
exascaleproject.org

Data Models and I/O

ATPESC 2018

Rob Latham
Math and Computer Science Division

 Argonne National Laboratory

Q Center, St. Charles, IL (USA)
August 3, 2018

 2

Plan of attack

• Bottom-up tour of I/O interfaces

– POSIX routines called by MPI-IO implementations

– Parallel-NetCDF routines build on top of MPI-IO

• Simple toy programs

– Refining example several times throughout day

– We can apply these lessons to your own code in
evening session

• Demonstrating some tools for understanding
what’s going on

• “Game of Life” for your reference

POSIX

MPI-IO

PNETCDF HDF5
D
A
R
S
H
A
N

 3

Hands on materials

• Code for this …

– Simple array I/O

• … and other sections available on our gitlab site:

– Game of Life I/O

– Darshan

– Burst buffers

– Globus

• https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

• I’m going to give you a few minutes to try each hands-on. Can continue working
in evening session if you need more time.

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 4

Operating on Arrays

• Arrays show up in many scientific
applications

– Matrix operations

– Particle maps

– Regions of space

– Time series

– Images

• Probably your real application more
complicated but an array or two (or more) is
in there somewhere, I’d wager.

 5

Decomposition

• How do we physically access locally
parts of a logically larger distributed
array in parallel…

– Piecewise?

– Chunks?

– Rows?

• Largely dictated by application
algorithm needs

– E.g. volume rendering math requires
chunks not rows.

• Choice impacts memory and I/O
performance

 6

Supporting Checkpoint/Restart

• For long-running applications, the cautious user checkpoints

• Application-level checkpoint involves the application saving its own state

– With a bit of extra effort, can be portable

• A canonical representation is preferred

– Independent of number of processes

• Restarting is then possible

– Canonical representation aids restarting with a different number of processes

• Also eases data analysis (when using same output)

 7

Defining a Checkpoint

• Need enough to restart

– Header information

• Size of problem (e.g. matrix dimensions)

• Description of environment (e.g. input parameters)

– Program state

• Should represent the global (canonical) view of the data

• Ideally stored in a convenient container

– Single “thing” (file, object, keyval store...)

• If all processes checkpoint at once, naturally a parallel, collective operation

 8

HANDS-ON 1: simple data descriptions

• Consider an application that operates on a 2-d array of integers.

1. Write code declaring a 2-d array of integers

• Probably want to allocate on heap, not stack

• Later steps will be easier if you make it a single allocation

2. Define a data structure describing the experiment

• E.g. C struct with row, column, iteration

• Use whatever language you like…

– … but Phil and I can only be helpful if you use C

• Source “setup-env.sh” to load necessary modules

 9

HANDS-ON 1 solutions

typedef struct {

 int row;

 int col;

 int iter;

} science;

 int *array;

 array = malloc(XDIM*YDIM*sizeof(*array));

C struct holding metadata

Do this: index into a single big allocation

Don’t do this: N allocations will be slower and harder to describe

/* not MPI-friendly: describing this memory region will require

 * a more complicated data type description */

int **annoying;

annoying = malloc(YDIM*sizeof(*array));

for (int i=0; i<YDIM; i++)

 annoying[i] = malloc(XDIM*sizeof(*array));

 10

POSIX I/O

• POSIX is the IEEE Portable Operating System Interface for Computing

Environments

• “POSIX defines a standard way for an application program to obtain basic

services from the operating system”

– Mechanism almost all serial applications use to perform I/O

• POSIX was created when a single computer owned its own file system

 11

Deficiencies in serial interfaces

• Typical (serial) I/O calls seen in applications

• No notion of other processors

• Primitive (if any) data description methods

• Tuning limited to open flags

• No mechanism for data portability

– Fortran not even portable between compilers

POSIX:

fd = open(“some_file”, O_WRONLY|O_CREAT,
 S_IRUSR|S_IWUSR);
ret = write(fd, w_data, nbytes);
ret = lseek(fd, 0, SEEK_SET);
ret = read(fd, r_data, nbytes);
ret = close(fd);

FORTRAN:

OPEN(10, FILE=‘some_file’, &
 STATUS=“replace”, &
 ACCESS=“direct”, RECL=16);
WRITE(10, REC=2) 15324
CLOSE(10);

 12

HANDS-ON 2: simple I/O

• We haven’t talked about MPI-IO or I/O libraries, but we can still checkpoint.

– Serial I/O, not parallel

• Implement “write_data”

– Will create file and fill in data

– Prototype:

• int write_data(char *filename)

– Use system calls (open(), write(), close()) , not “stdio” calls (fopen(), fwrite(),
fclose()): will map more closely to MPI-IO later

– How will you know it worked?

– We are going to repeatedly revise “write_data” (and later “read_data”) with each exercise

• Software engineering: hide details

 13

RUNNING

• Submit to the ‘training’ queue

• I’ve provided a ‘submit.sh’ shell script

– qsub –q training submit.sh <program> [filename]

• If you don’t give [filename], then ‘testfile’ used.

• Which Theta file system to use?

– Tried to make scripts do right thing by default

– Please don’t use the NFS-mounted home directory

– submit.sh should already point you to the right lustre directory

 14

Solution fragments:

int write_data(char *filename)

{

 science data = {

 .row = YDIM,

 .col = XDIM,

 .iter = 1

 };

 int *array;

 int fd;

 int ret=0;

 array = buffer_create(0, XDIM, YDIM);

 fd = open(filename, O_CREAT|O_WRONLY,

 S_IRUSR|S_IWUSR);

 ret = write(fd, &data, sizeof(data));

 ret = write(fd, array, XDIM*YDIM*sizeof(int));

 ret = close(fd);

 return ret;

}

% od -td testfile
0000000 1 5 1 0
0000020 1 2 3 4
0000040

Reading a binary file: “cat” won’t work.
Could write a c program to read. Several
utilities available. I like ‘od’: historically it
only did an “octal dump”. The (t)ype
argument can select (d)ecimal

 15

HANDS-ON 3: send-to-master

• Parallel program, but serial I/O

1. Write_data() should take an MPI
Communicator

2. Call MPI_Init() and MPI_Finalize()

3. Use MPI_Gather to collect all data onto rank 0:

• Only rank 0 does I/O; writes header and all
array information

• What’s good about send-to-master? What’s
bad?

0 1 2 3 4

File

5

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

Hdr

 16

Solution fragments: MPI_Gather, write larger data from rank 0

 MPI_Comm_rank(comm, &rank);

 MPI_Comm_size(comm, &nprocs);

 /* every process creates its own buffer */

 array = buffer_create(rank, XDIM, YDIM);

 /* and then sends it to rank 0 */

 int *buffer =

 malloc(XDIM*YDIM*nprocs*sizeof(int));

 MPI_CHECK(MPI_Gather(

 /* sender (buffer,count,type) tuple */

 array, XDIM*YDIM, MPI_INT,

 /* receiver tuple */

 buffer, XDIM*YDIM, MPI_INT,

 /* who gathers and across which context */

 0, comm));

 17

Solution fragments: writing from rank 0

if (rank == 0) {

/* looks like serial with more data */

…

/* writing a global array, not just our

local piece of it */

 data.row = YDIM*nprocs;

 data.col = XDIM;

 data.iter = 1;

 ret = write(fd, &data, sizeof(data));

 ret = write(fd, buffer,

 XDIM*YDIM*nprocs*sizeof(int));

 ret = close(fd);

 return ret;

}

 18

Other questions:

• Lots of machines (your laptop; Theta) represent integers as 32 bit little endian.
What if you ran this code on Mira?

• We wrote row-wise. What if you wanted to write a column of data?

• What impact would a header have on data layout? Are there other options?

 19

Understanding I/O

• Instrumentation:

– What do we measure?

– How much overhead is acceptable and when?

• Analysis:

– How do we correlate data and extract actionable information?

– Can we identify the root cause of performance problems?

• Impact:

– Develop best practices and tune applications

– Improve system software

– Design and procure better systems

 20

What is Darshan?

Darshan is a scalable HPC I/O characterization tool. It captures an accurate

but concise picture of application I/O behavior with minimum overhead.

• No code changes, easy to use

– Negligible performance impact: just “leave it on”

– Enabled by default at ALCF, NERSC, NCSA, and KAUST

– Installed and available for case by case use at many other sites

• Produces a summary of I/O activity for each job, including:

– Counters for file access operations

– Time stamps and cumulative timers for key operations

– Histograms of access, stride, datatype, and extent sizes

20

Project began in 2008, first public software

release and deployment in 2009

 21

Darshan design principles

• The Darshan run time library is inserted at link time (for static executables) or
at run time (for dynamic executables)

• Transparent wrappers for I/O functions collect per-file statistics

• Statistics are stored in bounded memory at each rank

• At shutdown time:

– Collective reduction to merge shared file records

– Parallel compression

– Collective write to a single log file

• No communication or storage operations until shutdown

• Command-line tools are used to post-process log files

21

 22

JOB analysis example

Example: Darshan-job-summary.pl
produces a 3-page PDF file
summarizing various aspects of I/O
performance

Estimated performance

Percentage of runtime in I/O

Access size histogram

Access type histograms

File usage

 23

SYSTEM analysis example

• With a sufficient archive of performance
statistics, we can develop heuristics to
detect anomalous behavior

 This example highlights large jobs that spent a

disproportionate amount of time managing file

metadata rather than performing raw data transfer

 Worst offender spent 99% of I/O time in

open/close/stat/seek

 This identification process is not yet automated;

alerts/triggers are needed in future work for greater

impact

Example of heuristics applied to a population of

production jobs on the Hopper system in 2013:

Carns et al., “Production I/O Characterization on the Cray XE6,” In

Proceedings of the Cray User Group meeting 2013 (CUG 2013).

 24

Typical deployment and usage

• Darshan usage on Mira, Cetus, Vesta, Theta,
Cori, or Edison, abridged:
– Run your job

– If the job calls MPI_Finalize(), log will be stored in
DARSHAN_LOG_DIR/month/day/

• If your job does not call MPI_Finalize, you cannot use Darshan.
Check out Tau.

– Theta: /lus/theta-fs0/logs/darshan/theta

– Use tools (next slides) to interpret log

• On Titan: “module load darshan” first

• More details:
– https://www.alcf.anl.gov/user-guides/darshan

– www.nersc.gov/users/software/performance-and-debugging-
tools/darshan/

https://www.alcf.anl.gov/user-guides/darshan
https://www.alcf.anl.gov/user-guides/darshan
https://www.alcf.anl.gov/user-guides/darshan
https://www.alcf.anl.gov/user-guides/darshan
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/

 25

Generating job summaries

• Run job and find its log file:

• Copy log files to save, generate PDF summaries:

Job id

Corresponding

log file in today’s

directory

Copy out logs

List logs

Load “latex” module,

(if needed)

Generate PDF

 26

HANDS-ON 4: introduction to Darshan

1. Find the darshan log for the last exercise

2. View the raw counters with “darshan-parser”

3. Generate a report

– You might have to transfer PDF locally to view

4. Find the darshan log for the exercise #2

– Hint: you can’t!

 27

I/O benchmarking challenges

• Variability

– Storage systems shared, mechanical

• Caching

– Watch out for “speed of light” violations

• Ganging

– Be sure you are timing what you think you are timing

 28

I/O benchmarking: variability

• Silicon (e.g. Read from DRAM, multiply 100 integers) pretty stable

– E.g. easy to observe register, L1, L2, memory, swap behavior

• Write to disk… less stable

– How many users are also writing? How full is disk?

• I/O experiments cannot be short, one-offs

– Ideal: run each experiment cfg a dozen times, sized to run for about a minute

– Reality: supercomputer time is precious

• Try out the variance example in hands-on repository

 29

I/O benchmarking: caching

• Caching at every layer of storage

– Disk drive, Raid controller, Server RAM, Compute node SSD

• Storage expensive; vendors don’t give stuff away

– If spec says “240 GB/sec”, you ain’t getting 250 GB/sec

 30

I/O benchmarking: ganging

• Fast-finisher problem

– Maybe a caching or aggregation layer resulted in less work for one process

• Staggered-start problem

– Probably want all processes writing/reading at once

• variance code example

– MPI_Barrier() before timing

– MPI_Reduce() to find maximum time

0

1

2

 31

Bonus topic: “Game of Life” I/O

• Next stepping stone between toy array i/o and full application

• More sophisticated use of MPI datatypes, communication

– “ghost cell” optimization heavily used in nearest-neighbor pattern

• Using “duplicated communicator” to separate library, application communication

• Also demonstrates a way to link different approaches

 32

Rules for Life (you’ve probably seen this before)

• Matrix values A(i,j) initialized to 1 (live) or 0 (dead)

• In each iteration, A(i,j) is set to
– 1 (live) if either

• the sum of the values of its 8 neighbors is 3, or

• the value was already 1 and the sum of its 8 neighbors is 2 or 3

– 0 (dead) otherwise

32

j

i

j-1 j+1

i+1

i-1

32

All code examples in this tutorial can be found in hands-on repo:

xgitlab.cels.anl.gov/ATPESC-IO/hands-on

 33

Decomposition and Boundary Regions

• Decompose 2d array into rows, shared across processes

• In order to calculate next state of cells in edge rows, need data from adjacent rows

• Need to communicate these regions at each step

33 33

Columns

R
o
w

s

 34

Life Checkpoint/Restart API

• Define an interface for checkpoint/restart for the row-block distributed Life code

• Five functions:
– MLIFEIO_Init

– MLIFEIO_Finalize

– MLIFEIO_Checkpoint

– MLIFEIO_Can_restart

– MLIFEIO_Restart

• All functions are collective
– i.e., all processes must make the call

• We can implement API for different back-end formats
– Insulate main code from I/O details:

– back-end also makes good spot for tuning

34

 35

Life Checkpoint

• MLIFEIO_Checkpoint(char *prefix,
 int **matrix,
 int rows,
 int cols,
 int iter,
 MPI_Info info);

• Prefix is used to set filename

• Matrix is a reference to the data to store

• Rows, cols, and iter describe the data (header)

• Info is used for tuning purposes

35

 36

Life stdout “checkpoint”

• The first implementation is one that simply
prints out the “checkpoint” in an easy-to-read
format

• MPI standard does not specify that all stdout
will be collected in any particular way

– Pass data back to rank 0 for
printing

– Portable!

– Not scalable, but ok for the
purpose of stdio

Iteration 9

 1: ** ** ** ** *
 2: * ** * * * * **** * * *** **
 3: ** ** ** * * * ** * **
 4: ** * * ** ** ***
 5: * * ** ** * * *** * * *
 6: * * ** * * * ** *
 7: *** * ** * ***
 8: *** * ** *** * * ***** *** ***
 9: *** * * ** * *** ** **
 10: * * * * *** * *
 11: * ** ** ** * *
 12: * ** **** * ** **** *
 13: ** *** * ** * *** * *
 14: * ** * * * ***
 15: ** ** ****** * * *
 16: **** ***** * * *
 17: *** *** * *** ****
 18: *** ** **
 19: * ** ** * ** *
 20: * * * ** ** ***
 21: * * * ** * * * ** *** * * **
 22: * * ** * **** * ** * * *** **
 23: * ** **** *** *** * * * ** *
 24: *** * * ** * **** *
 25: *** ** ****

36

 37

stdio Life Checkpoint Code Walkthrough

• Points to observe:

– All processes call checkpoint routine

• Collective I/O from the viewpoint of the program

– Interface describes the global array

– Output is independent of the number of processes

See mlife-io-stdout.c pp. 1-3 for code example.

37

File: mlife-io-stdout.c Page 1 of 8

1: /* SLIDE: stdio Life Checkpoint Code Walkthrough */

2: /* -*- Mode: C; c-basic-offset:4 ; -*- */

3: /*

4: * (C) 2004 by University of Chicago.

5: * See COPYRIGHT in top-level directory.

6: */

7:

8: #include <stdio.h>

9: #include <stdlib.h>

10: #include <unistd.h>

11:

12: #include <mpi.h>

13:

14: #include "mlife.h"

15: #include "mlife-io.h"

16:

17: /* stdout implementation of checkpoint (no restart) for MPI Life

18: *

19: * Data output in matrix order: spaces represent dead cells,

20: * ’*’s represent live ones.

21: */

22: static int MLIFEIO_Type_create_rowblk(int **matrix, int myrows,

23: int cols,

24: MPI_Datatype *newtype);

25: static void MLIFEIO_Row_print(int *data, int cols, int rownr);

26: static void MLIFEIO_msleep(int msec);

27:

28: static MPI_Comm mlifeio_comm = MPI_COMM_NULL;

38

File: mlife-io-stdout.c Page 2 of 8

29: /* SLIDE: stdio Life Checkpoint Code Walkthrough */

30: int MLIFEIO_Init(MPI_Comm comm)

31: {

32: int err;

33:

34: err = MPI_Comm_dup(comm, &mlifeio_comm);

35:

36: return err;

37: }

38:

39: int MLIFEIO_Finalize(void)

40: {

41: int err;

42:

43: err = MPI_Comm_free(&mlifeio_comm);

44:

45: return err;

46: }

39

File: mlife-io-stdout.c Page 3 of 8

47: /* SLIDE: Life stdout "checkpoint" */

48: /* MLIFEIO_Checkpoint

49: *

50: * Parameters:

51: * prefix - prefix of file to hold checkpoint (ignored)

52: * matrix - data values

53: * rows - number of rows in matrix

54: * cols - number of columns in matrix

55: * iter - iteration number of checkpoint

56: * info - hints for I/O (ignored)

57: *

58: * Returns MPI_SUCCESS on success, MPI error code on error.

59: */

60: int MLIFEIO_Checkpoint(char *prefix, int **matrix, int rows,

61: int cols, int iter, MPI_Info info)

62: {

63: int err = MPI_SUCCESS, rank, nprocs, myrows, myoffset;

64: MPI_Datatype type;

65:

66: MPI_Comm_size(mlifeio_comm, &nprocs);

67: MPI_Comm_rank(mlifeio_comm, &rank);

68:

69: myrows = MLIFE_myrows(rows, rank, nprocs);

70: myoffset = MLIFE_myrowoffset(rows, rank, nprocs);

71:

40

File: mlife-io-stdout.c Page 4 of 8

72: /* SLIDE: Describing Data */

73: if (rank != 0) {

74: /* send all data to rank 0 */

75:

76: MLIFEIO_Type_create_rowblk(matrix, myrows, cols, &type);

77: MPI_Type_commit(&type);

78: err = MPI_Send(MPI_BOTTOM, 1, type, 0, 1, mlifeio_comm);

79: MPI_Type_free(&type);

80: }

81: else {

82: int i, procrows, totrows;

83:

84: printf("\033[H\033[2J# Iteration %d\n", iter);

85:

86: /* print rank 0 data first */

87: for (i=1; i < myrows+1; i++) {

88: MLIFEIO_Row_print(&matrix[i][1], cols, i);

89: }

90: totrows = myrows;

91:

41

File: mlife-io-stdout.c Page 5 of 8

92: /* SLIDE: Describing Data */

93: /* receive and print others’ data */

94: for (i=1; i < nprocs; i++) {

95: int j, *data;

96:

97: procrows = MLIFE_myrows(rows, i, nprocs);

98: data = (int *) malloc(procrows * cols * sizeof(int));

99:

100: err = MPI_Recv(data, procrows * cols, MPI_INT, i, 1,

101: mlifeio_comm, MPI_STATUS_IGNORE);

102:

103: for (j=0; j < procrows; j++) {

104: MLIFEIO_Row_print(&data[j * cols], cols,

105: totrows + j + 1);

106: }

107: totrows += procrows;

108:

109: free(data);

110: }

111: }

112:

113: MLIFEIO_msleep(250); /* give time to see the results */

114:

115: return err;

116: }

42

 43

Describing Data

• Lots of rows, all the same size
– Rows are all allocated as one big block

– Perfect for MPI_Type_vector

MPI_Type_vector(count = myrows,
blklen = cols, stride = cols+2, MPI_INT, &vectype);

– Second type gets memory offset right (allowing use of MPI_BOTTOM in
MPI_File_write_all)

MPI_Type_hindexed(count = 1, len = 1,
disp = &matrix[1][1], vectype, &type);

matrix[1][0..cols+1]

matrix[myrows][0..cols+1]

See mlife-io-stdout.c pp. 4-6 for code example.

Need to save this region in

the array

43

File: mlife-io-stdout.c Page 6 of 8

117: /* SLIDE: Describing Data */

118: /* MLIFEIO_Type_create_rowblk

119: *

120: * Creates a MPI_Datatype describing the block of rows of data

121: * for the local process, not including the surrounding boundary

122: * cells.

123: *

124: * Note: This implementation assumes that the data for matrix is

125: * allocated as one large contiguous block!

126: */

127: static int MLIFEIO_Type_create_rowblk(int **matrix, int myrows,

128: int cols,

129: MPI_Datatype *newtype)

130: {

131: int err, len;

132: MPI_Datatype vectype;

133: MPI_Aint disp;

134:

135: /* since our data is in one block, access is very regular! */

136: err = MPI_Type_vector(myrows, cols, cols+2, MPI_INT,

137: &vectype);

138: if (err != MPI_SUCCESS) return err;

139:

140: /* wrap the vector in a type starting at the right offset */

141: len = 1;

142: MPI_Address(&matrix[1][1], &disp);

143: err = MPI_Type_hindexed(1, &len, &disp, vectype, newtype);

144:

145: MPI_Type_free(&vectype); /* decrement reference count */

44

File: mlife-io-stdout.c Page 7 of 8

146:

147: return err;

148: }

149:

150: static void MLIFEIO_Row_print(int *data, int cols, int rownr)

151: {

152: int i;

153:

154: printf("%3d: ", rownr);

155: for (i=0; i < cols; i++) {

156: printf("%c", (data[i] == BORN) ? ’*’ : ’ ’);

157: }

158: printf("\n");

159: }

160:

161: int MLIFEIO_Can_restart(void)

162: {

163: return 0;

164: }

165:

166: int MLIFEIO_Restart(char *prefix, int **matrix, int rows,

167: int cols, int iter, MPI_Info info)

168: {

169: return MPI_ERR_IO;

170: }

45

exascaleproject.org

Next steps: thinking about
I/O interfaces for parallel
programming (MPI-IO)

