

I/O Topologies

ATPESC 2018

Jialin Liu

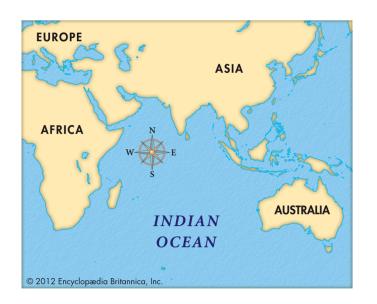
National Energy Research Scientific Computing Center

Q Center, St. Charles, IL (USA) July 29 – August 10, 2018

exascaleproject.org

- Common IO Issues in HPC I/O Stack
- > I/O Performance v.s. I/O Productivity
- Burst Buffer v.s. Lustre (on HDD)

10



github.io – Rank: 521 codepen.io – Rank: 3271 soup.io – Rank: 3910 filecloud.io – Rank: 7022 intercom.io – Rank: 14449 binbox.io – Rank: 15369 laravel.io – Rank: 16374 redis.io - Rank: 16418 pen.io – Rank: 17889 put.io – Rank: 21159 icomoon.io – Rank: 21373 imm.io – Rank: 23274 purecss.io – Rank: 23484 media.io – Rank: 27293 ubiquity.io – Rank: 27481 emmet.io – Rank: 28681 galleria.io – Rank: 30307 c9.io - Rank: 30347 torquemag.io – Rank: 33209 gamechanger.io – Rank: 34510 plan.io – Rank: 37505 brackets.io – Rank: 37508 filepicker.io – Rank: 39491 kraken.io – Rank: 41207 sidebar.io – Rank: 42285 dashboard.io - Rank: 46205

- 3 -

Common I/O Issues

- Bandwidth
 - \succ "The peak bandwidth is 700 GB/s, why I only got 7 MB/sec?"
 - > "Can you tell me how many OSTs should I use?"
- 2. Metadata
 - > "ls is too slow"
- 3. KNL v.s. Haswell
 - \succ "I have used more IO processes on KNL, why the performance is still bad"
- 4. Pain of Productivity
 - > "I like to use Python/Spark/Tensorflow, but how can I load in the HDF5 data"

Complex HPC I/O Stack

Productive Interface builds a thin layer on top of existing high performance I/O library for productive big data analytics

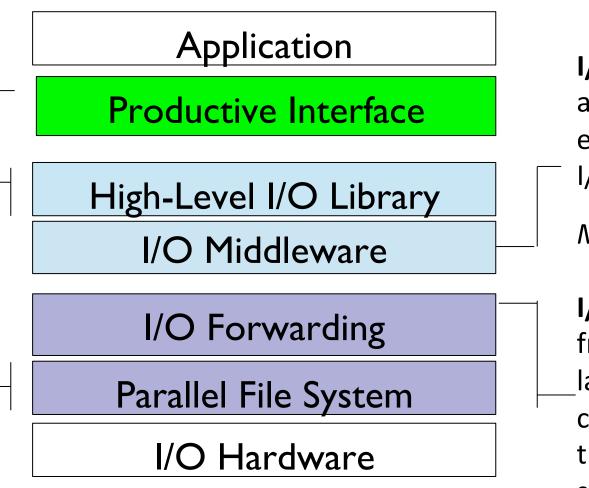
Python, Spark, TensorFlow High Level I/O Libraries map application abstractions onto storage abstractions and provide data portability.

HDF5, Parallel netCDF, ADIOS

Parallel file system maintains logical file model and provides efficient access to data.

PVFS, PanFS, GPFS, Lustre

Based on Philip Carns and Rob Ross' slide



I/O.

I/O Forwarding transforms I/O from many clients into fewer, larger request; reduces lock contention; and bridges between the HPC system and external storage. IBM ciod, IOFSL, Cray DVS, Cray Datawarp

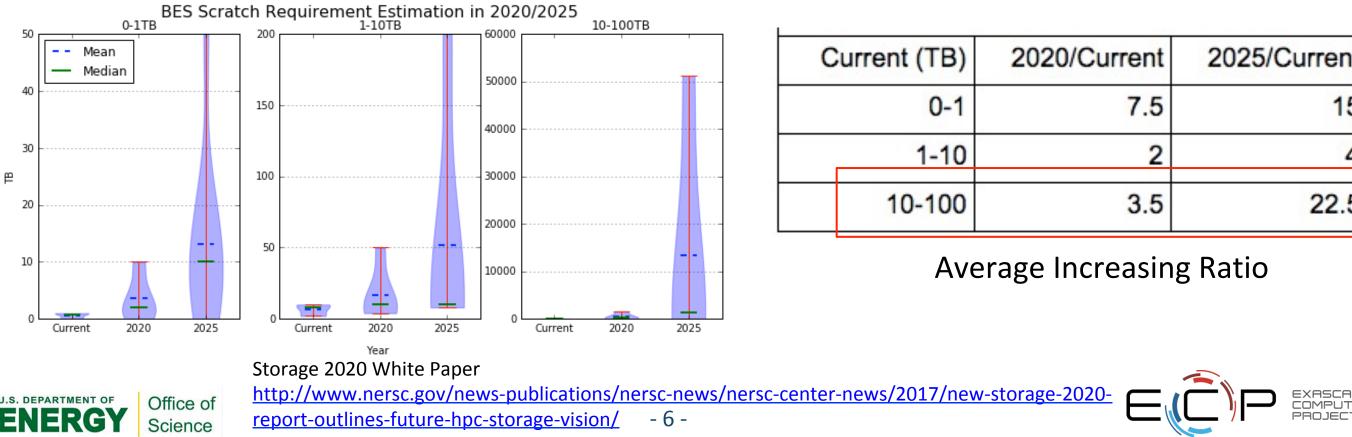
I/O Middleware organizes accesses from many processes, especially those using collective

MPI-IO, GLEAN, PLFS

I/O Challenges in 2020/2025

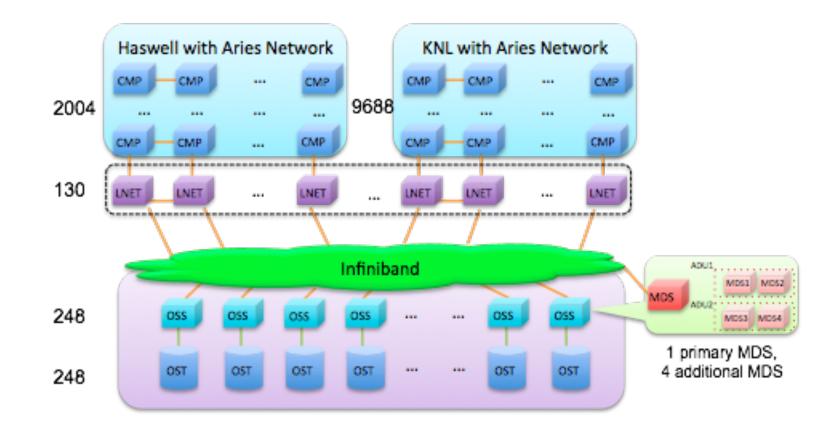
> Scientific applications/simulations generate massive quantities of data.

- Example, BES: Basic Energy Science, Requirement Review, 2015
- 19 projects review
- Example projects: Quantum Materials, Soft Matters, Combustion



nt	2025/Curren	urrent
15	15	7.5
4	4	2
.5	22.5	3.5

Parallel File System: Cori Scratch

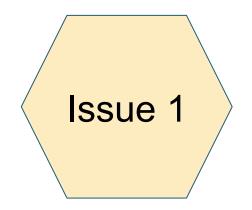


- Edison and Cori
- 7000+ users across the world
- Data floods in every second

ross the world very second

Now

- > "The peak bandwidth is 700 GB/s, why I only got 7 MB/sec?"
- "Can you tell me how many OSTs should I use?"



"I noticed that the reading speed of these data is only about 500MB/s. I use MPIIO and collective buffering. And the speed is similar for runs with 4 Haswell nodes and 64 Haswell nodes."

what is the proper stripe count and size for 100TB data

Striping is helpful, but not always

Basics about Striping

- \geq 700 GB/s is the aggregated bandwidth with large contiguous I/O pattern
- \succ Store your data on 1 OST or multiple OSTs
- \succ Control the granularity of each data block, e.g., 1MB, 4MB

Questions

- Million of small files, each file is 1MB
- \succ One giant file, 1TB

Size of File < 1GB ~1GB -~10GB ~10GB -~100GB ~100GB -1TB+

[1] Lustre Striping Recommendation on Cori: [2] I/O Auto-tuning: Taming Parallel I/O Complexity with Auto-Tuning, B. Behzad, etc, SC'13

Command

Do Nothing. Use default

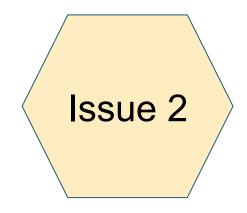
stripe small

stripe_medium

stripe_large

cd \$SCRATCH lfs getstripe.

Metadata: Is is too slow



What does the user say?

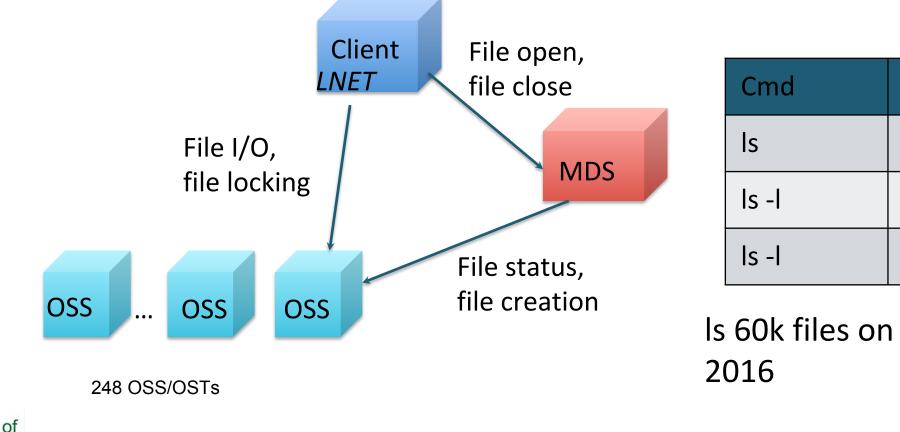
Harvey, Note that the 'ls' command still has not returned as of 10:32 MST. best wishes, gil

I noticed that I am unable to do "ls" on certain files stored in my /global/cscratch1 area. I can see them if I simply do "ls" in the directory, but "ls -ltr" is hanging on a particular file (according to "strace ls -ltr"). I tried doing "rm" on the file, but this also hangs.

Is on Cori

A typical metadata operation path: Lustre client->LNET router-> MDS ->OSS

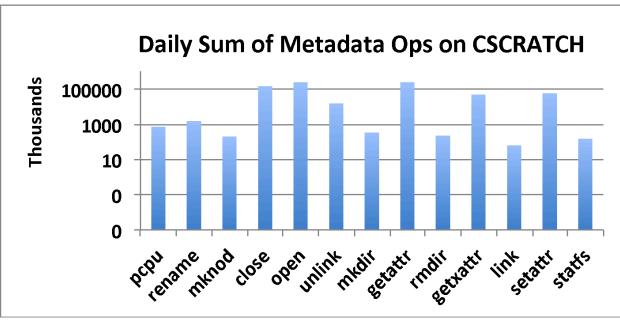
- **CPU** intensive
- Random and small I/O intensive



Stripe	Cost (s)
72	0.8
72	134
1	90

Is 60k files on Cori Scratch, Sep.

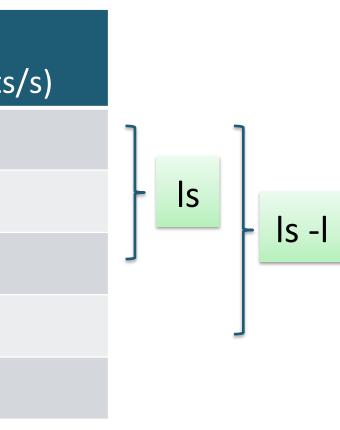
Is on Cori



Measured by Glenn K. Lockwood

Metadata Operations	Daily Sum (millions)	Peak (Kilo opts
open	245	255
close	143	139
getattr	234	211
getxattr	48	64
setattr	57	36

Top Five Metadata Operations on CSCRATCH



Check the 'weather' before Is

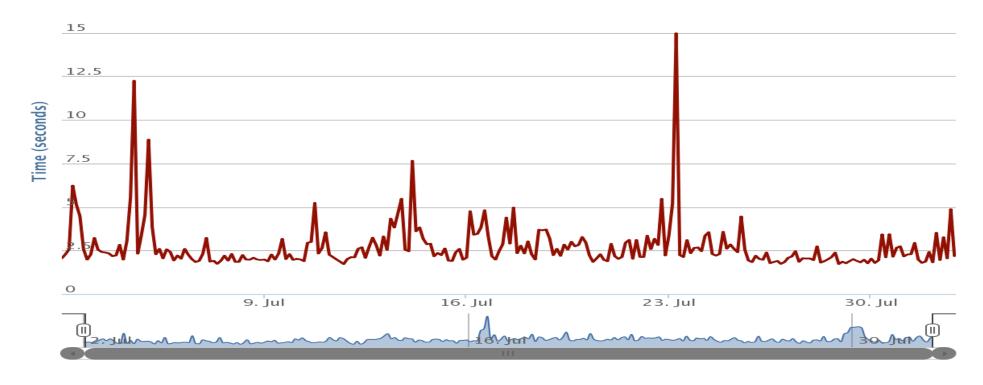
4 ADU have been added to split the workload on MDU

Check `weather' on MyNERSC website

https://my.nersc.gov/filesystems-cs.php

Weather Info:

- 1. MOTD
- 2. File system monitor
- 3. Benchmark
- 4. Data dashboard
- 5. Weekly email



GLOBAL COMMON - HOME

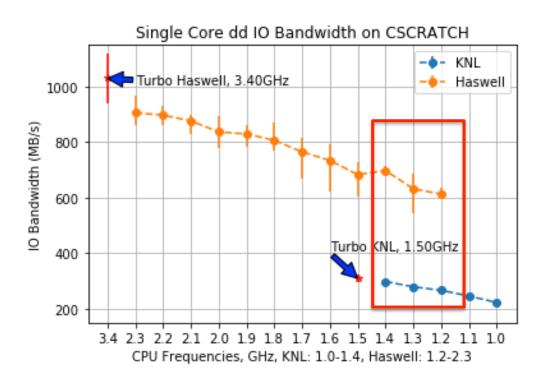
KNL v.s. Haswell

"I have used more IO processes on KNL, why the performance is still bad"

Issue 3

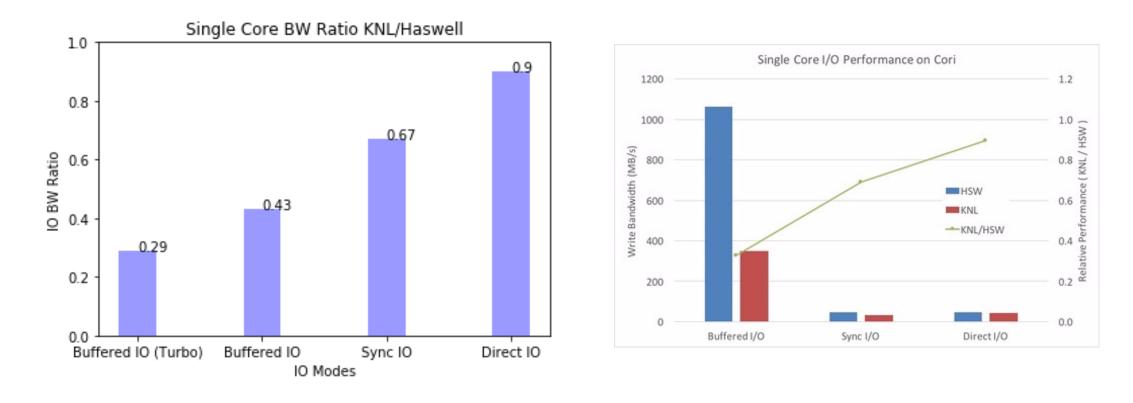
KNL v.s. Haswell

	KNL	Haswell
CPU	1.4GHz	2.3GHz
Memory	96 G DDR4, 16G HBM	128 G DDR4
Cache(L1, L2, L3)	64K, 1M	64K, 256K, 40M
Node	68 core, single socket	32 core, two sockets
Capacity	9688 nodes	2388 nodes
Hyperthreading	4 per core	2 per core



2.30 (at same CPU freq) = **3.46** (Turbo)

Haswell vs KNL



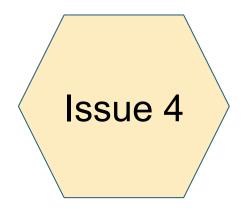
Note that the absolute performance number is not revealed in this plot, **Buffered IO** typically deliver **10X performance speedup in write**

http://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/optimizing-io-on-cori-knl/

Core specializationProcess affinity

- Threading
- etc

> "I like to use Python/Spark/Tensorflow, how can I load in the HDF5 data"



Productive I/O Interface

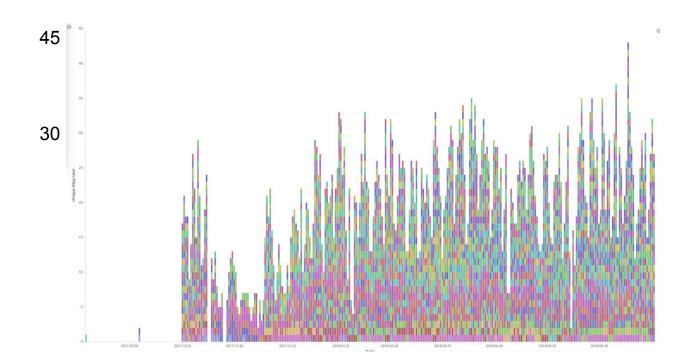
- Big Data Analytics Framework
 - > Spark
 - > Tensorflow
- Science data needs to be loaded efficiently into the engine.
 - ≻ Н5ру
 - H5Spark
 - Tensorflow_IO

module load python module load h5py-parallel

H5Py: <u>http://www.nersc.gov/users/data-analytics/data-management/i-o-libraries/hdf5-2/h5py/</u> H5Spark: <u>http://www.nersc.gov/users/data-analytics/data-management/i-o-libraries/hdf5-2/h5spark/</u> TensorFlow_IO: <u>https://www.tensorflow.org/api_guides/python/reading_data</u> TensorFlow_HDF5: Dataset API + H5py

20

MODS shows more



Daily H5py Unique Users from Sep 2017 to Aug 2018

Н5ру

NetCDF4 Python

Parallel H5py

- from mpi4py import MPI
- 2 import h5py
- fx=h5py.File('output.h5','w',driver='mpio',comm=MPI.COMM_WORLD) 3

Independent IO

Collective IO

Productivity: H5Py >> HDF5

```
1 from mpi4py import MPI
 2 import numpy as np
 3 import h5py
 4 import time
 5 import sys
 6 comm =MPI.COMM WORLD
 7 nproc = comm.Get size()
 8 comm.Barrier()
9 timefstart=MPI.Wtime()
10 f = h5py.File(filename, 'w', driver='mpio', comm=MPI.COMM WORLD)
11 rank = comm.Get rank()
12 dset = f.create dataset('test', (length x, length y), dtype='f8')
13 comm.Barrier()
14 timefend=MPI.Wtime()
15 f.atomic = False
16 length rank=length x / nproc
17 length last rank=length x -length rank*(nproc-1)
18 comm.Barrier()
19 timestart=MPI.Wtime()
20 start=rank*length rank
21 end=start+length rankL
22 if rank==nproc-1: #last rank
       end=start+length last rank
23
24 temp=np.random.random((end-start,length y))
25 comm.Barrier()
26 timemiddle=MPI.Wtime()
27 if colw==1:
28
           with dset.collective:
29
                   dset[start:end,:] = temp
30 0100 .
           dset[start:end,:] = temp
31
32 comm.Barrier()
33 timeend=MPI.Wtime()
34 f.close()
```



```
#include "stdlib.h"
   2 #include "hdf5 h"
    dataspace id2 = H5Screate simple(2, dims2, NULL);
    dset id2 = H5Dcreate(file id2, dataset, H5T NATIVE DOUBLE,
    H5Sclose(dataspace_id2);
    MPI Barrier(comm);
    double t00 = MPI Wtime();
    result offset[1] = 0;
    result offset[0] = (dims x / mpi size) * mpi rank;
    result count[0] = dims x / mpi size;
    result count[1] = dims y;
    if(mpi rank==mpi size-1)
    result count[0] = dims x / mpi size + dims x % mpi size;
    result space = H5Dget space(dset id2);
    H5Sselect hyperslab(result space, H5S SELECT SET, result offset, ...);
    result memspace size[0] = result count[0];
    result memspace size[1] = result count[1];
    result memspace id = H5Screate simple(2, result memspace size, NULL):
68
      else{
       H5Dwrite(dset id2, H5T NATIVE DOUBLE, result memspace id, ...);
 69
70
71
      MPI Barrier(comm);
 72
 73
      double t1 = MPI Wtime()-t0;
74
      free(data t);
75
      double tclose=MPI Wtime();
76
      H5Sclose(result space);
77
      H5Sclose(result memspace id);
 78
      H5Dclose(dset id2);
79
      H5Fclose(file id2);
80
      tclose=MPI Wtime()-tclose;
81
      MPI Finalize();
82 }
```

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Spark and TensorFlow

Science

hsize_t offset[rank];
hsize_t count[rank];
hsize t rest = dims out[0] % mpi size;
if(mpi rank != (mpi size -1)){
count[0] = dims_out[0]/mpi_size;
}else{
count[0] = dims_out[0]/mpi_size + rest;
}
offset[0] = dims_out[0]/mpi_size * mpi_rank;
for(i=1; i <rank; i++){<="" th=""></rank;>
offset[i] = 0;
count[i] = dims_out[i];
}
, hid_t hyperid=H5Sselect_hyperslab(dataspace,
H5S SELECT SET, offset
hsize t rankmemsize=1;
for(i=0; i <rank; i++)="" rankmemsize*="count[i];</th"></rank;>
hid_t memspace = H5Screate_simple(rank,count
double * data t=(double *)malloc(sizeof(double
H5Dread(dataset, H5T NATIVE DOUBLE, mems)
<pre>dataspace, H5P_DEFAULT, data_t); MBL_Einalize()</pre>
MPI_Finalize()

MPI Init(&argc, &argv);

MPI Comm size(comm, &mpi size);

MPI Comm rank(comm, &mpi rank);

H5Pset_fapl_mpio(fapl, comm, info);

hid t fapl = H5Pcreate(H5P_FILE_ACCESS);

file= H5Fopen(f, H5F_ACC_RDONLY, fapl);

dataset= H5Dopen(file, v, H5P_DEFAULT);

hid t dataspace = H5Dget space(dataset);

24

NULL, count, NULL);

t,NULL);)*rankmemsize); pace,

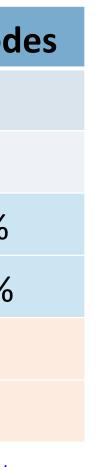
EXASCALE COMPUTING PROJECT

Performance Tradeoff: H5py ---> HDF5

H5Py Performance / HDF5 Performance **Questions**: When you gain the productivity, how much performance you can afford to lose?

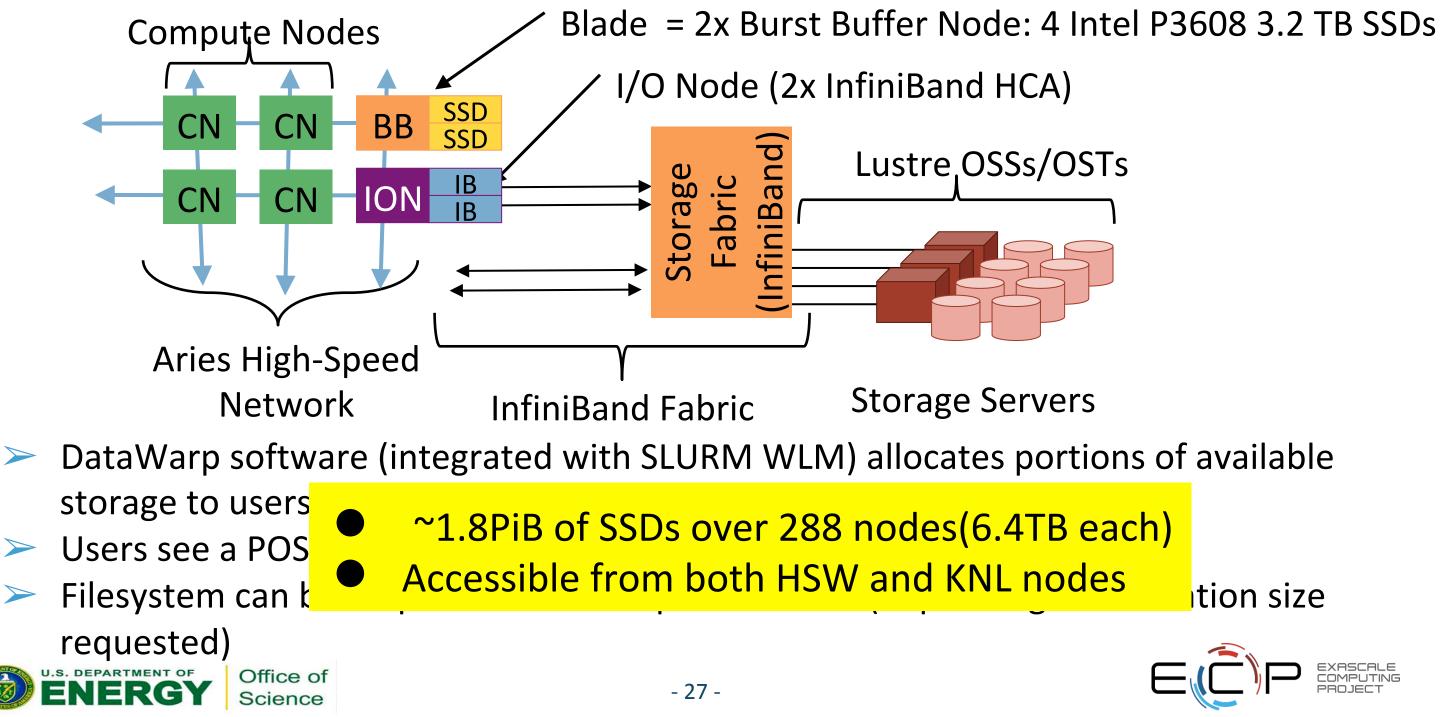
		Single Node	Multi-noo
Metadata	1k File Creation	63.8%	
	1k Object Scanning	60.0%	
Independent I/O	Weak Scaling	97.8%	100%
	Strong Scaling	100%	97.1%
Collective I/O	Weak Scaling	100%	90%
	Strong Scaling	98.6%	87%

HDF5 vs. H5py: http://www.nersc.gov/users/data-analytics/data-management/i-o-libraries/hdf5-2/h5py/



Burst Buffer v.s. Lustre (on HDD)

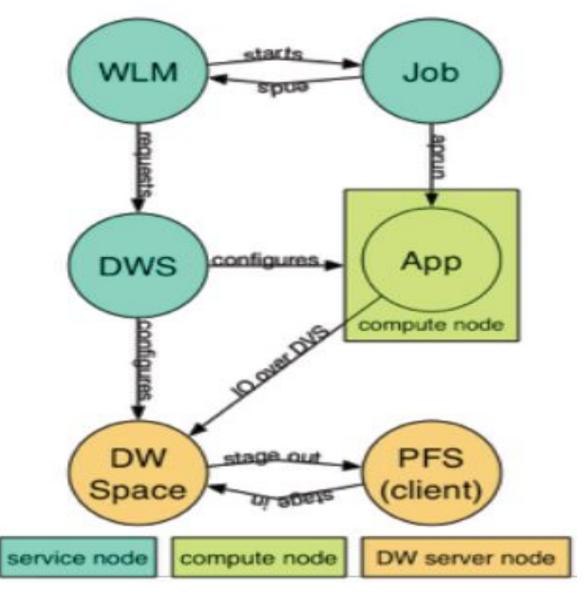
Burst Buffer Architecture



tion size

DataWarp: Under the hood

- Workload Manager (Slurm) schedules job in the queue on Cori
- DataWarp Service (DWS) configures DW space and compute node access to DW
- DataWarp Filesystem handles stage interactions with PFS (Parallel File System, i.e. scratch)
- Compute nodes access DW via a mount point



Two kinds of DataWarp Instances

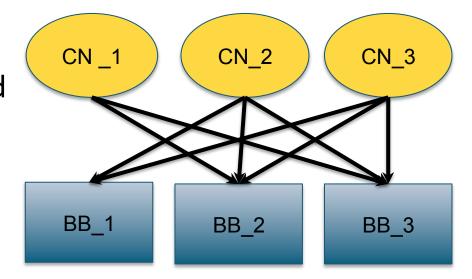
- "Instance": an allocation on the BB
- Can it be shared? What is its lifetime?
 - Per-Job Instance
 - > Can only be used by job that creates it
 - Lifetime is the same as the creating job
 - Use cases: PFS staging, application scratch, checkpoints

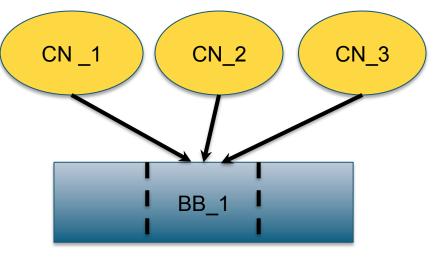
Persistent Instance

- Can be used by any job (subject to UNIX file permissions)
- Lifetime is controlled by creator
- Use cases: Shared data, PFS staging, Coupled job workflow
- NOT for long-term storage of data!

Two DataWarp Access Modes

- Striped ("Shared")
 - Files are striped across all DataWarp nodes
 - Files are visible to all compute nodes Aggregates both capacity and BW per file
 - One DataWarp node elected as the metadata server (MDS)
- > Private
 - Files are assigned to one or more DataWarp node (can chose to stripe)
 - File are visible to only the compute node that created them
 - Each DataWarp node is an MDS for one or more compute nodes

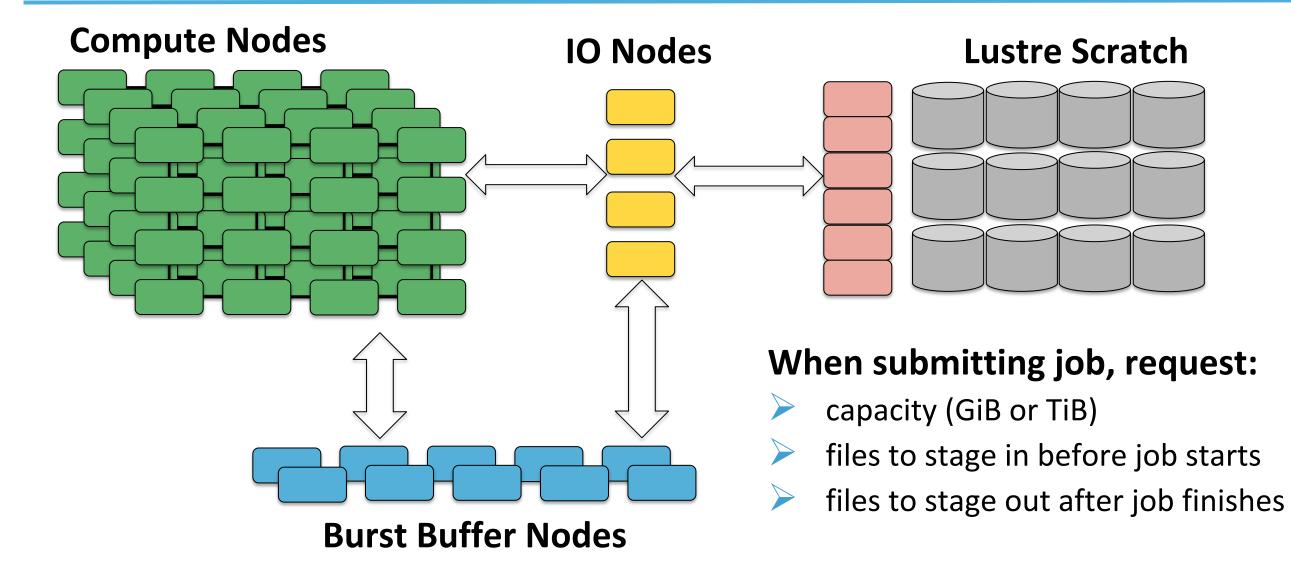


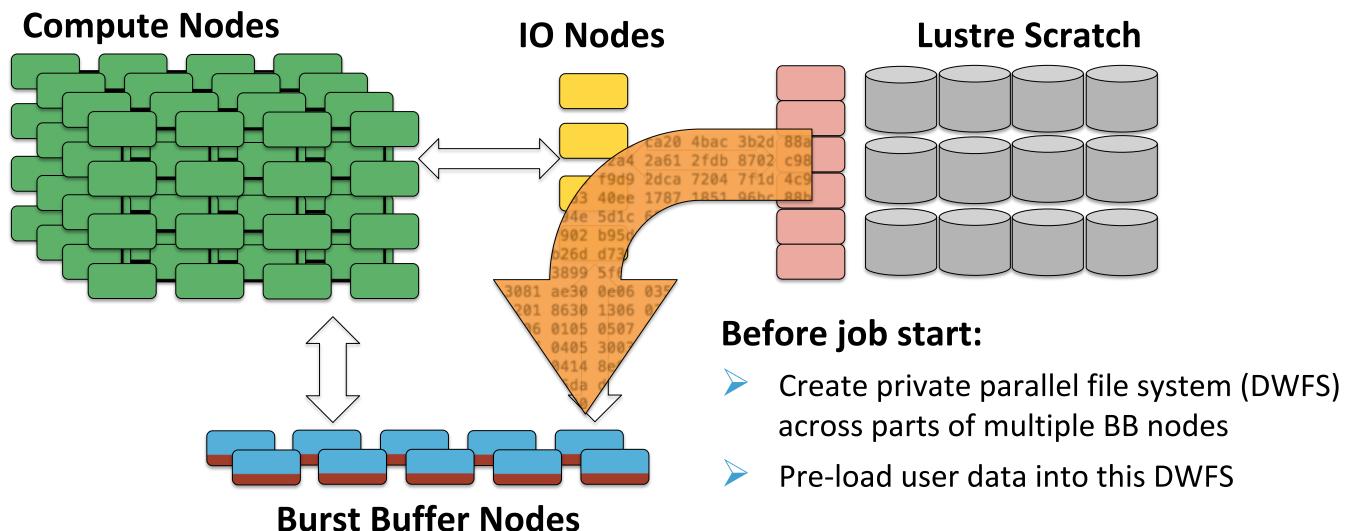


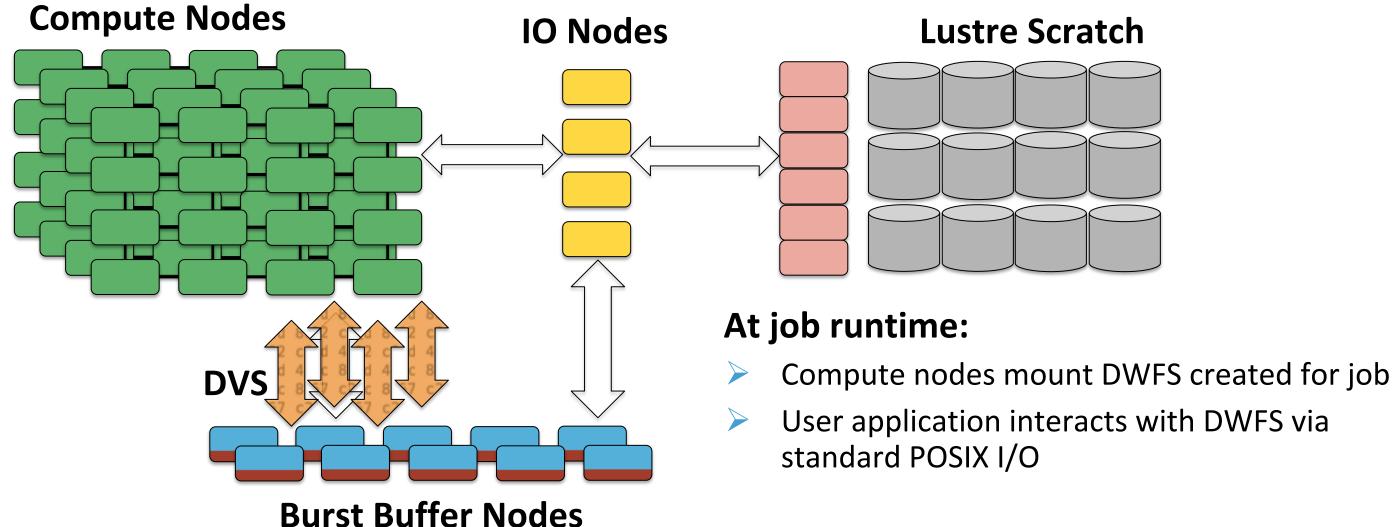
Striping, Granularity and Pools

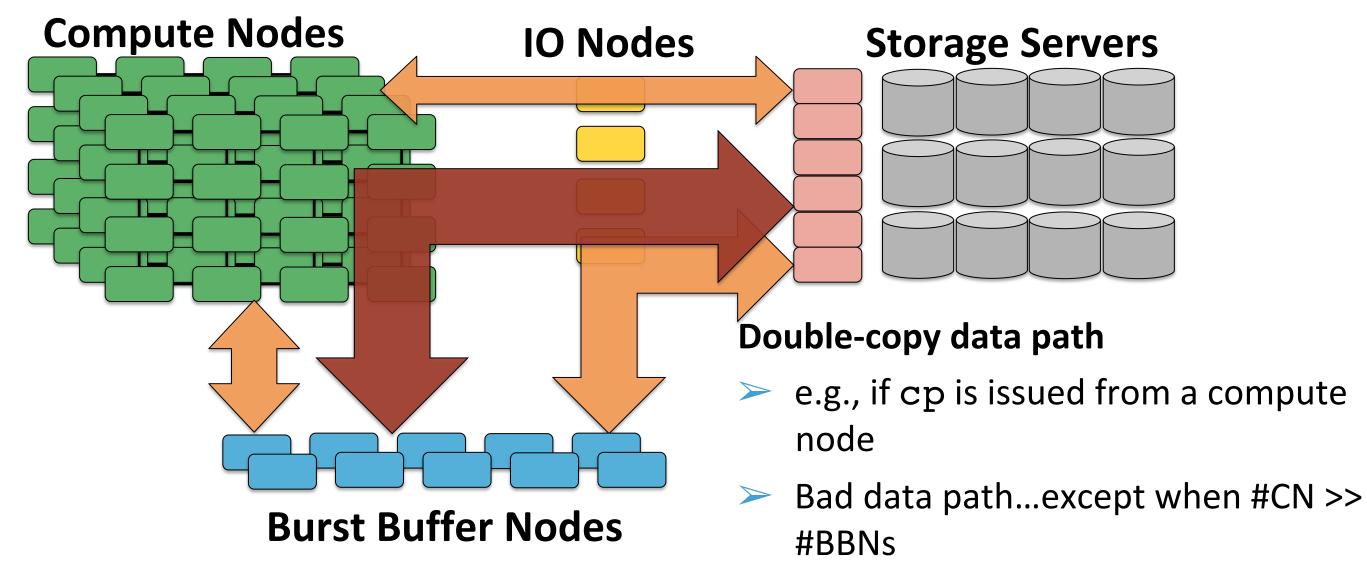
DataWarp nodes are configured to have granularity

- Minimum amount of data that will land on one node
- Default pool: wlm_pool
 - granularity: 20GiB
 - #DW jobdw capacity=1000GiB access_mode=striped type=scratch pool=wlm_pool
 - For example, 50 BB nodes in wlm_pool
 - No guarantee that allocation will be spread evenly over SSDs may see >1 "grain" on a single node









How to use DataWarp

Principal user access: SLURM Job script directives: #DW

- Allocate job or persistent DataWarp space
- Stage files or directories in from PFS to DW; out DW to PFS
- Access BB mount point via \$DW_JOB_STRIPED, \$DW_JOB_PRIVATE, \$DW_PERSISTENT_STRIPED_name
- We'll go through this in more detail later....

User library API – libdatawarp

- Allows direct control of staging files asynchronously
- C library interface
- https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/ #toc-anchor-8
- https://github.com/NERSC/BB-unit-tests/tree/master/datawarpAPI

Benchmark Performance on Cori

Burst Buffer is now doing very well against benchmark performance targets

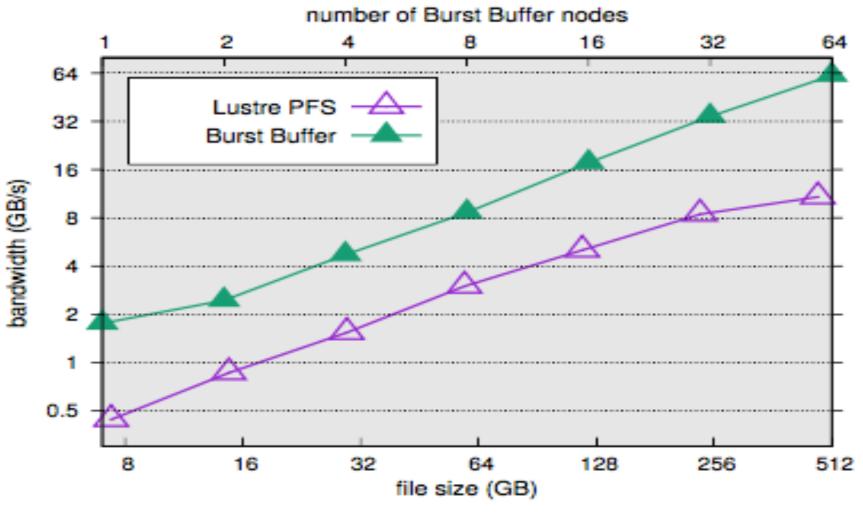
- Out-performs Lustre significantly
- (probably the) fastest IO system in the world!

	IOR Posix FPP		IOR MPIO Shared File		IOPS	
	Read	Write	Read	Write	Read	Write
Best Measured (287 Burst Buffer Nodes : 11120 Compute Nodes; 4 ranks/node)*	1.7 TB/s	1.6 TB/s	1.3 TB/s	1.4 TB/s	28M	13M

*Bandwidth tests: 8 GB block-size 1MB transfers IOPS tests: 1M blocks 4k transfer

Workflows Use Case: ChomboCrunch + VisIT

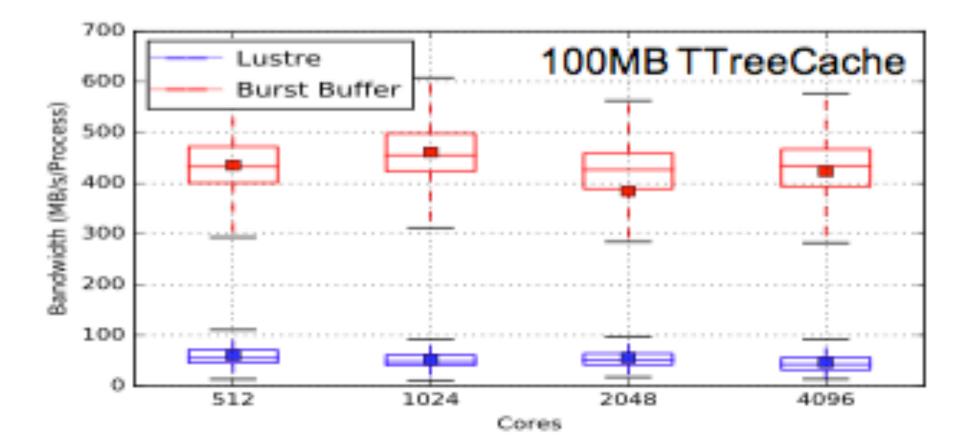
- Burst Buffer significantly outperforms Lustre for this application at all resolution levels
 - Did not require any additional tuning!
 - Bandwidth achieved is around a quarter of peak, scales well.



Compute node/BB node scaled: 16/1 to 1024/64

Lustre results used a 1MB stripe size and a stripe count of 72 OSTs

Success story: ATLAS



IOPS-heavy Data analysis

- Random reads from large numbers of data files
- Used 50TB of BB space
- ~9x faster I/O compared to Scratch.

ENERGY Office of Science

Vakho Tsulaia, Steve Farrell, Wahid Bhimji - 39 -

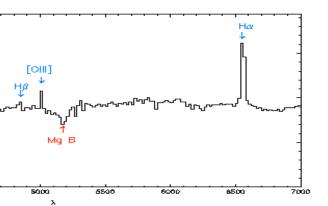
Challenging IO use case: Astronomy data

Selecting subsets of galaxy spectra from a large dataset

- Small, random memory accesses
- > Typical web query for SDSS dataset

[0]]

Time taken to extract 1000 random spectra	From one hdf5 file	From individual fits files	F() 1 1.E
From Lustre	44.1s	160.3s	0.6
From BB	1.3s	44.0s	
Speedup:	33x	3.6x	



Thank you!

consult@nersc.gov jalnliu@lbl.gov

Thanks Debbie Bard, Phil Carns, Rob Ross, Wahid Bhimji, Glenn Lockwood, Quincey Koziol, etc, for slides materials.

exascaleproject.org

