
exascaleproject.org

The Legion Programming Model

ATPESC 2018

Wonchan Lee
Stanford University, Los Alamos National Laboratory

Q Center, St. Charles, IL (USA)
August 2, 2018

LA-UR-18-27109

• The Legion project is joint work between Stanford, Los Alamos National Lab, NVIDIA,
and SLAC.

• Funding has come from many sources, but particularly the DOE and the leadership
class facilities.

• This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint
project of the U.S. Department of Energy’s Office of Science and National Nuclear
Security Administration, responsible for delivering a capable exascale ecosystem,
including software, applications, and hardware technology, to support the
nation’exascale computing imperative.

Acknowledgments

ATPESC 2018 2

• A laptop
– With access to the ATPESC WIFI (Q Basic)

• A shell & ssh

• Login credentials
– You should already have received this
– But we can also give you credentials during the hands-on session

• Example programs are also at https://tinyurl.com/legion-atpesc18

What Do You Need Today?

ATPESC 2018 3

Overview

• Legion is a
– C++ runtime
– Programming model

• Regent is a programming language
– For the Legion programming model
– Current implementation is embedded in Lua
– Has an optimizing compiler

• This tutorial focuses on Regent

Legion & Regent

ATPESC 2018 5

• Sequential semantics
– The better to understand what you write
– Parallelism is extracted automatically

• Throughput-oriented
– The latency of a single thread/process is (mostly) irrelevant
– The overall time is what matters

• Runtime decision making
– Because machines are unpredictable/dynamic

Regent/Legion Design Goals

ATPESC 2018 6

• Keep the machine busy

• How? Ideally,
– Every core has a queue of independent work to do
– Every memory unit has a queue of transfers to do
– At all times

Throughput-Oriented

ATPESC 2018 7

• Highly asynchronous
– Minimize synchronization
– Esp. global synchronization

• Sequential semantics but support for parallelism

• Emphasis on describing the structure of data
– Later

Consequences

ATPESC 2018 8

Regent Stack

ATPESC 2018 9

Regent
Language and

compiler

Legion
High-level runtime

Realm
Low-level runtime

Terra
Sequential

performance

Lua
Host language

• Embedded in Lua
– Popular scripting language in the graphics community

• Excellent interoperation with C
– And with other languages

• Simple syntax
– For both Lua and Regent

Regent in Lua

ATPESC 2018 10

• Examples Overview/1.rg & 2.rg

• To run:
– ssh –l USER atpesc18.regent-lang.org
– cd atpesc18/Overview
– qsub r1.sh

ATPESC 2018 11

Tasks

• Tasks are Regent’s unit of parallel execution
– Distinguished functions that can be executed asynchronously

• No preemption
– Tasks run until they block or terminate
– And ideally they don’t block …

Tasks

ATPESC 2018 13

• Blocking means a task cannot continue
– So the task stops running

• Blocking does not prevent independent work from being done
– If the processor has something else to do
– Does prevent the task from continuing and launching more tasks

• Avoid blocking

Blocking

ATPESC 2018 14

• Tasks can call subtasks
– Nested parallelism

• Terminology: parent and child tasks

Subtasks

ATPESC 2018 15

task summer(num : int64) : int64 ... end

task tester(sum : int64) ... end

task main()
var sum : int64 = summer(10)
sum = tester(sum)
c.printf("The answer is: %ld\n", sum)

end

Example

ATPESC 2018 16

If a parent task inspects the result of a child task, the parent task blocks
pending completion of the child task.

ATPESC 2018 17

• Examples Tasks/1.rg & 2.rg

• Reminder:
cd atpesc18/Tasks
qsub r1.sh

ATPESC 2018 18

Legion Prof

• A tool for showing performance timeline
– Each processor is a timeline
– Each operation is a time interval
– Different kinds of operations have different colors

• White space = idle time

Legion Prof

ATPESC 2018 20

cd atpesc18/Tasks
qsub rp1.sh
make prof

http://atpesc18.regent-lang.org/~USER/prof

Example 1: Legion Prof

ATPESC 2018 21

cd atpesc18/Tasks
qsub rp2.sh
make prof

http://atpesc18.regent-lang.org/~USER/prof.1

Example 2: Legion Prof

ATPESC 2018 22

• How does Regent/Legion decide on which processor to run tasks?

• This decision is under the mapper’s control

• Here we are using the default mapper
– Passes out tasks to CPUs on a node in a round-robin fashion
– Programmers can write their own mappers
– More on mapping later

Mapping

ATPESC 2018 23

Parallelism

• “for all” style parallelism

• Note the order of completion of the tasks
– main() finishes first (or almost first)!
– All subtasks managed by the runtime system
– Subtasks execute in non-deterministic order

• How?
– Regent notices that the tasks are independent
– No task depends on another task for its inputs

Example Tasks/3.rg

ATPESC 2018 25

• Example Tasks/4.rg is more involved
– Positive tasks (print a positive integer)
– Negative tasks (print a negative integer)

• Some tasks are dependent
– The task for -5 depends on the task for 5
– Note loop in main() does not block on the value of j!

• Some are independent
– Positive tasks are independent of each other
– Negative tasks are independent of each other

Runtime Dependence Analysis

ATPESC 2018 26

Legion Spy

• A tool for showing ordering dependencies

• Very useful for figuring out why things are not running in parallel

Legion Spy

ATPESC 2018 28

cd atpesc18/Tasks
qsub rs4.sh
make spy

http://atpesc18.regent-lang.org/~USER/dataflow.pdf

Example Tasks/4.rg: Legion Spy

ATPESC 2018 29

• Use Legion Prof to find idle time
– white space

• Use Legion Spy to examine tasks that are delayed
– What are they waiting for?!

Workflow

ATPESC 2018 30

Exercise 1

• A Monte Carlo simulation to compute
the area of a unit circle inscribed in a
square

• Throw darts
– Fraction of darts landing in the circle = ratio

of circle’s area to square’s area

Computing the Area of a Unit Circle

ATPESC 2018 32

1

x

y

• Example Pi/1.rg
– Slow!
– Why?

Computing the Area of a Unit Circle

ATPESC 2018 33

• Modify Pi/1.rg
– Edit x1.rg
– make multiple trials per subtask

• Use
– 4 subtasks
– 2500 trials per subtask

• Produce both prof and spy output
– See Makefile

Exercise 1

ATPESC 2018 34

Regions

• A region is a (typed) collection

• Regions are the cross product of
– An index space
– A field space

Regions

ATPESC 2018 36

Regions/1.rg

ATPESC 2018 37

false

false

false

false

false

true

true

true

true

true

0

1

2

3

4

5

6

7

8

9

bit

• Regions are theway to organize large data collections in Regent

• Regions can be
– Dense (e.g., like arrays)
– Sparse (e.g., pointer data structures)

• Any number of fields

• Built-in support for 1D, 2D and 3D index spaces

Discussion

ATPESC 2018 38

• A task that takes region arguments must
– Declare its privileges on the region
– Reads, Writes, Reduces

• The task may only perform operations for which it has privileges
– Including any subtasks it calls

Privileges

ATPESC 2018 39

• Example Regions/2.rg

• Example Regions/3.rg

ATPESC 2018 40

• Regions/4.rg
– A sequence of tasks that increment elements of a region
– With Read/Write privileges

• Regions/5.rg
– 4.rg but with Reduction privileges

• Note: Reductions can create additional copies
– To get more parallelism
– Under mapper control
– Not always preferred to Read/Write privileges

Reduction Privileges

ATPESC 2018 41

Partitioning

• To enable parallelism on a region, partition it into smaller pieces
– And then run a task on each piece

• Legion/Regent have a rich set of partitioning primitives

Partitioning

ATPESC 2018 43

Partitioning Example

ATPESC 2018 44

false

false

false

false

false

true

true

true

true

true

0

1

2

3

4

5

6

7

8

9

bit

bit_region_partition[0]

bit_region_partition[1]

false

false

false

false

false

true

true

true

true

true

• One commonly used primitive is to split a region into a number of (nearly)
equal size subregions

• Partitioning/1.rg

• Partitioning/2.rg

Equal Partitions

ATPESC 2018 45

• Partitioning does not create copies
– It names subsets of the data

• Partitioning does not remove the parent region
– It still exists and can be used

• Regions and partitions are first-class values
– Can be created, destroyed, stored in data structures, passed to and returned from

tasks

Discussion

ATPESC 2018 46

Region Trees

ATPESC 2018 47

bit_region

0 1 2 3 4 5

bit_region_partition

• The same data can be partitioned multiple ways
– Again, these are just names for subsets

• Subregions can themselves be partitioned

More Discussion

ATPESC 2018 48

• Regent uses tasks’ region arguments to compute which tasks can run in
parallel
– What region is being accessed

• Does it overlap with another region that is in use?

– What field is being accessed
• If a task is using an overlapping region, is it using the same field?

– What are the privileges?
• If two tasks are accessing the same field, are they both reading or both reducing?

Dependence Analysis

ATPESC 2018 49

• Regent analyzes sibling tasks
– Tasks launched directly by the same parent task

• Theorem: Analyzing dependencies between sibling tasks is sufficient to
guarantee sequential semantics

• Never check for dependencies otherwise
– Crucial to the overall design of Regent

A Crucial Fact

ATPESC 2018 50

• Dependence analysis is a source of runtime overhead

• Can be reduced by reducing the number of sibling tasks
– Group some tasks into subtasks

• But beware!
– This may also reduce the available parallelism

• Partitioning/3.rg

Consequences

ATPESC 2018 51

• Note that passing a region to a task does not mean the data is copied to
where that task runs
– C.f., launcher task must name the parent region for type checking reasons

• If the task doesn’t touch a region/field, that data doesn’t need to move

Partitioning/3.rg

ATPESC 2018 52

• A better way to initialize regions is to use fill operations

fill(region.field, value)

• Partitioning/4.rg

Fills

ATPESC 2018 53

Multiple Partitions

ATPESC 2018 54

bit_region

10 elements each

0 1 2 3 4 5

20 elements each

0 1 2

• Different views onto the same data

• Again, can have multiple views in use at the same time

• Regent will figure out the data dependencies

Discussion

ATPESC 2018 55

• Modify Partitioning/x2.rg to

• Have two partitions of bit_region
– One with 3 subregions of size 20
– One with 6 subregions of size 10

• In a loop, alternately launch subtasks on one partition and then the other

• Edit x2.rg

Exercise 2

ATPESC 2018 56

• So far all of our examples have been disjoint partitions

• It is also possible for partitions to be aliased
– The subregions overlap

• Partitioning/5.rg

Aliased Partitions

ATPESC 2018 57

• Significant Regent applications have interesting region trees
– Multiple views
– Aliased partitions
– Multiple levels of nesting

• And complex task dependencies
– Subregions, fields, privileges, coherence

• Regions express locality
– Data that will be used together
– An example of a “local address space” design

• Tasks can only access their region arguments

Partitioning Summary

ATPESC 2018 58

Dependent Partitioning

• Why do we want to partition data?
– For parallelism
– We will launch many tasks over many subregions

• A problem
– We often need to partition multiple data structures in a consistent way
– E.g., given that we have partitioned the nodes a particular way, that will dictate the

desired partitioning of the edges

Partitioning, Revisited

ATPESC 2018 60

• Distinguish two kinds of partitions

• Independent partitions
– Computed from the parent region, using, e.g.,

• partition(equals, …)

• Dependent partitions
– Computed using another partition

Dependent Partitioning

ATPESC 2018 61

• Partition by field
– Group elements by the value of a field

• Image
– Use the image of a field in a partition to define a new partition

• Preimage
– Use the pre-image of a field in a partition …

• Set operations
– Form new partitions using the intersection, union, and set difference of others

Dependent Partitioning Operations

ATPESC 2018 62

• Write elements of the color space into the field f
– Using an arbitrary computation

• Then call partition(region.f, colors)
– DependentPartitioning/0.rg

Partitioning By Field

ATPESC 2018 63

0 1 2 3 4 5 …

• Write elements of the color space into the field f
– Using an arbitrary computation

• Then call partition(region.f, colors)
– DependentPartitioning/0.rg

Partitioning By Field

ATPESC 2018 64

0 1 2 3 4 5 …

node_partition[0] node_partition[1] node_partition[2] node_partition[3]

0 4 … 1 5 … 2 … 3 …

• Computes elements reachable via a field
lookup
– Computation is distributed based on location of

data

• Regent understands relationship between
partitions
– Can check safety of region relation assertions at

compile time

Image

ATPESC 2018 65

pointer field

target
partition

R2

s1 s2 s3

R1

R1

s1 s2 s3

source
partition

…
…
…
…
…
…
…
…

…

…

R2
…
…
…
…
…
…

…

……

…
…
…
…
…

…
uncovered

aliased

• Partition the edges
– Equal partitioning

• Then partition the nodes
– Image of the source node of each edge

• For each edge subregion r, form a subregion of those nodes that are
source nodes in r

DependentPartitioning/1.rg

ATPESC 2018 66

• Inverse of image
– Computes elements that reach a given subspace
– Preserves disjointness

• Multiple images/preimages can be combined
– Can capture complex task access patterns

Preimage

ATPESC 2018 67

R1

s1 s2 s3

target
partition

R2
…
…
…
…
…
…
…
…

…

…

pointer field

source
partition

R2

s1 s2 s3

R1
………

…
…
…
…
…

…

…
…
…
…
…
…
…
…

…

• Partition the nodes
– Equal partitioning

• Then partition the edges
– Preimage of the source node of each edge

• For each node subregion r, form a subregion of those edges where the
source node is in r

DependentPartitioning/2.rg

ATPESC 2018 68

• Note that these two examples compute (almost) the same partition

• Can derive the node partition from the edges, or vice versa

Discussion

ATPESC 2018 69

• What would the example look like if we partitioned based on the
destination node?

• Let’s find out …
– Modify 1.rg to partition using the destination node
– Code is in DependentPartitioning/x3.rg

Exercise

ATPESC 2018 70

• Partition the edges
– Equal partition

• Compute the source and destination node partitions of the previous two
examples

• The final node partition is the set difference
– What does this compute?
– Examples DepedendentPartitioning/4.rg & 5.rg

Set Operations: Set Difference

ATPESC 2018 71

• Partition the edges
– Equal partition

• Compute the source & destination node partitions

• Final node partition is the intersection
– What does this compute?
– Example DependentPartitioning/6.rg

Set Operations: Set Intersection

ATPESC 2018 72

• Same as the last example

• Once the final node partition is computed, compute a partition of the
edges such that each edge subregion has only the edges connecting the
nodes in the corresponding node subregion

DependentPartitioning/7.rg

ATPESC 2018 73

Mapping

Mapping

ATPESC 2018 75

• Mapping is the process of assigning resources to Regent/Legion programs

• Conceptually
– Assign a processor to each task

• The task will execute in its entirety on that processor

– Assign a memory to each region argument

• And many other things!

• Mapping is an API
– A set of callbacks

• Each is called at a particular point in a task’s lifetime
– To write mappers, need to know this sequence of stages

Understanding Mappers

ATPESC 2018 76

• At the Legion level, mapping is an API
– A set of callbacks
– Each is called at a particular point in a task’s lifetime
– To write mappers, need to know this sequence of stages

• Regent has a mapping DSL
– Concise, easy to use
– Compiles to the Legion mapping API
– Currently supports only static mappings

The Legion Mapping API

ATPESC 2018 77

• An instance of the Legion runtime runs on every node

• When a task is launched the local runtime
– Makes mapper calls to pick a processor for the task
– Makes mapper calls to pick memories for the region arguments
– … and other mapper calls as well …

High-Level Overview

ATPESC 2018 78

Conclusions

• Legion/Regent is a task-based parallel programming system

• Advantages
– Easy to exploit multiple levels of parallelism in a uniform manner
– Novel and rich partitioning sublanguage
– Separate machine mapping

• Good/great performance and portability!

Conclusions

ATPESC 2018 80

exascaleproject.org

Thank you!

exascaleproject.org

Backup Slides

Image Blur

• First example with a 2D region

• Rect2d type
– 2D rectangle
– To construct: rect2d { lo, hi }
– Note lo and hi are 2D points!
– Fields: r.lo, r.hi
– Operation: r.lo + {1,1}, r.hi – {1,1}

• The following works (modulo bounds):
for x in r do
r[x] = r[x + {1,1}] + ...

Index Notation

ATPESC 2018 84

• Compute a Gaussian blur of an image

• Edit Blur/blur.rg
– Search for TODO
– … in two separate places …
– Test with qsub rpblur.sh

• Solution is in blur_solution.rg
– Also scripts for running the solution

Blur

ATPESC 2018 85

Page Rank

• The page rank algorithm computes an iterative solution to the following
equation, where
– PR(p) is the probability that page p is visited
– N is the number of pages
– L(p) is the number of outgoing links from p
– d is a “damping factor” between 0 and 1

The Algorithm

ATPESC 2018 87

• Modify Pagerank/pagerank.rg

• Play with the partitioning of the graph
– Can you switch from a page-based partitioning to a link-based partitioning?

• And possibly the permissions
– See “TODO”

Exercise

ATPESC 2018 88

Mapping

• There are a number of concepts at the mapping level that don’t exist in
Regent

• Machine models
• Variants
• Physical Instances

• More on this later . . .

New Concepts

ATPESC 2018 90

• To pick concrete processors & memories, the runtime must know:

• How many processors/memories there are
– And of what kinds

• And where the processors/memories are
– At least relative to each other

Machine Model

ATPESC 2018 91

• Processors
– LOC
– TOC
– PROC_SET
– UTILITY
– IO

Machine Model

ATPESC 2018 92

• Memories
– GLOBAL
– SYSTEM
– RDMA
– FRAME_BUFFER
– ZERO_COPY
– DISK
– HDF5

• Processor -> Memory
– Which memories are attached to a processor

• Memory -> Memory
– Which memories have channels between them

• Memory -> Processor
– All processors attached to a memory

• Affinities are provided as a list of (proc,mem) and (mem,mem) pairs

Affinities

ATPESC 2018 93

• A task can have multiple variants
– Different implementations of the same task
– Multiple variants can be registered with the runtime
– Variants can have associated constraints

• Examples
– A variant for LOC
– Another variant for TOC
– Variants for different data layouts

Task Variants

ATPESC 2018 94

• A region is a logical name for data

• A physical instance is a copy of that data
– For some set of fields

• There can be 0, 1 or many physical instances of a specific field of a region at any time

Physical Instances

ATPESC 2018 95

• Can be valid or invalid
– Is the data current or not?

• Live in a specific memory

• Have a specific layout
– Column major, row major, blocked, struct-of-arrays, array-of-structs, …

• Are allocated explicitly by the mapper

• Are deallocated by the runtime
– Garbage collected

Physical Instances

ATPESC 2018 96

• Many physical instances of a region can exist simultaneously
– Including different versions of the same data

• A task writing version 0 to disk
• A task reading version 5
• A task writing version 6

– The current version!

• A task scheduled to read version 6
• A task scheduled to write version 7
• A (meta)task scheduled to deallocate version 6
• …

A Word About Physical Instances

ATPESC 2018 97

• Called once on start-up
– On each node

Create Mappers

ATPESC 2018 98

• There are three stages, in order:

• Select task options
– Like it says, choose among some options

• Slice task
– Break up index launches into chunks and distribute
– Fixes the node of the task

• Map task
– Bind the task to a processor

Mapper Calls: Picking a Processor

ATPESC 2018 99

• Place immediately before a task declaration
– __demand(__cuda)

• Causes both CPU and GPU task variants to be produced

• And the default mapper always prefers to pick a GPU variant if possible

Controlling Processor Choice in Regent

ATPESC 2018 100

• Tasks can have layout constraints on physical instances
– “This task requires data in row major order”
– Multiple instances may satisfy the constraints

Layout Constraints

ATPESC 2018 101

• The default mapper first checks if there is an existing valid instance for a
region requirement
– That satisfies the layout constraints
– And has affinity to the processor

• If so, return it
• If not, create a new instance

– In system memory (for a CPU mapped task)
– In frame buffer memory (for a GPU mapped task)

Selecting Physical Instances

ATPESC 2018 102

• Mapping
– Selects processors for tasks
– Selects memories for physical instances

• Satisfying region requirements of tasks

• Many options
– Default mapper does reasonable things
– But any sufficiently complex program will need some customization

Summary

ATPESC 2018 103

