language based on C/C++

– Provides increased performance with hardware
acceleration

 Open, royalty-free standard

– Managed by Khronos* Group

– Intel® is an active member

– http://www.khronos.org

Host Accelerator

C/C++

API

OpenCL

C

*Other names and brands may be claimed as the property of others

http://www.khronos.org/
http://en.wikipedia.org/wiki/File:OpenCL_Logo.png
http://en.wikipedia.org/wiki/File:OpenCL_Logo.png
http://www.khronos.org/
http://www.khronos.org/
http://www.ibm.com/
http://www.ibm.com/
http://www.amd.com/
http://www.amd.com/
http://www.arm.com/
http://www.arm.com/
http://www.intel.com/
http://www.intel.com/
http://www.nvidia.com/
http://www.nvidia.com/
http://www.ti.com/
http://www.ti.com/
http://www.samsung.com/
http://www.samsung.com/

Programmable Solutions GroupProgrammable Solutions Group

OpenCL Provides A Single Environment for Heterogeneous Platforms

29

Enables a single user with one
skillset to target multiple platforms

 Enables developer to optimize for
performance

 Automates heterogenous system
stitching

Compute Efficiency

Programmability

CPUs

Multi-Core
DSPs

GPUs

FPGAs

Programmable Solutions GroupProgrammable Solutions Group 30

OpenCL™ Characteristics

 Provides parallel computing using task- and data-based parallelism

 Includes a C99 based language for writing functions that execute on OpenCL
accelerators

 Provides abstract models

– Generic: able to be mapped on to significantly different architectures

– Flexible: able to extract high performance from every architecture

– Portable: vendor and device independent

Programmable Solutions GroupProgrammable Solutions Group 31

OpenCL™ Properties

 Parallelism is declared by the programmer

– Data parallelism is expressed through the notion of parallel threads which
are instances of computational kernels

– Task parallelism is accomplished with the use of queues and events that
coordinate the coarse-grained control flow

– Loop pipeline parallelism is created when the compiler analyzes
dependencies between iterations of a loop and pipelines each iteration
for acceleration

 Data storage and movement is explicit

– Hierarchical abstract memory model

– Up to the programmer to manage memories and bandwidth efficiently

Programmable Solutions GroupProgrammable Solutions Group 32

Two Sides of OpenCL™ Standard

 Kernel Function

– OpenCL™ C

– Software that runs on accelerators (OpenCL devices)

– Usually used for computationally intensive tasks

 Host Program

– Software running conventional microprocessor

– Supports efficient plumbing of complicated concurrent programs with low
overhead

– Through OpenCL host API

 Used together to efficiently implement algorithms

Host Accelerator

C/C++

API

OpenCL™

C

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png
http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

Programmable Solutions GroupProgrammable Solutions Group 33

OpenCL™ Memory Model

 Private Memory

– Unique to work-item

 Local Memory

– Shared within workgroup

 Global/Constant Memory

– Visible to all workgroups

 Host Memory

– Visible to the host CPU

– May be shared with device in unique
cases

Kernel

Global Memory

Constant Memory

Workgroup

Local Memory

Work-

item

Private

Memory

Work-

item

Private

Memory

Workgroup

Local Memory

Work-

item

Private

Memory

Work-

item

Private

Memory

Workgroup

Local Memory

Work-

item

Private

Memory

Work-

item

Private

Memory

Workgroup

Local Memory

Work-

item

Private

Memory

Work-

item

Private

Memory

Programmable Solutions GroupProgrammable Solutions Group 34

OpenCL™ by Example

Consider the following C program

Called in this manner

void vecadd(float* a, float* b, float* c, int N)

{

for(int i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

C

void main()

{

…

vecadd(a,b,c,N);

}

Programmable Solutions GroupProgrammable Solutions Group 35

Kernels

OpenCL™ C code written to run on OpenCL devices

 Kernels provide data parallelism with NDRange launches

 Represent parallelism at the finest granularity possible

 Same kernel executed by all the different data-parallel threads of a single
launch

 When compiled for an Intel® FPGA, kernels can provide pipeline parallelism

Programmable Solutions GroupProgrammable Solutions Group 36

OpenCL™ by Example – Single Work-Item Kernel

Kernel compiled into dataflow circuit with flow control

 Either single work-item or NDRange
For Entry

For End

__kernel void vecadd (__global float *a,

__global float *b,

__global float *c,

int N)

{

for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

aoc

Load a[i] Load b[i]

a[i] + b[i]

Store c[i]

See OpenCL: Single-threaded vs. Multi-threaded Kernels for more information:
https://www.altera.com/support/training/course/oopnclkern.html

https://www.altera.com/support/training/course/oopnclkern.html

Programmable Solutions GroupProgrammable Solutions Group 37

Execute an OpenCL™ kernel across
multiple data-parallel threads

 “Traditional” OpenCL

 Executed in a single program (kernel)
multiple data (NDRange) SPMD fashion

– Explicitly declares data parallelism

– Each thread called a work-item

Hierarchy of work-items

 Work-items are grouped into workgroups

 Work-items within a workgroup can explicitly
synchronize and share data

 Workgroups are always independent

NDRange Kernels

NDRange

Workgroup

Work-item

Programmable Solutions GroupProgrammable Solutions Group 38

OpenCL™ by Example – NDRange Kernel

Kernel represents a single iteration of loop to perform vector operation

 N work-items will be generated to match array size

 get_global_id(0)function returns index of work-items which represent
the loop counter

// N work-items to be created

__kernel void vecadd(__global int *C,

__global int *A,

__global int *B)

{

int gid = get_global_id(0);

C[gid] = A[gid] + B[gid];

}

for (int i=0; i<N; i++)

{

C[i] = A[i] + B[i];

}

Vectored addition of A and B example

C

OpenCL™ Kernel

Programmable Solutions GroupProgrammable Solutions Group 39

Pipeline Parallelization of NDRange Kernels

 On each cycle the portions of the pipeline are processing different threads

 While work-item 2 is being loaded, work-item 1 is being added, and work-
item 0 is being stored

Load

Load

+

Store01234567

Example Workgroup with 8 work-items

Thread IDs

1234567

0

0

234567

0

0

1

1

34567

1

1

0

2

2

4567

2

2

1 0

3

3

Programmable Solutions GroupProgrammable Solutions Group 40

Data Parallelization of NDRange Kernels

An NDRange kernel compute
engines may also be duplicated in
order to execute more than one
work-item at a time.

Threads

Load

Load

+ Store

Load

Load

+ Store

Load

Load

+ Store

Programmable Solutions GroupProgrammable Solutions Group 41

CPU Architectures

 Optimized for latency: large caches, hardware prefetch

 Complicated control: superscalar, out-of-order execution

 Comparatively few execution units

DRAM

L1/L2 Cache

Control
ALU

ALU ALU

ALU

L1/L2 Cache

Control
ALU

ALU ALU

ALU

L3 Cache

Programmable Solutions GroupProgrammable Solutions Group 42

Running OpenCL™ on CPU Architectures

 Workgroups executed across different cores

 Target vector units

– Fuse work-items together

– Vectorize kernels to work with explicit vector types

 Work-item synchronization is handled in software

 Data-sharing between work-items in a workgroup relies on caches

Programmable Solutions GroupProgrammable Solutions Group 43

 Many Compute Units

– Up to 128

 Wide memory bus

– Multiple channels

– High bandwidth

– High latency

 Small read/write caches

 PCIe* board

GPU Architectures

L1 Cache L1 Cache L1 Cache L1 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

L2 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

*Other names and brands may be claimed as the property of others

Programmable Solutions GroupProgrammable Solutions Group 44

Running OpenCL™ on GPU Architectures

 Workgroups distributed across compute units

 Work-items execute in parallel on the vector-like cores

– Dedicated hardware resources used for synchronization and data-sharing
between work-items within a workgroup

 Run enough work-items per compute unit to mask latencies

– Translates into a requirement for thousands of work-items!

 Work-items contend for fixed resources (registers, local memory)

 Hardware limits how many work-items/workgroup per compute unit

Programmable Solutions GroupProgrammable Solutions Group 45

FPGA Architecture

 Field Programmable Gate Array (FPGA)

– Millions of logic elements

– Thousands of embedded memory blocks

– Thousands of DSP blocks

– Programmable routing

– High speed transceivers

– Various built-in hardened IP

 Massively Parallel

 Used to create Custom Hardware!

DSP Block

Memory Block

Programmable

Routing Switch

Logic

Modules

Programmable Solutions GroupProgrammable Solutions Group 46

Compiling OpenCL™ to Intel® FPGA

 Custom hardware generated automatically for
each kernel

– Get the advantages of the FPGA without
the lengthy design process

 Organized into functional units based on
operation

 Able to execute OpenCL™ threads in parallel

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Host

Interface

DDR/

QDR

Programmable Solutions GroupProgrammable Solutions Group

Binary
Programming

File

Offline Compiler

(OpenCL Kernel Compiler)

Standard C

Compiler

Executable
File

OpenCL

Host Program

49

Intel® FPGA SDK for OpenCL™ Usage

OpenCL

Kernels

Intel FPGA OpenCL Libraries

Programmable Solutions GroupProgrammable Solutions Group 50

OpenCL™ and Intel® FPGAs

Host CPU FPGA

OpenCL
Runtime

User
Program

Accelerator
(Kernel)

Programmable Solutions GroupProgrammable Solutions Group 51

Compiler Builds the Complete FPGA

FPGA

Kernel Pipeline Kernel Pipeline

Host Interface

D
D

R
P

ro
c
e
s
s
o

r External

Memory Controller

& PHY

On-Chip

Memory

Global Memory Interconnect

External

Memory Controller

& PHY

On-Chip

Memory

Local Memory InterconnectLocal Memory Interconnect

The Intel® FPGA SDK for OpenCL™ builds the FPGA:
accelerators ~ all the data paths ~ all memory structures

Programmable Solutions GroupProgrammable Solutions Group 52

Improving FPGA Development Productivity

D
e

v
e

lo
p

m
e

n
t

P
ro

d
u

ct
iv

it
y

System PerformanceLow High

High

Multi-
core

CPU GPU
+ CPU

FPGA
+ CPU

Standard

CPU

Custom
ASIC

Need to design
at higher levels

Programmable Solutions GroupProgrammable Solutions Group 53

OpenCL™ results with HLD Stratix 10 compiler

• Out of the box designs, optimized RTL

• Demonstrating the Stratix 10 advantage

• Customers can reproduce PoC results

-20%

0%

20%

40%

60%

80%

100%

120%

F
m

a
x

in
cr

e
a

se

HLD QoR set

S10 vs A10 fmax (-2)

+43%

Design Scaling vs. A10 Devkit (-2) demo

FFT 8x 0.4 Gpts/s

Back
projection

3.4x 14.6 ms

GZIP 7.2x 4 x 4.9 GB/s

MM 32x14 3.8x 1.77/2.5 Tflops

MM 50x14 5.1x 2.27/3.7 Tflops

Additional information on table

Additional information on graph

Programmable Solutions GroupProgrammable Solutions Group 54

Agenda

Approaches to Parallel Programming

Data Sharing and Synchronization

Overview of OpenCL™

OpenCL Platform and Host-side Software

Executing OpenCL Kernels

Compiling software into circuits

The Intel® FPGA SDK for OpenCL™

Hands-on Example

Programmable Solutions GroupProgrammable Solutions Group 55

OpenCL™ Host APIs

The host program through a set of OpenCL APIs setup the environment and
manages the execution of kernels on the devices

 Defined by the standard in a C header file (opencl.h)

– Provided along with implementation by individual solution vendors

 C++ API also available

– Wrapper that maps to the C API (cl.hpp)

– No additional execution overhead

– Much simpler

Programmable Solutions GroupProgrammable Solutions Group 56

OpenCL™ Platform Layer and Runtime Layer API

OpenCL API divided into two layers

 Platform Layer API

– Discover platform and device capabilities

– Setup execution environment

 Runtime Layer API

– Executes compute kernels on devices

– Manage device memory

Programmable Solutions GroupProgrammable Solutions Group

OpenCL™

Platform

Model

Board

Global

MemoryCompute Device

57

Platform Model Device Structure

Host

x86

Host

Memory Global

Memory

Programmable Solutions GroupProgrammable Solutions Group 58

Context

Environment within which kernels execute

 Purpose

– Coordinates the mechanisms for host-device interaction

– Manages the device memory

– Keeps track of kernels to be executed on each device

OpenCL™ Platform DeviceDevice

KernelsKernelsKernels

Memory

Objects
Memory

Objects
Memory

Objects

Devices

Queues

Context

Programmable Solutions GroupProgrammable Solutions Group 59

Platform Layer API

Setup device execution environment

 Tasks

– Allows host to discover devices and capabilities

– Query, select and initialize compute devices

– Create compute contexts to manage OpenCL™ objects

 Setup code written once and can be reused for all project with the same HW

Typical Platform Layer Steps

1. Query and select the platforms
2. Query and select the devices
3. Create a context for the devices

Programmable Solutions GroupProgrammable Solutions Group 60

Platforms IDs

Platform: Vendor-specific implementation of OpenCL™

 Obtain the list of platforms available with clGetPlatformIDs

cl_int clGetPlatformIDs(cl_uint num_entries,

cl_platform_id *platforms,

cl_uint *num_platforms)

Size of platforms array

Returns a list of
platform IDs

Returns the total number
of platforms available

Error code

Programmable Solutions GroupProgrammable Solutions Group

cl_int clGetDeviceIDs(cl_platform_id platform,

cl_device_type device_type,

cl_uint num_entries,

cl_device_id *devices,

cl_uint *num_devices)

61

Device IDs

Device: An OpenCL™ accelerator supported by a platform

 Obtain the list of devices available with clGetDeviceIDs

Platform to look in

Returns the total number
of devices available

Error code

Device Types
CPU, Accelerator (FPGA),
GPU, Default, All
i.e. CL_DEVICE_TYPE_ALL

Returns a list of
device IDs

Size of devices array

Programmable Solutions GroupProgrammable Solutions Group 62

Create Context

Use clCreateContext to create a context with one or more devices

cl_context clCreateContext(cl_context_properties *properties,

cl_uint num_devices,

const cl_device_id *devices,

void CL_CALLBACK *pfn_notify (

const char *errinfo,

const void *private_info,

size_t cb,

void *user_data),

void *user_data,

cl_int *errcode_ret)

May also use clCreateContextFromType

Returns the
context

Error code

Data argument for pfn_notify

Callback function to be
registered to handle
errors in the context

List of devices in context

Number of elements in devices

Properties that define
context behavior

Programmable Solutions GroupProgrammable Solutions Group 63

Platform Layer APIs Called to Setup Environment

1. Call clGetPlatformIDs to get available number of platforms

 If unknown

2. Allocate space to hold platform information

3. Call clGetPlatformIDs again to fill in platforms

4. Call clGetDeviceIds to get available number of device in a platform

 If unknown

5. Allocate space to hold device information

6. Call clGetDeviceIDs again to fill in devices

7. Call clCreateContext to create a context that manages kernel
execution

Programmable Solutions GroupProgrammable Solutions Group 64

Example Platform Layer Code

//Get the first platform ID

cl_platform_id myp;

err=clGetPlatformIDs(1, &myp, NULL);

// Get the first FPGA device in the platform

cl_device_id mydev;

err=clGetDeviceIDs(myp, CL_DEVICE_TYPE_ACCELERATOR, 1, &mydev, NULL);

//Create an OpenCL™ context for the FPGA device

cl_context context;

context = clCreateContext(NULL, 1, &mydev, NULL, NULL, &err);

Programmable Solutions GroupProgrammable Solutions Group 65

Command Queue

Mechanism for host to request action by the device

 Each command queue associated with one device

– Each device can have one or more command queues

 Host submits commands to the appropriate queue

 Operations in the queue will execute in-order for Intel® FPGAs

Device Command Queue

Read from Device

Write to Device

Execute Kernel

Programmable Solutions GroupProgrammable Solutions Group 66

Runtime Layer API

Execute kernels on the device

 Tasks

– Memory management

– Allocate/deallocate device memory

– Read/write to the device

– Run kernels on the device

– Host/device synchronization

Typical Runtime Layer Steps

1. Create a command queue
2. Write to the device
3. Launch kernel
4. Read results back from the device

Programmable Solutions GroupProgrammable Solutions Group 67

Create a Command Queue

Creates a command queue associated with a device

 Host will submit commands to the device through the command queue

– Using clEnqueue… commands

– e.g. read, write, execute kernel, etc..

cl_command_queue clCreateCommandQueue(

cl_context context,

cl_device_id device,

cl_command_queue_properties properties,

cl_int *errcode_ret)Returns the
command queue

Error code Queue properties
e.g. Turn on profiling

A device associated with
context

Valid context

Programmable Solutions GroupProgrammable Solutions Group 68

Host / Device Physical Memory Space

 The host and the device each has its own physical memory space

– Data needs to be physically located on a device before kernel execution

 Use OpenCL™ API functions to allocate, transfer, and free device memory

– Using memory objects through command queues

Programmable Solutions GroupProgrammable Solutions Group 69

Memory Objects

Representation of device memory on the host

 Data encapsulated as memory objects in order to be transferred to/from
device

 Valid within one context

– Runtime manages the memory objects and actual location on devices

 OpenCL™ specification defines two types

– Buffers (One dimensional collection of elements)

– Images

– Stores an image or array of images

– Simplifies the process of representing and accessing images

– Not discussed in this class

Programmable Solutions GroupProgrammable Solutions Group 70

clCreateBuffer

Allocates and creates a buffer memory object

– One dimensional collection of elements that can be scalars (int, float),
vector data types, or user-defined structures

– Similar to malloc and new

– A buffer is passed to the kernel argument and converted to a pointer in
the kernel

– In the host, a buffer is not a pointer. i.e. mybuffer[3]=… is not legal

cl_mem clCreateBuffer(cl_context context,

cl_mem_flags flags,

size_t size,

void *host_ptr,

cl_int *errcode_ret)

Returns the
buffer object

Error code

Pointer to data already allocated
in the host application (Optional)

Size in bytes

Valid context

Allocation and usage information
(See next slide)

Programmable Solutions GroupProgrammable Solutions Group 71

Data Transfers Calls

Use Read and Write Host API calls to explicitly transfer data from/to the device

 Commands placed on the command queue

 If kernel dependent on the buffer is executed on the accelerator device,
buffer is transferred to the device

 Runtime determines precise timing of data movement

Programmable Solutions GroupProgrammable Solutions Group

clEnqueueWriteBuffer

72

Write from host memory to buffer object (device)

cl_int clEnqueueWriteBuffer(cl_command_queue command_queue,

cl_mem buffer,

cl_bool blocking_write,

size_t offset,

size_t cb,

void *ptr,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

Error code

Events used for
synchronization.
Discussed later

Offset in bytes in the buffer

Valid command queue

Destination Buffer

Set to CL_TRUE blocks call until
ptr can be reused by the host

Size in bytes of data to be written

Source host pointer

Programmable Solutions GroupProgrammable Solutions Group

clEnqueueReadBuffer

73

Read from buffer object (device) to host memory

cl_int clEnqueueReadBuffer(cl_command_queue command_queue,

cl_mem buffer,

cl_bool blocking_read,

size_t offset,

size_t cb,

void *ptr,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

Error code

Events used for
synchronization.
Discussed later

Offset in bytes in the buffer

Valid command queue

Source Buffer

Set to CL_TRUE blocks call until
buffer data copied to ptr

Size in bytes of data to be read

Destination host pointer

Programmable Solutions GroupProgrammable Solutions Group 74

Memory Management – Code Example

const int N = 5;

int nBytes = N*sizeof(int);

int hostarr [N] = {3,1,4,1,5};

//Create an OpenCL™ command queue

cl_int err;

cl_command_queue q;

queue = clCreateCommandQueue(context, device, 0, &err);

// Allocate memory on device

cl_mem a;

a = clCreateBuffer(context, CL_MEM_READ_WRITE, nBytes, NULL, &err);

// Transfer Memory

err=clEnqueueWriteBuffer(q, a, CL_TRUE, 0, nBytes, hostarr, 0, NULL, NULL);

Programmable Solutions GroupProgrammable Solutions Group 75

Agenda

Approaches to Parallel Programming

Data Sharing and Synchronization

Overview of OpenCL™

OpenCL Platform and Host-side Software

Executing OpenCL Kernels

Compiling software into circuits

The Intel® FPGA SDK for OpenCL™

Hands-on Example

Programmable Solutions GroupProgrammable Solutions Group 76

OpenCL™ Kernels

Functions that run on OpenCL devices

 Begins with the keyword __kernel

 Returns void

 Pointers in kernels should be qualified with an address space

– __private, __local, __global, or __constant

– Discussed later

 Kernel language derived from ISO C99 with certain restrictions

__kernel void my_kernel (__global float *data) {

}

Programmable Solutions GroupProgrammable Solutions Group 77

OpenCL™ Kernel Restrictions

 No pointers to functions

 No recursion

 No predefined identifiers

 No writable static variables

Programmable Solutions GroupProgrammable Solutions Group 78

OpenCL™ Data Types

 Scalar data types

– char, ushort, int, uint, long, float, double, bool, etc

– On the host, recommended to use cl_ prefixed data types to ensure size
compatibility and maximum portability

– e.g. cl_float, cl_int, cl_ulong, etc…

 Image types

– image2d_t, image3d_t, sampler_t

 User-defined structures

 Vector data types

– Next slide

Programmable Solutions GroupProgrammable Solutions Group 79

Vector Data Types

OpenCL™ supports vector variants of basic data types

 Supported size of vectors: 2, 3, 4, 8, 16

 Available in host and kernel code

– Kernel type example: char2, ushort3, int8, float16, etc

– Host type example: cl_char2, cl_ushort3, cl_int8,
cl_float16, etc

 Aligned at vector length

 Use variable for vector operation

 Or, use the components

int4 a, b, c;

c = a + b;

c.x = a.x + b.x;

c.y = a.y + b.y;

c.z = a.z + b.z;

c.w = a.w + b.w;

=

Programmable Solutions GroupProgrammable Solutions Group 80

Kernel Example

__kernel void my_kernel (__global float *a,

__global float *b,

__global float *c,

int N)

{

int index;

for (index = 0; index < N; index++)

c[index] = a[index] + b[index];

}

Programmable Solutions GroupProgrammable Solutions Group 81

Compilation Example

Kernel compiled into dataflow circuit with flow control

 Include branch and merge units
For Entry

For End

__kernel void my_kernel (__global float *a,

__global float *b,

__global float *c,

int N)

{

int i;

for (i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

aoc

Load a[i] Load b[i]

a[i] + b[i]

Store c[i]

Programmable Solutions GroupProgrammable Solutions Group

OpenCL™ Execution Flow

82

Setup Kernels

Create

Data &

Arguments

Send to

Execution

OpenCL Platform

Memory

Objects

(Buffers)

Compute

Devices

Queues

Context

Programs

(aocx)

Kernels

Programmable Solutions GroupProgrammable Solutions Group 83

Programs and Kernels

Process for host to execute a kernel on a device

1. Create program (a program is a collection of kernels)

– Turn source code or precompiled binary into program object

2. Compile program

3. Create kernel by extracting it from program object

– Similar to obtaining exported function from dynamic library

4. Setup kernel arguments individually

– Also require memory objects to be transferred to the device

5. Dispatch kernel through clEnqueue… function

Programmable Solutions GroupProgrammable Solutions Group 84

Creating a Program

A program object (cl_program) contains one or more kernels (cl_kernel)

 GPU/CPU vendors support creation of programs from source code

– Using clCreateProgramWithSource

– Online compilation of kernels (host runtime compilation)

– Not supported by Intel® FPGA

 Intel FPGA only supports creation of programs from pre-compiled binaries

– Use clCreateProgramWithBinary

– Binary implementation is vendor specific

– aocx files supported

– aocx is essentially the FPGA programming image

Programmable Solutions GroupProgrammable Solutions Group 85

Creating Programs from Binary for FPGAs

 For Intel® FPGA

– lengths is the size of the aocx file in bytes

– binaries is the contents of the aocx file

– When kernels from the aocx is run, the host will configure the FPGA with
the aocx

cl_program clCreateProgramWithBinary(cl_context context,

cl_uint num_devices,

const cl_device_id *device_list,

const size_t *lengths,

const unsigned char **binaries,

cl_int *binary_status,

cl_int *errorcode_ret) Error code

Number of devices in device_list

Valid context

Program object
Lengths of binaries

aocx binary

Compatible devices

Status of binary loading

Programmable Solutions GroupProgrammable Solutions Group 86

Building Programs

Compiles and links a program executable from the program source or binary

 For Intel® FPGA, needs to be called to conform to the standards, but nothing
meaningful done

cl_int clBuildProgram(cl_program program,

cl_uint num_devices,

const cl_device_id *device_list,

const char *options,

void (*pfn_notify)(cl_program,

void *user_data),

void *user_data)

Error code

Number of devices in device_list

Program object to build

Compatible devices

Build Options

Callback function for when
build has completedData for callback function

Programmable Solutions GroupProgrammable Solutions Group 87

Creating Kernels

Create kernels from programs with clCreateKernel

 For Intel® FPGA, able to load any of the kernels compiled into the aocx file by
the offline compiler

cl_kernel clCreateKernel(cl_program program,

const char *kernel_name,

cl_int *errcode_ret)
Kernel object

corresponding to
the kernel function

Program object

Kernel function name

Error code

Programmable Solutions GroupProgrammable Solutions Group 88

Set Kernel Arguments

Use clSetKernelArg to set the value for a specific argument of a kernel

– Important to set the arg_index correctly

– Limited error checks done

cl_int clSetKernelArg(cl_kernel kernel,

cl_uint arg_index,

size_t arg_size,

const void *arg_val)

Kernel object

Argument index
From 0 (leftmost arg) to N-1 (N
is the total number of args)Error code

Size of argument value

Pointer to data used as
argument value

Programmable Solutions GroupProgrammable Solutions Group 89

Execute Kernel

Use clEnqueueNDRangeKernel or clEnqueueTask to run kernel on device

– clEnqueueNDRangeKernel discussed later

cl_int clEnqueueTask(cl_command_queue command_queue,

cl_kernel kernel,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

Kernel to be executed
Error code

Where kernel will be
queued for execution

Events used for
synchronization.
Discussed later

Programmable Solutions GroupProgrammable Solutions Group 90

Kernel Execution Example

void main()

{ ...

// 1. Create then build program

cl_program program =CreateProgramWithBinary(context, 1, &device, &binary_length,

(const unsigned char**)&binaries, &kernel_status,
&clError);

err = clBuildProgram(program, 1, &device, NULL, NULL, NULL);

// 2. Create kernels from the program

cl_kernel kernel = clCreateKernel(program, ”increment”, &err);

// 3. Allocate and transfer buffers on/to device

float* a_host = ...

cl_mem a_device = clCreateBuffer(..., CL_MEM_COPY_HOST_PTR, a_host, ...);

cl_float c_host = 10.8;

err = clEnqueueWriteBuffer(queue, a_device, CL_TRUE, 0,
NUM_ELEMENTS*sizeof(cl_float), a_host, 0, NULL, NULL);

__kernel void increment (__global float *a, float c, int N)

{

int i;

for (i = 0; i < N; i++)

a[i] = a[i] + c;

}

Programmable Solutions GroupProgrammable Solutions Group 91

Kernel Execution Example Cont.

…

// 4. Set up the kernel argument list

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&a_device);

err = clSetKernelArg(kernel, 1, sizeof(cl_float), (void *)&c_host);

err = clSetKernelArg(kernel, 2, sizeof(cl_int), (void *)&NUM_ELEMENTS);

// 5. Launch the kernel

err = clEnqueueTask(queue, kernel, 0, NULL, NULL);

// 6. Transfer result buffer back

err = clEnqueueReadBuffer(queue, a_device, CL_TRUE, 0, NUM_ELEMENTS*sizeof(cl_float),

a_host, 0, NULL, NULL);

}

__kernel void increment (__global float *a, float c, int N)

{

int i;

for (i = 0; i < N; i++)

a[i] = a[i] + c;

}

Programmable Solutions GroupProgrammable Solutions Group 92

Host and Kernel Execution

 Kernels execute on one or more OpenCL™ devices

 Host program executes on the host

 With clEnqueue commands, the host launches device tasks asynchronously

– Control returns to host immediately

– Unless explicit synchronization specified

 The host needs to manages synchronization among device tasks

– In additional to memory management and error handling tasks

Programmable Solutions GroupProgrammable Solutions Group 93

Asynchronous Kernel Execution

By default, host launches device but execution is not synchronized

Execution Timeline

HostFunc1

HostFunc2

HostFunc3

Kernel 1

ReadBuf1

Kernel 2

Waiting

Host Accelerator

ReadBuf2

Host enqueues kernel 1

Host enqueues kernel 2

Explicit synchronization

Time

Programmable Solutions GroupProgrammable Solutions Group 94

Explicit Synchronization Points

 clFinish(queue) (host-side)

– Blocks until all commands in a given queue have finished execution

 Events (host-side)

– Each clEnqueue task assigned an event id that can be used as a
prerequisite for another clEnqueue task

 Blocking memory commands (host-side)

 In-order command queue (host-side)

– All commands in an in-order queue will not execute until all commands
enqueued before it in the same queue have finished executing

 Barriers and memory fences (device-side)

Programmable Solutions GroupProgrammable Solutions Group 95

Event Dependencies

 Each clEnqueue

– Can depend on an array of (previously created) cl_events

– To ensures synchronization of data.

– Can generate a cl_event

– To be used later

– The clEnqueue command itself does not block, just the execution of the
associated task on the device

cl_int clEnqueue… (cl_command_queue command_queue,

…

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

Wait for these
to finish

Generate new event, to be
used later. (If not NULL)

Programmable Solutions GroupProgrammable Solutions Group 96

Synchronization Example

cl_command_queue q1, q2;

cl_event e1, e2;

clEnqueueNDRangeKernel(q1,k1,…, &e1);

clEnqueueNDRangeKernel(q2,k2,…, &e2);

cl_event elist[2];

elist[0]=e1;

elist[1]=e2;

clEnqueueNDRangeKernel(q1,k3,…,2,elist,NULL);

clFinish(q1);

clFinish(q2);

HostFunc();

Execution Timeline

HostFunc

kernel1 kernel2

Host Accelerator

kernel3

q1 q2

Programmable Solutions GroupProgrammable Solutions Group 97

Clean Up

 Clean up memory, release all OpenCL™ objects

 Check reference count to ensure it equals zero

clReleaseKernel(kernel);

clReleaseProgram(program);

clReleaseCommandQueue(cmd_queue);

clReleaseEvent(event);

clReleaseMemObject(memobj);

clReleaseContext(context);

Programmable Solutions GroupProgrammable Solutions Group 98

Agenda

Approaches to Parallel Programming

Data Sharing and Synchronization

Overview of OpenCL™

OpenCL Platform and Host-side Software

Executing OpenCL Kernels

Compiling software into circuits

The Intel® FPGA SDK for OpenCL™

Hands-on Example

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions GroupProgrammable Solutions Group 99

Compiling OpenCL™ Kernel to FPGAs

Kernels are compiled offline using an Offline Compiler (AOC)

 Kernels are first translated into an AOC Object file (.aoco)

– Represents the FPGA hardware system

 Object file used to generate the AOC Executable file (.aocx)

– Used to program the FPGA or Flash

// kernel.cl

__kernel void KernelName(…)

{

int i = get_global_id(0);

c[i] = a[i] + b[i];

}

aoc

Programmable Solutions GroupProgrammable Solutions Group 100

Compile Kernels

Run the Offline Compiler

 Set AOCL_BOARD_PACKAGE_ROOT environment variable to the path of the
board support package

– Usually %INTELFPGAOCLSDKROOT%/board/<name_of_BSP>

 aoc --list-boards

– List available boards within the current board package

 aoc --board <board> <kernel file>

– Compile the kernel to the specified board in the board package

– Generates the kernel hardware system and compiles it using the Quartus®
Prime software targeting a specific board

Programmable Solutions GroupProgrammable Solutions Group 101

aoc Output Files

 <kernel file>.aoco

– Intermediate object file representing the created hardware system

 <kernel file>.aocx

– Kernel executable file used to program FPGA

 Inside <kernel file> folder

– <kernel file>.log
– Compile log including estimated resource usage, optimization report, and compile

messages

– <kernel file folder>\reports\report.html
– Interactive HTML report
– Static report showing optimization, detailed area, and architectural information

– Quartus generated source and report files
– Timing information, actual resource usage, etc.

Programmable Solutions GroupProgrammable Solutions Group 102

FPGA Architecture

Each kernel is converted into custom hardware.

 Precompiled hardware interfaces used

– Provided by the Board Support Package (BSP)

– PCIe* or Hard Processor System (HPS), memory controller, kernel
interface, clock generator, DMA

 OpenCL™ memory model implemented

– Global -> DDR, QDR

– Local -> On-chip memory

– Private -> On-chip registers

Programmable Solutions GroupProgrammable Solutions Group 103

FPGA Architecture for OpenCL™ Implementation

FPGA

Kernel

Pipeline

Kernel

Pipeline

Host Interface

D
D

RProcessor

External

Memory Controller

& PHY

On-Chip

Memory

Global Memory Interconnect

External

Memory Controller

& PHY

Custom Built
Kernel System

On-Chip

Memory

Local Memory InterconnectLocal Memory Interconnect

Precompiled periphery (BSP)

Programmable Solutions GroupProgrammable Solutions Group 104

OpenCL™ Kernels to Dataflow Circuits

Each kernel is converted into custom dataflow hardware (Compute Unit)

 Gain the benefits of FPGAs without the lengthy design process

 Implement C operators as circuits

– HDL code located in <OpenCL SDK Installation>\ip

– Load Store units to read/write memory

– Arithmetic units to perform calculations

– Flow control units

– Connect circuits according to data flow in the kernel

 May replicate circuit to accelerate algorithm

Programmable Solutions GroupProgrammable Solutions Group 105

Mapping Multi-Threaded Kernels to FPGAs (Naïve)

Simplest way of mapping kernel functions to FPGA may appear to be
replicating hardware for each work-item (thread)

 Problems:

– NDRange size tend to be really large

– Inefficient and wasteful

– FPGA compute bandwidth is often NOT the bottleneck of system

– Unknown at kernel compile time the number of work-items to run

 A better method involves taking advantage of pipeline parallelism

 AOC may optionally replicate HW to process multiple work-items in parallel

– See the Intel FPGA SDK for OpenCL Best Practices Guide

Programmable Solutions GroupProgrammable Solutions Group 106

Mapping Multi-Threaded Kernels to FPGAs

Take advantage of pipeline parallelism

 Attempt to create a deeply pipelined representation of a kernel

 On each clock cycle, we attempt to send in input data for a new thread

 Map coarse grained thread parallelism to fine-grained FPGA parallelism

 A typical kernel pipeline will consist of hundreds of stages

– Hundreds of work-items executing concurrently in pipelined fashion

Programmable Solutions GroupProgrammable Solutions Group 107

Example Pipeline for Vector Add

 On each cycle the portions of the pipeline are processing different threads

 While work-item 2 is being loaded, work-item 1 is being added, and work-
item 0 is being stored

107

Load

Load

+

Store01234567

Example Workgroup with 8 work-items

Thread IDs

1234567

0

0

234567

0

0

1

1

34567

1

1

0

2

2

4567

2

2

1 0

3

3

Programmable Solutions GroupProgrammable Solutions Group 108

Channels / Pipes

Allows I/O-to-kernel and kernel-to-kernel communication without going
through global memory

 Implemented with FIFOs by AOC

 Kernels have the ability to autorun if host interaction is not needed

See the Optimizing OpenCL™ instructor-led training or the best practices guide for more information

FPGA
User

Kernel
CU

Host CPU

User
Kernel

CU
Channel Channel Channel

Programmable Solutions GroupProgrammable Solutions Group 109

Shared Virtual Memory (SVM)

Hosted Heterogeneous Platform with SVM

 Works over cache-coherent interfaces

 Allows use of pointer-based data types

Shared Virtual Memory

Global

Memory

DEV

1

Host

Memory
CPU

Global

Memory

DEV

…

Global

Memory

DEV

N

Programmable Solutions GroupProgrammable Solutions Group 110

Agenda

Approaches to Parallel Programming

Data Sharing and Synchronization

Overview of OpenCL™

OpenCL Platform and Host-side Software

Executing OpenCL Kernels

Compiling software into circuits

The Intel® FPGA SDK for OpenCL™

Hands-on Example

Programmable Solutions GroupProgrammable Solutions Group 111

Intel® FPGA SDK for OpenCL™ Overview

Binary
Programming

File

Offline Compiler

(OpenCL Kernel Compiler)

Standard C

Compiler

Executable
File

OpenCL

Host Program

OpenCL

Kernels

Intel FPGA OpenCL Libraries

Programmable Solutions GroupProgrammable Solutions Group 112

SDK Components

 Offline Compiler (AOC)

– Translates your OpenCL® C kernel source file into an Intel® FPGA hardware image

 Host Libraries

– Provides the OpenCL host API to be used by OpenCL host applications

 AOCL Utility

– Perform various tasks related to the board, drivers, and compile process

 Software Requirements

– Quartus® Prime tool with the appropriate devices

– Licenses for the Intel FPGA SDK for OpenCL and Quartus tool

– Generic C compiler for the host program

Programmable Solutions GroupProgrammable Solutions Group 113

Software Requirements

 Operating system: 64-bit, Windows* or Linux* (RHEL* or CentOS*)
 Intel® FPGA SDK for OpenCL™, plus license
 Intel Quartus® Prime Software, plus license

– For most boards, the Pro edition will be required
– Appropriate devices installed
– Same version as SDK

 C compiler
– E.g. Microsoft* Visual Studio* or GCC*
– Needed to compile the host program
– Able to compile and link 64-bit code (except when targeting a SoC host)

*Other names and brands may be claimed as the property of others

Programmable Solutions GroupProgrammable Solutions Group 114

Intel® FPGA Preferred Board for OpenCL™

 Intel FPGA Preferred Board for OpenCL

– Available for purchase from preferred partners

– Passes conformance testing

 Download and install Intel FPGA OpenCL compatible BSP from vendor

– Supplies board information required by the offline compiler

– Provides software layer necessary to interact with the host code including
drivers

*Other names and brands may be claimed as the property of others

* * * * **

Programmable Solutions GroupProgrammable Solutions Group 120

SDK Compile Flow

Offline
Compiler

Standard
C Compiler

AOCXEXE

OpenCL™
Host Program + Kernels

main() {
read_data(…);
manipulate(…);
clEnqueueWriteBuffer(…);
clEnqueueNDRange(…,sum,…);
clEnqueueReadBuffer(…);
display_result(…);

}

__kernel void sum
(__global float *a,
__global float *b,
__global float *y)

{
int gid = get_global_id(0);
y[gid] = a[gid] + b[gid];

}

x86

Programmable Solutions GroupProgrammable Solutions Group 121

Compiling the Host Program

 Use a conventional C compiler (Visual Studio*/GCC*)

 Add %INTELFPGAOCLSDKROOT%/host/include
to your file search path

– Recommended to use aocl compile-config

 Include CL/opencl.h in your source code

 Link to Intel® FPGA OpenCL™ libraries

– Link to libraries located in the
%INTELFPGAOCLSDKROOT%/host/<OS>/lib

directory

– Recommended to use aocl link-config

Standard
C Compiler

main() {

read_data(…);

manipulate(…);

clEnqueueWriteBuffer(…);

clEnqueueNDRange(…,sum,…);

clEnqueueReadBuffer(…);

display_result(…);

}

Intel FPGA
Libraries

*Other names and brands may be claimed as the property of others

Programmable Solutions GroupProgrammable Solutions Group 122

Compiling Kernels with the Offline Kernel Compiler

 Compiles kernels for a specific board defined by a board support package

 Generates aocx and aoco files

 For detailed info on supported kernel constructs see the Intel® FPGA SDK for
OpenCL™ programming Guide

There are many other debugging, optimization, and build options.

Option Description

--help or -h Help for the tool

-c Creates .aoco object file and sets up a Quartus Prime hardware design project

--board <board name> Compile for the specified board

--list-boards Prints a list of available boards

aoc --board <my board> <my kernel file>

Programmable Solutions GroupProgrammable Solutions Group 123

OpenCL™ Libraries

Create libraries from RTL or OpenCL source and call those library functions
from User OpenCL code

VHDL

OpenCL

Verilog

Library AOC

User’s OpenCL

code

AOCX

See the Intel® FPGA SDK for OpenCL Programming Guide for detailed examples

Programmable Solutions GroupProgrammable Solutions Group 124

Offline Compiler (aoc) Options
Option Description

--help or –h Help for the tool

-v Reports the progress of the compilation

--report Print area estimates to screen

-c Creates .aoco object file and sets up a Quartus® Prime hardware design project

-g Add debug data to reports.

-o <file> Use to specify a non-default name for the output file

-I/-L <directory> Adds <directory> to header search path

-l <library.aoclib> Specify OpenCL™ library file

-D <name> Defines a macro called <name>

--board <board name> Compile for the specified board

--list-boards Prints a list of available boards

-march=emulator Create kernels that can be executed and debugged on the host PC without the
board

--profile Enable profile support when generating aocx file

Programmable Solutions GroupProgrammable Solutions Group 125

Kernel Language Support

 Supports OpenCL™ 1.0

– Passed Khronos* Conformance Testing Process

 Full description of the supported kernel language features is located in the
Intel® FPGA SDK for OpenCL Programming Guide

 Built-in scalar data types supported as follows:

– All integer types are supported, including 64-bit types

– Single precision floating point is supported

– Double precision floating point is supported

– The half type is supported only in the add, subtract, and multiply
operations.

 Built-in vector data types including three-element types supported
*Other names and brands may be claimed as the property of others

Programmable Solutions GroupProgrammable Solutions Group 126

Intel® FPGA SDK for OpenCL™ Design Flow

Install Quartus Prime

SW with Intel FPGA

SDK for OpenCL

Setup C compiler and

host development

environment

Install Platform

BSP

Install the board

drivers on host

machine

aocl install

Compile kernel with aoc

profiling feature to verify

performance

Compile & link the host

application

Run the

application

S
e
t
U

p
D

e
s
ig

n

Optimize kernel for FPGA hardwareO
p
ti
m

iz
e

Compile kernel with aoc

emulator to verify

functionality

Getting Started Guide (document)

Programming Guide (document)

Best Practices Guide (document)

https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_getting_started.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf

Programmable Solutions GroupProgrammable Solutions Group 127

Execution Considerations

 Ensure the .aocx file is available for host executable to read and send to
clCreateProgramWithBinary

– Kernels in the aocx file must match those called by the host

– Allow the OpenCL™ implementation to program the FPGA

 The timing of reading/writing tasks to/from the device memory is done on an
as needed basis and not necessarily when those actions are enqueued onto
the command queue

– Consistent with the OpenCL specifications

 Many factors can affect FPGA accelerator performance

– Memory bandwidth, caching scheme, workgroup size, etc

– Please consult the best practices guide for more details

Programmable Solutions GroupProgrammable Solutions Group 133

Kernel Development Flow and Tools

Modify kernel.cl

Emulator (~1 min)

HTML Report (~1 min)
Loop Optimization Report

Detailed Area Report
Architectural Viewer

Profiler (Full compile time)

Functional bugs?

Loop inefficiencies?
Undesired hardware
structure?
Sub-optimal memory
interconnect?

Done

Poor
performance?

Programmable Solutions GroupProgrammable Solutions Group 134

Emulator

Enable kernel functional debug on x86 systems

 Quickly generate x86 executables that represent the kernel

 Debug support for

– Standard OpenCL™ syntax, Channels, Printf statements

– Emulates one device at a time

aoc –march=emulator [-g] <kernel file>

aoc

Compiler

./kernel_tb…

…

Running …

kernel void accel(…) {

…

gid = get_global_id(0);

out[gid]=proc(data[gid]);

…

}

Programmable Solutions GroupProgrammable Solutions Group 135

Emulating an OpenCL™ Kernel Steps

1. Generate the .aocx file with aoc –march=emulator

– Make sure the right board is used

2. Compile and link the host

3. Set Emulator Environment variable to your board

– Same board option used when compiling the kernel

4. Run the host program

set CL_CONTEXT_EMULATOR_DEVICE_ALTERA=<board_name>

c:\opencl>aoc –march=emulator conv.cl

c:\opencl>dir

host.exe conv.cl conv.aocx\

c:\opencl>host.exe

running…

Done!

Programmable Solutions GroupProgrammable Solutions Group 136

HTML Report

Static report showing optimization, area, and architectural information

 Automatically generated with the object file (aoc –c)

– Located in <kernel file folder>\reports\report.html

 Dynamic reference information to original source code

 Loop Analysis Optimization report

– Information on how loops are implemented

 Area report

– Detailed FPGA resource utilization by source code or system block

 Architectural viewer

– Memory access implementation and kernel pipeline information

Programmable Solutions GroupProgrammable Solutions Group 137

Loop Analysis Optimization Report

 Static actionable feedback on pipeline status of loops in single work-item
kernels

– Shows loop carried dependencies and bottlenecks

 Shows loop unrolling status

Programmable Solutions GroupProgrammable Solutions Group 138

Area Report

Generate detailed area utilization report of kernel code

 Breakdown by source line available

Programmable Solutions GroupProgrammable Solutions Group 139

Architectural Viewer

 Displays kernel pipeline implementation and memory access implementation

Programmable Solutions GroupProgrammable Solutions Group

Profiler

 Inserts counters and profiling logic into the HW design

 Dynamically reports the performance of kernels

140

Kernel Pipeline

Load

Store

+

Load

Memory Mapped
Registers

aoc --profile <kernel file>

kernel void accel(…) {

…

gid = get_global_id(0);

out[gid] = a[gid]+b[gid];

…

}

Programmable Solutions GroupProgrammable Solutions Group 141

Collecting and Viewing Profile Information

 Compile kernel with aoc --profile option

 Run host application with generated aocx file

– Performance counters will collect profile information

– Host saves a profile.mon monitor description file to working directory

 View statistical data using the profiler GUI

aocl report <kernel file>.aocx profile.mon

Programmable Solutions GroupProgrammable Solutions Group 142

Profiler Reports

 Get runtime information about kernel performance

 Reports bottlenecks, bandwidth, saturation, and pipeline occupancy

– At data access points

Programmable Solutions GroupProgrammable Solutions Group 145

OpenCL™ Support is Everywhere

 CPUs, GPUs, FPGAs, mobile devices

 List of conformant products

– http://www.khronos.org/conformance/adopters/conformant-
products#topencl

 Short list of OpenCL adopters

– Intel

– ARM

– Qualcomm

– NVIDIA

http://www.khronos.org/conformance/adopters/conformant-products#topencl

Programmable Solutions GroupProgrammable Solutions Group 146

Benefits of OpenCL™ on FPGAs

Productivity
 Shorter development time and faster time to market

 Shorter architecture and design exploration time

 Portability across multiple devices

Performance
 CPU offload of computationally intensive applications

 Compiler and runtime routines can distribute the workloads

Performance per watt
 FPGA fabric flexibility

 Generate custom hardware for your kernel

Programmable Solutions GroupProgrammable Solutions Group

Getting Started with Intel® FPGA OpenCL™ SDK

147

Resources Where to find them...

Intel PSG OpenCL Website http://www.altera.com/opencl

Intel PSG OpenCL Dev Zone
Videos, Examples, Trainings, Board Partners
Optimization Techniques (SHA-1)
Optimization Techniques (Image Processing)

http://www.altera.com/products/design-software/embedded-software-
developers/opencl/developer-zone.html
https://www.altera.com/opencl-optimization-sha1
https://www.altera.com/opencl-image-processing-optimization

Instructor-Led Training
Parallel Computing with OpenCL - 1 day
Optimization of OpenCL for FPGAs – 2 days
Developing a Custom BSP – 1 day

https://www.altera.com/support/training/catalog.html
http://www.altera.com/education/training/courses/IOPNCL110
http://www.altera.com/education/training/courses/IOPNCL210
http://www.altera.com/education/training/courses/IOPNCLBSP

Free On-Line Training
Intro to Parallel Computing with OpenCL
Writing OpenCL Programs for FPGAs
Running OpenCL on FPGAs
Single-Threaded vs Multi-Threaded Kernels
Building Custom Platforms for FPGAs

http://www.altera.com/education/training/courses/OOPNCL100
http://www.altera.com/education/training/courses/OOPNCL300
http://www.altera.com/education/training/courses/OOPNCL300
http://www.altera.com/education/training/courses/OOPNCLKERN
http://www.altera.com/education/training/courses/OOPNCLCSTBOARD

http://www.altera.com/opencl
http://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/opencl-image-processing-optimization
http://www.altera.com/education/training/courses/IOPNCL210
http://www.altera.com/education/training/courses/IOPNCLBSP
http://www.altera.com/education/training/courses/OOPNCL100
http://www.altera.com/education/training/courses/OOPNCL100
http://www.altera.com/education/training/courses/OOPNCLKERN
http://www.altera.com/education/training/courses/OOPNCLCSTBOARD

Programmable Solutions GroupProgrammable Solutions Group 148

OpenCL™ References

 Intel® FPGA OpenCL collateral
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html

 Demos and Design Examples

– Intel FPGA SDK for OpenCL Getting Started Guide

– Intel FPGA SDK for OpenCL Programming Guide

– Intel FPGA SDK for OpenCL Best Practices Guide

– Free Intel FPGA OpenCL Online Trainings

 Khronos* Group OpenCL Page https://www.khronos.org/opencl/

 OpenCL Reference Card http://www.khronos.org/files/opencl-quick-reference-card.pdf

*Other names and brands may be claimed as the property of others

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.khronos.org/opencl/
http://www.khronos.org/files/opencl-quick-reference-card.pdf

Programmable Solutions GroupProgrammable Solutions Group 149

Agenda

Approaches to Parallel Programming

Data Sharing and Synchronization

Overview of OpenCL™

OpenCL Platform and Host-side Software

Executing OpenCL Kernels

Compiling software into circuits

The Intel® FPGA SDK for OpenCL™

Hands-on Example

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions GroupProgrammable Solutions Group 151

Joint Laboratory for System Evaluation (JLSE)

Programmable Solutions GroupProgrammable Solutions Group 152

JLSE: Ruth
Nallatech® 385A FPGA Accelerator Card
with Intel® Arria® 10 FPGA

Programmable Solutions GroupProgrammable Solutions Group 153

Hands-on Example (running on JLSE)
Part A: set up the env and copy the lab files
1. Login to a shell on JLSE:

$ ssh login.jlse.anl.gov

2. Please submit for an interacive queue so that we don’t tie up resources on the jlse login node. E.g.:
$ qsub -q gomez (or it or skylake_8180 -- some queue you have access to) -I -t 120 -n 1

3. If you do not wish to work out of your home directory, cd into another directory. E.g.
$ mkdir atpesc_lab
$ cd atpesc_lab

4. Obtain the lab files from my home directory and cd into that directory:
$ cp -r /home/jmoawad/fpga_opencl_trn/ .
$ cd fpga_opencl_trn

5. Source the environment setup script:
$ source aoc-env.sh
Note that this is a slightly modified version of /soft/fpga/altera/pro/18.0.0.219/aoc-
env.sh which sets the environment to use the OpenCL emulator rather than an FPGA board

Programmable Solutions GroupProgrammable Solutions Group 154

aoc-env.sh
#!/bin/bash

TOPDIR=/soft/fpga/altera

export QUARTUS_ROOTDIR="$TOPDIR/pro/18.0.0.219"
#export AOCL_BOARD_PACKAGE_ROOT=${QUARTUS_ROOTDIR}/hld/board/nalla_pcie
export AOCL_BOARD_PACKAGE_ROOT=${QUARTUS_ROOTDIR}/hld/board/a10_ref
export CL_CONTEXT_EMULATOR_DEVICE_INTELFPGA=a10gx

#
COMMON
#

export INTELFPGAOCLSDKROOT=${QUARTUS_ROOTDIR}"/hld"

export PATH="$QUARTUS_ROOTDIR"/quartus/linux64/jre64/bin:$PATH
export PATH=$PATH:"$QUARTUS_ROOTDIR"/bin:"$INTELFPGAOCLSDKROOT"/linux64/bin
export PATH=$PATH:"$INTELFPGAOCLSDKROOT"/bin
export PATH=$PATH:"$QUARTUS_ROOTDIR"/quartus/bin
for HLS
export QUARTUS_ROOTDIR_OVERRIDE=$QUARTUS_ROOTDIR/quartus
export PATH=$PATH:"$QUARTUS_ROOTDIR"/quartus/sopc_builder/bin/ # for qsys-script
export PATH=$PATH:"$QUARTUS_ROOTDIR"/modelsim_ase/linuxaloem/ # for vsim

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:"$INTELFPGAOCLSDKROOT"/linux64/lib
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:"$INTELFPGAOCLSDKROOT"/host/linux64/lib
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${AOCL_BOARD_PACKAGE_ROOT}/linux64/lib

export QUARTUS_64BIT=1

Programmable Solutions GroupProgrammable Solutions Group 155

Hands-on Example (running on JLSE)
Part B: compile a single work-item kernel
1. Change directories into the OpenCL_single directory. Here we have a simple OpenCL example

showing a single work-item kernel:
$ cd OpenCL_single

2. Change directories into the device directory where our OpenCL kernel code resides:
$ cd device

3. Compile the kernel SimpleKernel.cl by executing the following command:
$ aoc -v -march=emulator SimpleKernel.cl

4. Double check the kernel compiled successfully. You should now have a *.aocx file which is the
kernel executable FPGA image:
$ ls
SimpleKernel/ SimpleKernel.aoco SimpleKernel.aocr SimpleKernel.aocx
SimpleKernel.cl

Programmable Solutions GroupProgrammable Solutions Group 156

SimpleKernel.cl
//OpenCL AOC Kernel
__kernel void my_kernel (__global float * restrict a,

__global float * restrict b,
__global float * restrict x,
uint array_size) {

int i;
for (i = 0; i < array_size; i++)

x[i] = a[i] * b[i];
}

Programmable Solutions GroupProgrammable Solutions Group 157

Hands-on Example (running on JLSE)
Part C: compile and execute the host application
1. Change directory into the folder containing our main() c++ source project for the host:

$ cd ../host/

2. List the directory files and you should see 3 source files and a Makefile:
$ ls
main.cpp Makefile utility.cpp utility.h

3. Compile the software using a make command:
$ make

4. Run the executable that was just created:
$./SimpleOpenCLApp

Programmable Solutions GroupProgrammable Solutions Group 158

Hands-on Example (running on JLSE)
Part D: compile a NDRange kernel
1. Change directories into the OpenCL_ndrange directory. Here we have a simple OpenCL example

showing a single work-item kernel:
$ cd ../../OpenCL_ndrange

2. Change directories into the device directory where our OpenCL kernel code resides:
$ cd device

3. Compile the kernel SimpleKernel.cl by executing the following command:
$ aoc -v -march=emulator SimpleKernel.cl

4. Double check the kernel compiled successfully. You should now have a *.aocx file which is the
kernel executable FPGA image:
$ ls
SimpleKernel/ SimpleKernel.aoco SimpleKernel.aocr SimpleKernel.aocx
SimpleKernel.cl

Programmable Solutions GroupProgrammable Solutions Group 159

SimpleKernel.cl
//OpenCL AOC NDRange Kernel
__kernel void my_kernel (__global float * restrict a,

__global float * restrict b,
__global float * restrict x) {

size_t i = get_global_id(0);
x[i] = a[i] * b[i];

}

Programmable Solutions GroupProgrammable Solutions Group 160

Hands-on Example (running on JLSE)
Part E: compile and execute the host application
1. Change directory into the folder containing our main() c++ source project for the host:

$ cd ../host/

2. List the directory files and you should see 3 source files and a Makefile:
$ ls
main.cpp Makefile utility.cpp utility.h

3. Compile the software using a make command:
$ make

4. Run the executable that was just created:
$./SimpleOpenCLApp

Programmable Solutions GroupProgrammable Solutions Group 161

Follow on

Today we used targeted our OpenCL kernel to the emulator. To target an actual
FPGA card, there is a Nallatech 385A with Intel Arria 10 on “Ruth”. The queue
name is fpga_385a

$ qsub -q fpga_385a -I -t 120 -n 1

Launch aoc without the emulator flag. Adding the -report flag will generate the
html report.

$ aoc -v –report SimpleKernel.cl

Programmable Solutions GroupProgrammable Solutions Group 162

Follow on by using design examples

Design examples available:

• 1D FFT https://www.intel.com/content/www/us/en/programmable/support/support-

resources/design-examples/design-software/opencl/fft-1d.html

• 2D FFT https://www.intel.com/content/www/us/en/programmable/support/support-

resources/design-examples/design-software/opencl/fft-2d.html

• Finite Difference Computation
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-
examples/design-software/opencl/fdtd-3d.html

• Many others at https://www.intel.com/content/www/us/en/programmable/products/design-

software/embedded-software-developers/opencl/developer-zone.html#design-examples

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/fft-1d.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/fft-2d.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/fdtd-3d.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/developer-zone.html#design-examples

Programmable Solutions Group 171

Designs

• Compiled directly from OpenCL source code available internally

• Functionally equivalent source code used to compile for A10 and S10

Fmax

• Max achieved among several seeds when compiled through OpenCL flow on a pre-release candidate build (RC2)

• Targeting the reference S10 BSP for the -1 GX 280 production silicon

Scaling

• Increase in design capability against a compile of the source code for A10. For matrix multiplication, backprojection and gzip, this is an increase in throughput,

between a projection of the S10 performance (accounting for the fmax measurement and assuming a -1 BSP platform) and a measurement of the A10

performance (on the existing reference -1 0.95V platform). For FFT, it is an increase in the number of design points possible due to the device size

Devkit demo

• Design performance as measured in hardware on the Stratix10 GX H-tile development kit, which uses an early silicon -2 speed grade GX280 part

OpenCL results with HLD Stratix 10 compiler

Continued on next slide

Programmable Solutions Group 172

S10 vs A10 fmax (-2) graph

• HLD QoR set (see above)

• Same designs have been used for both data points

• Both data points targeted the same device (-2 production part) and have been compiled with the same 18.0 pre-release candidate

• A10 targeted the reference BSP, retargeted to a -2 production part 0.9V

• 18.0 used a pre-release candidate and targeted a -2 production part 0.9V

