
exascaleproject.org

I/O Topologies

ATPESC 2018

Jialin Liu

National Energy Research Scientific Computing Center

Q Center, St. Charles, IL (USA)
July 29 – August 10, 2018

Outline

-	2	-	

Ø  Common	IO	Issues	in	HPC	I/O	Stack

Ø  I/O	Performance	v.s.	I/O	Productivity

Ø  Burst	Buffer	v.s.	Lustre	(on	HDD)

IO

-	3	-	

Common I/O Issues

1.  Bandwidth	
➢  “The peak bandwidth is 700 GB/s, why I only got 7 MB/sec?”

➢  “Can you tell me how many OSTs should I use?”

2.  Metadata	
➢  “ls is too slow”

3.  KNL	v.s.	Haswell	
➢  “I have used more IO processes on KNL, why the performance is still bad”

4.  Pain	of	Productivity		
➢  “I like to use Python/Spark/Tensorflow, but how can I load in the HDF5 data”	

4	

Complex HPC I/O Stack

High	Level	I/O	Libraries	map	
application	abstractions	onto	
storage	abstractions	and	provide	
data	portability.
	

HDF5,	Parallel	netCDF,		ADIOS

I/O	Middleware	organizes	
accesses	from	many	processes,	
especially	those	using	collective		
I/O.
	

MPI-IO,	GLEAN,	PLFS
	
I/O	Forwarding	transforms	I/O	
from	many	clients	into	fewer,	
larger	request;	reduces	lock	
contention;	and	bridges	between	
the	HPC	system	and	external	
storage.	IBM	ciod,	IOFSL,	Cray	
DVS,	Cray	Datawarp	
	

Parallel	file	system	maintains	
logical	file	model	and	provides	
efficient	access	to	data.
	

PVFS,	PanFS,	GPFS,	Lustre	

5	

I/O Hardware

Application

Parallel File System

High-Level I/O Library
I/O Middleware

I/O Forwarding

Based	on	Philip	Carns	and	Rob	Ross’	slide	
	

Productive Interface

Productive	Interface	builds	a	
thin	layer	on	top	of	existing	
high	performance	I/O	library	
for	productive	big	data	
analytics
	
Python,	Spark,	TensorFlow

I/O Challenges in 2020/2025

-	6	-	

➢  Scientific	applications/simulations	generate	massive	quantities	of	data.
➢  Example,	BES:	Basic	Energy	Science,	Requirement	Review,	2015

➢  19	projects	review

➢  Example	projects:	Quantum	Materials,	Soft	Matters,	Combustion	

Average	Increasing	Ratio

Storage	2020	White	Paper	
http://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2017/new-storage-2020-
report-outlines-future-hpc-storage-vision/	

Parallel File System: Cori Scratch

7	

●  Edison and Cori
●  7000+ users across the world
●  Data floods in every second

Now

-	8	-	

Issue 1

Ø  “The peak bandwidth is 700 GB/s, why I only got 7 MB/sec?”

Ø  “Can you tell me how many OSTs should I use?”

-	9	-	

“I noticed that the reading speed of these data is
only about 500MB/s. I use MPIIO and collective
buffering. And the speed is similar for runs with 4
Haswell nodes and 64 Haswell nodes.”

what is the proper stripe count and size for 100TB data

Striping is helpful, but not always

Ø Basics about Striping
Ø  700 GB/s is the aggregated bandwidth with large contiguous I/O pattern

Ø  Store your data on 1 OST or multiple OSTs

Ø  Control the granularity of each data block, e.g., 1MB, 4MB

Ø Questions
Ø  Million of small files, each file is 1MB

Ø  One giant file, 1TB

10	

[1]	Lustre	Striping	Recommendation	on	Cori:			
[2]	I/O	Auto-tuning:	Taming	Parallel	I/O	Complexity	with	Auto-Tuning,	B.	Behzad,	etc,	SC’13	

cd	$SCRATCH
lfs	getstripe	.	

-	11	-	

Issue 2

Ø  Metadata: ls is too slow

What does the user say?

12	

ls on Cori

-	13	-	

A	typical	metadata	operation	path:	Lustre	client->LNET	router->	MDS	->OSS

Ø  CPU	intensive

Ø  Random	and	small	I/O	intensive	

MDS

Client
LNET

OSS
File	status,	
file	creation

File	I/O,	
file	locking

File	open,	
file	close

OSS OSS …	

Cmd	 Stripe	 Cost	(s)	

ls	 72	 0.8	

ls	-l	 72	 134	

ls	-l	 1	 90	

ls	60k	files	on	Cori	Scratch,	Sep.	
2016		 248 OSS/OSTs

ls on Cori

-	14	-	

Measured	by	Glenn	K.	Lockwood

Metadata	
Operations	

Daily	Sum		
(millions)	

Peak		
(Kilo	opts/s)	

open	 245	 255	

close	 143	 139	

getattr	 234	 211	

getxattr	 48	 64	

setattr	 57	 36	

Top	Five	Metadata	Operations	on	
CSCRATCH

ls	
ls	-l	

4	ADU	have	been	added	to	split	the	workload	on	MDU	
Check	`weather’	on	MyNERSC	website	
https://my.nersc.gov/filesystems-cs.php

	
Weather	Info:	

1.  MOTD	
2.  File	system	monitor	
3.  Benchmark		
4.  Data	dashboard	
5.  Weekly	email	

	
-	15	-	

Check the ‘weather’ before ls

-	16	-	

Issue 3

Ø  KNL v.s. Haswell
Ø  “I have used more IO processes on KNL,

why the performance is still bad”

KNL v.s. Haswell

17	

KNL	 Haswell	

CPU	 1.4GHz	 2.3GHz	

Memory	 96	G	DDR4,	16G	HBM	 128	G	DDR4	

Cache(L1,	L2,	L3)	 64K,	1M	 64K,	256K,	40M	

Node	 68	core,	single	socket	 32	core,	two	sockets	

Capacity	 9688	nodes	 2388	nodes	

Hyperthreading	 4	per	core	 2	per	core	

▪  Bandwidth	Ratio	Haswell	/	KNL			=	2.30	(at	same	CPU	freq)
																																		 	 									=	3.46	(Turbo)		

Haswell vs KNL

Note	that	the	absolute	performance	number	is	not	revealed	in	this	plot,	Buffered	IO	
typically	deliver	10X	performance	speedup	in	write	

http://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/optimizing-io-on-cori-knl/

•  Core specialization
•  Process affinity
•  Threading
•  etc

-	19	-	

Issue 4

Ø  Pain	of	Productivity		
Ø  “I like to use Python/Spark/Tensorflow, how can I load in the HDF5 data”	

Productive I/O Interface

Ø  Big	Data	Analytics	Framework	
Ø  Spark	
Ø  Tensorflow	

Ø  Science	data	needs	to	be	loaded	
efficiently	into	the	engine.		
Ø  H5py	
Ø  H5Spark	
Ø  Tensorflow_IO	

20	

H5Py:	http://www.nersc.gov/users/data-analytics/data-management/i-o-libraries/hdf5-2/h5py/	
H5Spark:	http://www.nersc.gov/users/data-analytics/data-management/i-o-libraries/hdf5-2/h5spark/	
TensorFlow_IO:	https://www.tensorflow.org/api_guides/python/reading_data	
TensorFlow_HDF5:	Dataset	API	+	H5py

module load python
module load h5py-parallel

-	21	-	

Daily H5py Unique Users from Sep 2017 to Aug 2018

45

30 H5py

NetCDF4 Python

MODS shows more

H5py

22	

Independent	IO Collective	IO

-	23	-	

Productivity: H5Py >> HDF5

Spark and TensorFlow

24	

–  https://github.com/valiantljk/h5spark

1.  val	sc	=	new	SparkContext()	
2.  val	rdd	=	h5read	(sc,	f,	d,	p)
3.  sc.stop()	

1.  		MPI_Init(&argc,	&argv);
2.  		MPI_Comm_size(comm,	&mpi_size);
3.  		MPI_Comm_rank(comm,	&mpi_rank);
4.  		hid_t	fapl	=	H5Pcreate(H5P_FILE_ACCESS);
5.  		H5Pset_fapl_mpio(fapl,	comm,	info);
6.  		file=	H5Fopen(f,	H5F_ACC_RDONLY,	fapl);
7.  		dataset=	H5Dopen(file,	v,	H5P_DEFAULT);
8.  		hid_t	dataspace	=	H5Dget_space(dataset);	
9.  		hsize_t	offset[rank];
10.  		hsize_t	count[rank];
11.  		hsize_t	rest	=	dims_out[0]	%	mpi_size;
12.  		if(mpi_rank	!=	(mpi_size	-1)){
13.  				count[0]	=	dims_out[0]/mpi_size;
14.  		}else{
15.  				count[0]	=	dims_out[0]/mpi_size	+	rest;
16.  		}
17.  		offset[0]	=	dims_out[0]/mpi_size	*	mpi_rank;
18.  		for(i=1;	i<rank;	i++){
19.  			offset[i]	=	0;
20.  			count[i]	=	dims_out[i];
21.  		}
22.  		hid_t	hyperid=H5Sselect_hyperslab(dataspace,
23.  	 	 		H5S_SELECT_SET,	offset,	NULL,	count,	NULL);
24.  		hsize_t	rankmemsize=1;
25.  		for(i=0;	i<rank;	i++)			rankmemsize*=count[i];
26.  		hid_t	memspace	=	H5Screate_simple(rank,count,NULL);
27.  		double	*	data_t=(double	*)malloc(sizeof(double)*rankmemsize);
28.  		H5Dread(dataset,	H5T_NATIVE_DOUBLE,	memspace,
29.  	 		dataspace,	H5P_DEFAULT,	data_t);
30.  		MPI_Finalize()
	

MPI	Parallel	Read

Ø  Spark	
Ø  H5Spark	(H5py)	

Ø  Tensorflow		
Ø  Dataset	API	+	H5py	

-	25	-	

Performance Tradeoff: H5py ---> HDF5

Single	Node	 Multi-nodes	

Metadata	
1k	File	Creation	 63.8%	

1k	Object	Scanning	 60.0%	

Independent	I/O	
Weak	Scaling	 97.8%	 100%	

Strong	Scaling	 100%	 97.1%	

Collective	I/O	
Weak	Scaling	 100%	 90%	

Strong	Scaling	 98.6%	 87%	

H5Py	Performance	/	HDF5	Performance
Questions:	When	you	gain	the	productivity,	how	much	performance	you	can	afford	to	lose?

HDF5	vs.	H5py:	http://www.nersc.gov/users/data-analytics/data-management/i-o-libraries/hdf5-2/h5py/	

-	26	-	

Burst Buffer v.s. Lustre (on HDD)

Burst Buffer Architecture

-	27	-	

➢  DataWarp	software	(integrated	with	SLURM	WLM)	allocates	portions	of	available	
storage	to	users	per-job	(or	‘persistent’).	

➢  Users	see	a	POSIX	filesystem	
➢  Filesystem	can	be	striped	across	multiple	BB	nodes	(depending	on	allocation	size	

requested)	

Compute	Nodes

Aries	High-Speed	
Network

Blade		=	2x	Burst	Buffer	Node:	4	Intel	P3608	3.2	TB	SSDs
	 I/O	Node	(2x	InfiniBand	HCA)

InfiniBand	Fabric

Lustre	OSSs/OSTs

St
or
ag
e	

Fa
br
ic
	

(In
fin

iB
an
d)

Storage	Servers

CN

CN CN

CN

BB SSD
SSD

ION IB
IB

●  ~1.8PiB	of	SSDs	over	288	nodes(6.4TB	each)	
●  Accessible	from	both	HSW	and	KNL	nodes	

-	28	-	

DataWarp: Under the hood

Ø  Workload	Manager	(Slurm)	schedules	job	in	the	queue	
on	Cori	

Ø  DataWarp	Service	(DWS)	configures	DW	space	and	
compute	node	access	to	DW	

Ø  DataWarp	Filesystem	handles	stage	interactions	with	
PFS	(Parallel	File	System,	i.e.	scratch)	

Ø  Compute	nodes	access	DW	via	a	mount	point	

Two kinds of DataWarp Instances

-	29	-	

Ø  “Instance”:	an	allocation	on	the	BB	
Ø  Can	it	be	shared?	What	is	its	lifetime?	

Ø  Per-Job	Instance	
Ø  Can	only	be	used	by	job	that	creates	it	
Ø  Lifetime	is	the	same	as	the	creating	job	
Ø  Use	cases:	PFS	staging,	application	scratch,	checkpoints	

Ø  Persistent	Instance	
Ø  Can	be	used	by	any	job	(subject	to	UNIX	file	permissions)	
Ø  Lifetime	is	controlled	by	creator	
Ø  Use	cases:	Shared	data,	PFS	staging,	Coupled	job	workflow	
Ø  NOT	for	long-term	storage	of	data!		

Two DataWarp Access Modes

-	30	-	

Ø  Striped	(“Shared”)	
Ø  Files	are	striped	across	all	DataWarp	nodes	

Ø  Files	are	visible	to	all	compute	nodes	Aggregates	both	capacity	and	
BW	per	file	

Ø  One	DataWarp	node	elected	as	the	metadata	server	(MDS)	

Ø  Private	
Ø  Files	are	assigned	to	one	or	more	DataWarp	node	(can	chose	to	

stripe)	

Ø  File	are	visible	to	only	the	compute	node	that	created	them	

Ø  Each	DataWarp	node	is	an	MDS	for	one	or	more	compute	nodes	

	

BB_1 BB_2 BB_3

CN _1 CN_2 CN_3

BB_1

CN _1 CN_2 CN_3

Striping, Granularity and Pools
Ø  DataWarp	nodes	are	configured	to	have	granularity	

Ø  Minimum	amount	of	data	that	will	land	on	one	node	

Ø  Default	pool:	wlm_pool	

Ø  granularity:	20GiB		
Ø  #DW	jobdw	capacity=1000GiB	access_mode=striped	type=scratch	pool=wlm_pool	

Ø  For	example,	50	BB	nodes	in	wlm_pool	

Ø  No	guarantee	that	allocation	will	be	spread	evenly	over	SSDs	-	may	see	>1	“grain”	on	a	
single	node	

Cori's Data Paths

When	submitting	job,	request:	
Ø  capacity	(GiB	or	TiB)	
Ø  files	to	stage	in	before	job	starts	
Ø  files	to	stage	out	after	job	finishes	

-	32	-	

Compute	Nodes	 IO	Nodes Lustre	Scratch

Burst	Buffer	Nodes

Cori's Data Paths

-	33	-	

Compute	Nodes IO	Nodes Lustre	Scratch

Burst	Buffer	Nodes

Before	job	start:	
Ø  Create	private	parallel	file	system	(DWFS)	

across	parts	of	multiple	BB	nodes	
Ø  Pre-load	user	data	into	this	DWFS	

Compute	Nodes IO	Nodes Lustre	Scratch

At	job	runtime:
Ø  Compute	nodes	mount	DWFS	created	for	job	
Ø  User	application	interacts	with	DWFS	via	

standard	POSIX	I/O	

DVS

Burst	Buffer	Nodes

Cori's Data Paths

-	34	-	

Cori's Data Paths

-	35	-	

Compute	Nodes IO	Nodes Storage	Servers

Double-copy	data	path
➢  e.g.,	if	cp	is	issued	from	a	compute	

node
➢  Bad	data	path…except	when	#CN	>>	

#BBNs	Burst	Buffer	Nodes

-	36	-	

How to use DataWarp

Ø  Principal	user	access:	SLURM	Job	script	directives:	#DW		
Ø  Allocate	job	or	persistent	DataWarp	space	
Ø  Stage	files	or	directories	in	from	PFS	to	DW;	out	DW	to	PFS	
Ø  Access	BB	mount	point	via	$DW_JOB_STRIPED,	$DW_JOB_PRIVATE,	

$DW_PERSISTENT_STRIPED_name	
Ø  We’ll	go	through	this	in	more	detail	later….	
Ø  User	library	API	–	libdatawarp		

Ø  Allows	direct	control	of	staging	files	asynchronously	
Ø  C	library	interface	
Ø  https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/

#toc-anchor-8		
Ø  https://github.com/NERSC/BB-unit-tests/tree/master/datawarpAPI		

Benchmark Performance on Cori

Ø  Burst	Buffer	is	now	doing	very	well	against	benchmark	performance	targets		
Ø  Out-performs	Lustre	significantly	
Ø  (probably	the)	fastest	IO	system	in	the	world!		

IOR Posix FPP IOR MPIO Shared File IOPS

Read Write Read Write Read Write

Best Measured (287 Burst Buffer
Nodes : 11120 Compute Nodes; 4
ranks/node)* 1.7 TB/s 1.6 TB/s 1.3 TB/s 1.4 TB/s 28M 13M

*Bandwidth	tests:	8	GB	block-size	1MB	transfers		IOPS	tests:	1M	blocks	4k	transfer

-	37	-	

Ø  Burst	Buffer	significantly	out-
performs	Lustre	for	this	application	
at	all	resolution	levels	
Ø  Did	not	require	any	additional	

tuning!	
Ø  Bandwidth	achieved	is	around	a	

quarter	of	peak,	scales	well.		

	

Compute node/BB node scaled: 16/1 to
1024/ 64
Lustre results used a 1MB stripe size and a
stripe count of 72 OSTs

-	38	-	

Workflows Use Case: ChomboCrunch + VisIT

Success story: ATLAS

Ø  IOPS-heavy	Data	analysis	
–  Random	reads	from	large	numbers	of	data	files	
–  Used	50TB	of	BB	space	
–  ~9x	faster	I/O	compared	to	Scratch.	

Vakho	Tsulaia,	Steve	Farrell,	Wahid	Bhimji	
-	39	-	

Challenging IO use case: Astronomy data

Ø  Selecting	subsets	of	galaxy	spectra	from	a	large	dataset	
Ø  Small,	random	memory	accesses	
Ø  Typical	web	query	for	SDSS	dataset		

-	40	-	

Time taken to extract
1000 random spectra

From one
hdf5 file

From individual fits
files

From Lustre 44.1s 160.3s
From BB 1.3s 44.0s
Speedup: 33x 3.6x

exascaleproject.org

Thank you!

consult@nersc.gov
jalnliu@lbl.gov

Thanks Debbie Bard, Phil Carns, Rob Ross, Wahid Bhimji,
Glenn Lockwood, Quincey Koziol, etc, for slides materials.

