a-:.;\\
EWCP |
I .ol Data models with MPI-10
ATPESC 2018
Rob Latham

Argonne National Laboratory

Q Center, St. Charles, IL (USA)
3 August 2018

. 7R U.S: DEPARTMENT OF Office of N 'SE".;
exascaleproject.org ' ENERGY | scionce ITVA O



Parallel I/O and MPI

* The stdio checkpoint routine works but is not parallel
— One process is responsible for all I/0
— Wouldn’t want to use this approach for real

« How can we get the full benefit of a parallel file system?
— We first look at how parallel 1/0 works in MPI
— We then implement a fully parallel checkpoint routine

« MPI is a good setting for parallel 1/0

— Writing is like sending and reading is like receiving

— Any parallel I/0 system will need:
 collective operations
» user-defined datatypes to describe both memory and file layout
« communicators to separate application-level message passing from 1/O-related message passing
* non-blocking operations

— I.e., lots of MPI-like machinery

o U.S. DEPARTMENT OF H ’;\
' N Office of \ EXASCALE

ENERGY Science _\( \) — PRCECT




Collective I/O

« A critical optimization in parallel I/O

 All processes (in the communicator) must call the collective
/O function

 Allows communication of “big picture” to file system
— Framework for 1/O transformations/optimizations at the MPI-1O layer
— Discussed these earlier today
— e.g., two-phase I/O

v

v

—— =

— Large collective
access

Small individual
requests

‘\1¢ U.S. DEPARTMENT OF Office of

EN ERGY Science _\(

"— \
\ EXASCALE

) —) COMPUTING
PROJECT




Simple MPI-IO

 Collective open: all processes in communicator
* File-side data layout with file views

 Memory-side data layout with MPI datatype passed to write

MPI_F1ile_open(COMM, name, mode, MPI_F1ile_open(COMM, name, mode,
info, fh); info, fh);

MPI_File_set_view(fh, disp, etype, MPI_File_set_view(fh, disp, etype,
filetype, datarep, info); filetype, datarep, info);

MPI_File_write_all(fh, buf, count, MPI_File_write_all(fh, buf, count,
datatype, status); datatype, status);

WENT Op " ’;\
PR, U.S. DEPARTMENT OF Office of

\
JENERGY scerce ST )P 2555




Collective MPI I/O Functions

* Not going to go through the MPI-10 API in excruciating detall
— Happy to discuss during exercises, evening

« MPIl_File_write_at_all, etc.

— _all indicates that all processes in the group specified by the communicator passed to
MPI_File _open will call this function

— _at indicates that the position in the file is specified as part of the call; this provides thread-
safety and clearer code than using a separate “seek” call
» Each process specifies only its own access information
— the argument list is the same as for the non-collective functions

— OK to participate with zero data
 All processes must call a collective
* Process providing zero data might participate behind the scenes anyway

AR, U.S. DEPARTMENT OF Office of

EN ERGY Science _\(

"— \
\ EXASCALE

) —) COMPUTING
PROJECT




HANDS-ON 5: writing with MPI-10

Let’s take “I/O from master” example and make it parallel

Use MPI_File open instead of open

Only one process needs to write header
— Independent MPI_File write

Every process sets a “file view”
— Need to skip over header — file view has an “offset” field just for this case

- -lla-{/lte “file view” here is not complicated but we are operating on integers, not
es:

* MPI File set view(fh, sizeof (header), MPI INT, MPI INT,
"native", info)); o -

Each process writes one slice/row of array

— MPI_File_write_at_all

— Offset “rank*XDIM*YDIM”

— “(bufer, count, datatype)” tuple: (values, XDIM*YDIM, MPI INT)

ydim

: ’av U.S. DEPARTMENT OF Offlce Of \ ExASCAL =

| @ " ENERGY Science _\(\__ \) - PRCECT

0 Muel

I



Solution fragments for Hands-On 5

Header 1/O from rank O:
if (rank == 0) {
MPI CHECK (MPI File write (fh,
&header, sizeof (header), MPI BYTE,
MPI STATUS IGNORE) ) ;

Collective I/O from all ranks

MPI File write at all(fh, rank*XDIM*YDIM,
values, XDIM*YDIM, MPI INT,
MPI STATUS IGNORE)) ;

EER, U.S. DEPARTMENT OF Office of \ AL e

—
JENERGY  science _\( \) — e




Hands-on 5 continued: Darshan

* Alot like #4: let's use Darshan
« What do you think the report will say?
* OK, now you generated the report. Were you surprised?

U.S. DEPARTMENT OF

ENT Op
S
£ e
S A N
& \2
ol u
2\ /3
N /8
Rt
ZATES 0%

Office of

EN ERGY Science

EEEEEEEE
EEEEEEE



Managing Concurrent Access

Files are treated like global shared memory regions. Locks are used to
manage concurrent access:

* Files are broken up into lock units
— Unit boundaries are dictated by the storage system, regardless of access pattern

« Clients obtain locks on units that they will access before I/O occurs

« Enables caching on clients as well (as long as client has a lock, it knows Iits
cached data is valid)

 Locks are reclaimed from clients when others desire access

If an access touches any data in Offset in File

a lock unit, the lock for that | | | ¥ .

region must be obtained before \ E— — — '

access occurs. Lock Lock File Access
Boundary Unit

AR, U.S. DEPARTMENT OF Office of

E N E RGY Science

"— \
\ EXASCALE

) —) COMPUTING
PROJECT




10

Implications of Locking in Concurrent Access

2D View of Data

The left diagram shows a row-
block distribution of data for ~ —
three processes. On the right
we see how these accesses

map onto locking units in the

file.

In this example a header
(black) has been prependedto
the data. If the header is not
aligned with lock boundaries,
false sharing will occur.

In this example, processes
exhibit a block-block access —
pattern (e.g.accessing a
subarray). This results in many
interleaved accesses in the file.

10|

Offset in File

== T N

When accesses are to large contiguous
regions, and aligned with lock boundaries,
locking overhead is minimal.

Y

These two regions exhibit false sharing:

no bytes are accessed by both processes, but
because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows
cause a higher degree of false sharing,
especially if data is not aligned with lock
boundaries.

SER, U.S. DEPARTMENT OF Oﬁ-’lce Of

ENERGY Science

—-—
\\ ) EXASCALE
) COMPUTING

PROJECT



/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

= Goals of transformations:
— Reduce number of operations to PFS
(avoiding latency)
— Avoid lock contention
(increasing level of concurrency)
— Hide number of clients
(more on this later)

= With “transparent” transformations,
data ends up in the same locations
In the file as it would have been

normally
— l.e., the file system is still aware of the
actual data organization

11

Process O Process 1 Process 2

\\\\’%%/// /

When we think about 1/0
transformations, we consider the
mapping of data between application
processes and locations in file.

A5 %>, U.S. DEPARTMENT OF Office of

EN ERGY Science _\(

"‘ \
\ EXASCALE

) —) COMPUTING
PROJECT




12

/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

= We will tour through a few examples
of data transformations in the
following slides

= The important thing to remember is
that software already exists to do
these things for you in HDF5,
PnetCDF, ADIOS, and MPI-10

= |f you find yourself replicating these
optimizations by hand, look around
to see if you can find an off-the-shelf
solution

Process O Process 1 Process 2

AN \\\’ % %/// /

When we think about 1/0
transformations, we consider the
mapping of data between application
processes and locations in file.

A5 %>, U.S. DEPARTMENT OF Office of

> W —
EN ERGY Science _\( \) I_) PRODECT




Reducing Number of Operations

Because most operations go over multiple networks, 1/0 to a PFS incurs more
latency than with a local FS. Data sieving Is a technique to address I/O latency by
combining operations:

* When reading, application process reads a large region holding all needed data and
pulls out what is needed

* When writing, three steps required (below)
« Somewhat counter-intuitive: do extra 1/O to avoid contention

Application Process
Memory N | | | ‘
v v v v
Buffer > mp | |
%:f I T N O 1:%;
I T T 1 T 1 1
File 750 e e e e 1] O [ e R L R | I B ]

Step 1: Data in region to be Step 2: Elements to be written to Step 3: Entire region is written back
modified are read into intermediate file are replaced in intermediate to storage with a single write
buffer (1 read). buffer. | operation. .

JFR 15 DEPERTMENT OF Office of \ EXASCALE
\

-
ENERGY Science _\( \) = FROJECT

13



Avoiding Lock Contention

We can reorder data among processes to avoid lock contention. Two-

phase 1/O splits I/O into a data reorganization phase and an interaction with the
storage system (two-phase write depicted):

« Data exchanged between processes to match file layout

« 0" phase determines exchange schedule (not shown)

Process 0

Process |

1 B

Memory ||

Buffer

File [ ] [ ]

Process 2

Phase 1: Data are exchanged between processes

based on organization of data in file.

14

A B B

=

Process 0 | Process 2

HE B N

Process |

H B B

Phase 2: Data are written to file (storage servers)
with large writes, no contention.

SR>, U.S. DEPARTMENT OF Office of

ENERGY Science

J EXASCALE
) COMPUTING
PROJECT




15

Two-Phase I/O Algorithms

(or, You don’t want to do this yourself...)
SC2008, November, 2008.

Imagine a collective I/O access Offset in File -
using four aggregators to a file LT 7T O [ T [ W [ [ [ PO [ [ [
striped over four file servers A A |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly . Aggregator | | Aggregator2 | Aggregator3 ! Aggregator4
divide the region accessed C LT T O T 1 | D [ [ [ DO | 1 |

across aggregators. I

Aligning regions with lock —> —>
. . . F ol Lol il il Fe-=============== '
Ecc:lzl::nat?:: eliminates lock “ Aggregator | E Aggregator 2 i Aggregator 3 i Aggregator 4 |
[ 1

Mapping aggregators to servers
reduces the number of
concurrent operations on a
single server and can be helpful
when locks are handed out on
a per-server basis (e.g., Lustre).

Today’s systems also choose aggregators

For more information, see W.K. Liao and A. Choudhary, “Dynamically
Adapting File Domain Partitioning Methods for Collective
I/O Based on Underlying Parallel File System Locking Protocols,”

that are “closest” to storage i 2F EERSTTe Office of =\ EXASCALE
JENERGY  scence ()P 555E




S3D Turbulent Combustion Code

« S3D is a turbulent combustion application using a
direct numerical simulation solver from Sandia
National Laboratory

« Checkpoints consist of four global arrays 4D subarray in
d . . | process Fy, n=m-1
— 2 3-dimensiona .
: : local-to—global
— 2 4-dimensional ' Q- manping
n= \
— 50x50x50 fixed '
subarrays
P z
X
Y
48 49 50 51
1; 1& 15.:-]‘:I 193/5
Thanks to Jackie Chen (SNL), Ray Grout (SNL), and / plplp L
Wei-Keng Liao (NWU) for providing the S3D 1/O o] 11 2] 3 15
benchmark, Wei-Keng Liao for providing this diagram, Pl 5| Fs| B | /.
C. Wang, H. Yu, and K.-L. Ma of UC Dauvis forimage. | Py F'gd R, | B, Pk m: length of the 4th dimension
314? n=0 n: index of the 4th dimension
Re| Bs Rel P

N
SR, U.S. DEPARTMENT OF Office of = \
@ ENERGY scone E(C)P =25



Impact of Transformations on S3D I/O

» Testing with PnetCDF output to single file, three configurations, 16 processes

— All MPI-10 optimizations (collective buffering and data sieving) disabled Application did the same

— Independent I/O optimization (data sieving) enabled thing in every case
— Collective I/O optimization (collective buffering, a.k.a. two-phase 1/O) enabled

Coll. Buffering and Data Sieving Enabled Coll. Buffering
Data Sieving Disabled Enabled (including
Aggregation)
POSIX writes 102,401 81 5
POSIX reads 0 80 0
<~ MPI-10 writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time per 1426.47 4.82 0.60

proc (sec)

= . -
&SR, U.S. DEPARTMENT OF Office of \\ ExASCALE

ENERGY science _\(\__ = e

PROJECT

17



18

HANDS-ON 6: reading with MPI-IO

« Slightly different: all processes read one row
— For simplicity, same row

* File view will be more complicated, use MPI “Subarray’
datatype o

* In C, array access is described in “row-major”
— array_size[@] = 5; array_size[l] = 4;

* File view uses derived ‘subarray’, not built-in MPI_INT

 Location in file given with subarray type; no offset in
MPI File read all

— Still provide a “buffer, count, datatype” tuple for memory layout

45 %>, U-S- DEPARTMENT OF Office of

Wy E N E RGY Science

T \
\ J EXASCALE
) COMPUTING

PROJECT




19

Solution fragments

Type creation

™~
*

¥ % ok ok ok % % X%

And a "start" of 0,5 */

sizes[0] = nprocs; sizes[l] = XDIM;
sub[0] = nprocs; sub[1l] = 1;
starts[0] = 0; starts[1l] = XDIM/2;

MPI Type create subarray (NDIMS,
sizes, sub, starts,
MPI ORDER C, MPI INT, &subarray);
MPI Type commit (&subarray):;

In C-order the arrays are row-major:

The 'sizes' of the above array would be 3,5
The last column would be a "subsize" of 3,1

File view and read

MPI CHECK(MPI File set view(fh, sizeof (header),
MPI INT, subarray, , info));

MPI Type free (&subarray);

MPI CHECK(MPI File read all (fh,
read buf, nprocs, MPI INT, MPI STATUS IGNORE);

=
= \ U.S. DEPARTMENT OF Oﬁ-‘lce Of ) \
JENERGY  sceree ST P 25555



20

Hands on 6 continued: Darshan

« How does this workload differ from the write?

» Change the ‘read_all’ to an independent ‘read’
— What do you think the Darshan output will say? Find out.

A5 %>, U.S. DEPARTMENT OF Office of

EN ERGY Science

—

J EXASCALE
COMPUTING
PROJECT



GPFS Access three ways

« POSIX shared vs MPI-10 collective

— Locking overhead for unaligned writes hits POSIX hard

« Default MPI-IO parameters not ideal

— Reported to IBM; simple tuning brings MPI-10 back to parity
— “Vendor Defaults” might give you bad first impression

 File per process (fpp) extremely seductive, but entirely untenable on current generation.

14000

12000 -

10000 +

MiB/sec

4000 +

2000

21

GPFS approaches, IOR (contiguous),
unaligned I/O, 65536 Mira processes

8000 +

6000

write D

read D |

POSIX shared POSIX fpp  MPI-IO coll. MPI-IO tuned

approach

SR>, U.S. DEPARTMENT OF Office of

ENERGY Science

\\ EXASCALE

) —) COMPUTING
PROJECT



MPI-10 Takeaway

« Sometimes it makes sense to build a custom library that uses MPI-10O (or maybe
even MPI + POSIX) to write a custom format

— e.g., a data format for your domain already exists, need parallel API

« We've only touched on the API here
— There is support for data that is noncontiguous in file and memory
— There are independent calls that allow processes to operate without coordination

* In general we suggest using data model libraries
— They do more for you
— Performance can be competitive

S&w Y-S DEPARTMENT OF Oﬂ-’lce Of \ ExASCAL =

oy
;?w = /\E EN ERGY ) — ( \) —) COMPUTING
’ég:mr:;(;.’é‘ S cience \ FReIEET

22




MPI-10 References

« On Cray systems, “man intro_mpi” for 3,000 lines of
tuning parameters, debug configuration

Using Advanced MPI

« Using Advanced MPI, Gropp, Hoeffler, Thakur, Lusk e

— Chapter on MPI I/O routines covers entire APl as well as
consistency semantics

Sy, U.S. DEPARTMENT OF Office of

| @-’ ENERGY science _\(\__ = e

-
\\ EXASCALE

23



EEEEEEEEEEEEEEEEEEEEEEEE

Up next: Parallel-NetCDF —
hiding MPI-10 detalls

' FaR Office of N \ / Sg“i
exascaleproject.org i ENERGY S Am-a\




