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• A laptop
– With access to the ATPESC WIFI (Q Basic)

• A shell & ssh

• Login credentials
– You should already have received this
– But we can also give you credentials during the hands-on session

• Example programs are also at https://tinyurl.com/legion-atpesc18

What Do You Need Today?
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Overview



• Legion is a
– C++ runtime
– Programming model

• Regent is a programming language
– For the Legion programming model
– Current implementation is embedded in Lua
– Has an optimizing compiler

• This tutorial focuses on Regent

Legion & Regent
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• Sequential semantics
– The better to understand what you write
– Parallelism is extracted automatically

• Throughput-oriented
– The latency of a single thread/process is (mostly) irrelevant
– The overall time is what matters

• Runtime decision making
– Because machines are unpredictable/dynamic

Regent/Legion Design Goals
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• Keep the machine busy

• How? Ideally,
– Every core has a queue of independent work to do
– Every memory unit has a queue of transfers to do
– At all times

Throughput-Oriented
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• Highly asynchronous
– Minimize synchronization
– Esp. global synchronization

• Sequential semantics but support for parallelism

• Emphasis on describing the structure of data
– Later

Consequences
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Regent Stack
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• Embedded in Lua
– Popular scripting language in the graphics community

• Excellent interoperation with C
– And with other languages

• Simple syntax
– For both Lua and Regent

Regent in Lua
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• Examples Overview/1.rg & 2.rg

• To run:
– ssh –l USER atpesc18.regent-lang.org
– cd atpesc18/Overview
– qsub r1.sh
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Tasks



• Tasks are Regent’s unit of parallel execution
– Distinguished functions that can be executed asynchronously

• No preemption
– Tasks run until they block or terminate
– And ideally they don’t block …

Tasks
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• Blocking means a task cannot continue
– So the task stops running

• Blocking does not prevent independent work from being done
– If the processor has something else to do
– Does prevent the task from continuing and launching more tasks

• Avoid blocking

Blocking
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• Tasks can call subtasks
– Nested parallelism

• Terminology: parent and child tasks

Subtasks
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task summer(num : int64) : int64 ... end

task tester(sum : int64)         ... end

task main()
var sum : int64 = summer(10)
sum = tester(sum)
c.printf("The answer is: %ld\n", sum)

end

Example
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If a parent task inspects the result of a child task, the parent task blocks 
pending completion of the child task.
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• Examples Tasks/1.rg & 2.rg

• Reminder:
cd atpesc18/Tasks
qsub r1.sh
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Legion Prof



• A tool for showing performance timeline
– Each processor is a timeline
– Each operation is a time interval
– Different kinds of operations have different colors

• White space = idle time

Legion Prof

ATPESC 2018 20



cd atpesc18/Tasks
qsub rp1.sh
make prof

http://atpesc18.regent-lang.org/~USER/prof

Example 1: Legion Prof
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cd atpesc18/Tasks
qsub rp2.sh 
make prof

http://atpesc18.regent-lang.org/~USER/prof.1

Example 2: Legion Prof
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• How does Regent/Legion decide on which processor to run tasks?

• This decision is under the mapper’s control

• Here we are using the default mapper
– Passes out tasks to CPUs on a node in a round-robin fashion
– Programmers can write their own mappers
– More on mapping later

Mapping
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Parallelism



• “for all” style parallelism

• Note the order of completion of the tasks
– main() finishes first (or almost first)!
– All subtasks managed by the runtime system
– Subtasks execute in non-deterministic order

• How?
– Regent notices that the tasks are independent
– No task depends on another task for its inputs

Example Tasks/3.rg
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• Example Tasks/4.rg is more involved
– Positive tasks (print a positive integer)
– Negative tasks (print a negative integer)

• Some tasks are dependent
– The task for -5 depends on the task for 5
– Note loop in main() does not block on the value of j!

• Some are independent
– Positive tasks are independent of each other
– Negative tasks are independent of each other

Runtime Dependence Analysis
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Legion Spy



• A tool for showing ordering dependencies

• Very useful for figuring out why things are not running in parallel

Legion Spy
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cd atpesc18/Tasks
qsub rs4.sh
make spy

http://atpesc18.regent-lang.org/~USER/dataflow.pdf

Example Tasks/4.rg: Legion Spy
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• Use Legion Prof to find idle time 
– white space

• Use Legion Spy to examine tasks that are delayed
– What are they waiting for?!

Workflow
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Exercise 1



• A Monte Carlo simulation to compute 
the area of a unit circle inscribed in a 
square

• Throw darts
– Fraction of darts landing in the circle = ratio 

of circle’s area to square’s area

Computing the Area of a Unit Circle
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• Example Pi/1.rg
– Slow!
– Why?

Computing the Area of a Unit Circle
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• Modify Pi/1.rg
– Edit x1.rg
– make multiple trials per subtask

• Use
– 4 subtasks
– 2500 trials per subtask

• Produce both prof and spy output
– See Makefile

Exercise 1
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Regions



• A region is a (typed) collection

• Regions are the cross product of 
– An index space
– A field space

Regions
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Regions/1.rg

ATPESC 2018 37

false

false

false

false

false

true

true

true

true

true

0

1

2

3

4

5

6

7

8

9

bit



• Regions are theway to organize large data collections in Regent

• Regions can be
– Dense (e.g., like arrays)
– Sparse (e.g., pointer data structures)

• Any number of fields

• Built-in support for 1D, 2D and 3D index spaces

Discussion
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• A task that takes region arguments must
– Declare its privileges on the region
– Reads, Writes, Reduces

• The task may only perform operations for which it has privileges
– Including any subtasks it calls

Privileges
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• Example Regions/2.rg

• Example Regions/3.rg
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• Regions/4.rg
– A sequence of tasks that increment elements of a region
– With Read/Write privileges

• Regions/5.rg
– 4.rg but with Reduction privileges

• Note: Reductions can create additional copies
– To get more parallelism
– Under mapper control
– Not always preferred to Read/Write privileges

Reduction Privileges
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Partitioning



• To enable parallelism on a region, partition it into smaller pieces
– And then run a task on each piece

• Legion/Regent have a rich set of partitioning primitives

Partitioning
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Partitioning Example
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• One commonly used primitive is to split a region into a number of (nearly) 
equal size subregions

• Partitioning/1.rg

• Partitioning/2.rg

Equal Partitions
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• Partitioning does not create copies
– It names subsets of the data

• Partitioning does not remove the parent region
– It still exists and can be used

• Regions and partitions are first-class values
– Can be created, destroyed, stored in data structures, passed to and returned from 

tasks

Discussion
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Region Trees
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• The same data can be partitioned multiple ways
– Again, these are just names for subsets

• Subregions can themselves be partitioned

More Discussion
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• Regent uses tasks’ region arguments to compute which tasks can run in 
parallel
– What region is being accessed

• Does it overlap with another region that is in use?

– What field is being accessed
• If a task is using an overlapping region, is it using the same field?

– What are the privileges?
• If two tasks are accessing the same field, are they both reading or both reducing?

Dependence Analysis
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• Regent analyzes sibling tasks
– Tasks launched directly by the same parent task

• Theorem: Analyzing dependencies between sibling tasks is sufficient to 
guarantee sequential semantics

• Never check for dependencies otherwise
– Crucial to the overall design of Regent

A Crucial Fact
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• Dependence analysis is a source of runtime overhead

• Can be reduced by reducing the number of sibling tasks
– Group some tasks into subtasks

• But beware!
– This may also reduce the available parallelism

• Partitioning/3.rg

Consequences
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• Note that passing a region to a task does not mean the data is copied to 
where that task runs
– C.f., launcher task must name the parent region for type checking reasons

• If the task doesn’t touch a region/field, that data doesn’t need to move

Partitioning/3.rg
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• A better way to initialize regions is to use fill operations

fill(region.field, value)

• Partitioning/4.rg

Fills
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Multiple Partitions
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• Different views onto the same data

• Again, can have multiple views in use at the same time

• Regent will figure out the data dependencies

Discussion
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• Modify Partitioning/x2.rg to

• Have two partitions of bit_region
– One with 3 subregions of size 20
– One with 6 subregions of size 10

• In a loop, alternately launch subtasks on one partition and then the other

• Edit x2.rg

Exercise 2
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• So far all of our examples have been disjoint partitions

• It is also possible for partitions to be aliased
– The subregions overlap

• Partitioning/5.rg

Aliased Partitions
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• Significant Regent applications have interesting region trees
– Multiple views
– Aliased partitions
– Multiple levels of nesting

• And complex task dependencies 
– Subregions, fields, privileges, coherence

• Regions express locality
– Data that will be used together
– An example of a “local address space” design

• Tasks can only access their region arguments

Partitioning Summary
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Dependent Partitioning



• Why do we want to partition data?
– For parallelism
– We will launch many tasks over many subregions

• A problem
– We often need to partition multiple data structures in a consistent way
– E.g., given that we have partitioned the nodes a particular way, that will dictate the 

desired partitioning of the edges

Partitioning, Revisited
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• Distinguish two kinds of partitions

• Independent partitions
– Computed from the parent region, using, e.g., 

• partition(equals, … )

• Dependent partitions
– Computed using another partition

Dependent Partitioning
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• Partition by field
– Group elements by  the value of a field

• Image
– Use the image of a field in a partition to define a new partition

• Preimage
– Use the pre-image of a field in a partition …

• Set operations
– Form new partitions using the intersection, union, and set difference of others

Dependent Partitioning Operations
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• Write elements of the color space into the field f
– Using an arbitrary computation

• Then call partition(region.f, colors)
– DependentPartitioning/0.rg

Partitioning By Field
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• Write elements of the color space into the field f
– Using an arbitrary computation

• Then call partition(region.f, colors)
– DependentPartitioning/0.rg

Partitioning By Field
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• Computes elements reachable via a field 
lookup
– Computation is distributed based on location of 

data

• Regent understands relationship between 
partitions
– Can check safety of region relation assertions at 

compile time

Image
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• Partition the edges
– Equal partitioning

• Then partition the nodes
– Image of the source node of each edge

• For each edge subregion r, form a subregion of those nodes that are 
source nodes in r

DependentPartitioning/1.rg
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• Inverse of image
– Computes elements that reach a given subspace
– Preserves disjointness

• Multiple images/preimages can be combined
– Can capture complex task access patterns

Preimage
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• Partition the nodes
– Equal partitioning

• Then partition the edges
– Preimage of the source node of each edge

• For each node subregion r, form a subregion of those edges where the 
source node is in r

DependentPartitioning/2.rg
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• Note that these two examples compute (almost) the same partition

• Can derive the node partition from the edges, or vice versa

Discussion
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• What would the example look like if we partitioned based on the 
destination node?

• Let’s find out …
– Modify 1.rg to partition using the destination node
– Code is in DependentPartitioning/x3.rg

Exercise
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• Partition the edges
– Equal partition

• Compute the source and destination node partitions of the previous two 
examples

• The final node partition is the set difference
– What does this compute?
– Examples DepedendentPartitioning/4.rg & 5.rg

Set Operations: Set Difference
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• Partition the edges
– Equal partition

• Compute the source & destination node partitions

• Final node partition is the intersection
– What does this compute?
– Example DependentPartitioning/6.rg

Set Operations: Set Intersection
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• Same as the last example

• Once the final node partition is computed, compute a partition of the 
edges such that each edge subregion has only the edges connecting the 
nodes in the corresponding node subregion

DependentPartitioning/7.rg
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Mapping



Mapping
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• Mapping is the process of assigning resources to Regent/Legion programs

• Conceptually
– Assign a processor to each task

• The task will execute in its entirety on that processor

– Assign a memory to each region argument

• And many other things!



• Mapping is an API
– A set of callbacks

• Each is called at a particular point in a task’s lifetime
– To write mappers, need to know this sequence of stages

Understanding Mappers
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• At the Legion level, mapping is an API
– A set of callbacks
– Each is called at a particular point in a task’s lifetime
– To write mappers, need to know this sequence of stages

• Regent has a mapping DSL
– Concise, easy to use
– Compiles to the Legion mapping API
– Currently supports only static mappings

The Legion Mapping API
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• An instance of the Legion runtime runs on every node

• When a task is launched the local runtime
– Makes mapper calls to pick a processor for the task
– Makes mapper calls to pick memories for the region arguments
– … and other mapper calls as well …

High-Level Overview
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Conclusions



• Legion/Regent is a task-based parallel programming system

• Advantages
– Easy to exploit multiple levels of parallelism in a uniform manner
– Novel and rich partitioning sublanguage
– Separate machine mapping

• Good/great performance and portability!

Conclusions
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Image Blur



• First example with a 2D region

• Rect2d type
– 2D rectangle
– To construct: rect2d { lo, hi }
– Note lo and hi are 2D points!
– Fields:  r.lo,  r.hi
– Operation: r.lo + {1,1},  r.hi – {1,1}

• The following works (modulo bounds):
for x in r do
r[x] = r[x + {1,1}] + ...

Index Notation
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• Compute a Gaussian blur of an image

• Edit Blur/blur.rg
– Search for TODO
– … in two separate places …
– Test with qsub rpblur.sh

• Solution is in blur_solution.rg
– Also scripts for running the solution

Blur
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Page Rank



• The page rank algorithm computes an iterative solution to the following 
equation, where
– PR(p) is the probability that page p is visited
– N is the number of pages
– L(p) is the number of outgoing links from p
– d is a “damping factor” between 0 and 1

The Algorithm
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• Modify Pagerank/pagerank.rg

• Play with the partitioning of the graph
– Can you switch from a page-based partitioning to a link-based partitioning?

• And possibly the permissions
– See “TODO”

Exercise
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Mapping



• There are a number of concepts at the mapping level that don’t exist in 
Regent

• Machine models
• Variants
• Physical Instances

• More on this later . . .

New Concepts
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• To pick concrete processors & memories, the runtime must know:

• How many processors/memories there are
– And of what kinds

• And where the processors/memories are
– At least relative to each other

Machine Model
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• Processors
– LOC
– TOC
– PROC_SET
– UTILITY
– IO

Machine Model
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• Memories
– GLOBAL
– SYSTEM
– RDMA
– FRAME_BUFFER
– ZERO_COPY
– DISK
– HDF5



• Processor -> Memory
– Which memories are attached to a processor

• Memory -> Memory
– Which memories have channels between them

• Memory -> Processor
– All processors attached to a memory

• Affinities are provided as a list of (proc,mem) and (mem,mem) pairs

Affinities
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• A task can have multiple variants
– Different implementations of the same task
– Multiple variants can be registered with the runtime
– Variants can have associated constraints

• Examples
– A variant for LOC
– Another variant for TOC
– Variants for different data layouts

Task Variants
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• A region is a logical name for data

• A physical instance is a copy of that data
– For some set of fields

• There can be 0, 1 or many physical instances of a specific field of a region at any time

Physical Instances
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• Can be valid or invalid
– Is the data current or not?

• Live in a specific memory

• Have a specific layout
– Column major, row major, blocked, struct-of-arrays, array-of-structs, …

• Are allocated explicitly by the mapper

• Are deallocated by the runtime 
– Garbage collected

Physical Instances
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• Many physical instances of a region can exist simultaneously
– Including different versions of the same data

• A task writing version 0 to disk
• A task reading version 5
• A task writing version 6 

– The current version!

• A task scheduled to read version 6
• A task scheduled to write version 7
• A (meta)task scheduled to deallocate version 6
• …

A Word About Physical Instances
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• Called once on start-up
– On each node

Create Mappers
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• There are three stages, in order:

• Select task options
– Like it says, choose among some options

• Slice task
– Break up index launches into chunks and distribute
– Fixes the node of the task

• Map task
– Bind the task to a  processor

Mapper Calls: Picking a Processor
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• Place immediately before a task declaration
– __demand(__cuda)

• Causes both CPU and GPU task variants to be produced

• And the default mapper always prefers to pick a GPU variant if possible

Controlling Processor Choice in Regent

ATPESC 2018 100



• Tasks can have layout constraints on physical instances
– “This task requires data in row major order”
– Multiple instances may satisfy the constraints

Layout Constraints
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• The default mapper first checks if there is an existing valid instance for a 
region requirement
– That satisfies the layout constraints
– And has affinity to the processor

• If so, return it
• If not, create a new instance

– In system memory (for a CPU mapped task)
– In frame buffer memory (for a GPU mapped task)

Selecting Physical Instances
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• Mapping
– Selects processors for tasks
– Selects memories for physical instances

• Satisfying region requirements of tasks

• Many options
– Default mapper does reasonable things
– But any sufficiently complex program will need some customization

Summary
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