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Parallel I/O and MPI 

• The stdio checkpoint routine works but is not parallel 

– One process is responsible for all I/O 

– Wouldn’t want to use this approach for real 

• How can we get the full benefit of a parallel file system? 

– We first look at how parallel I/O works in MPI 

– We then implement a fully parallel checkpoint routine 

• MPI is a good setting for parallel I/O 

– Writing is like sending and reading is like receiving 

– Any parallel I/O system will need: 

• collective operations 

• user-defined datatypes to describe both memory and file layout 

• communicators to separate application-level message passing from I/O-related message passing 

• non-blocking operations 

– i.e., lots of MPI-like machinery 
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Collective I/O 

• A critical optimization in parallel I/O 

• All processes (in the communicator) must call the collective  
I/O function 

• Allows communication of “big picture” to file system 

– Framework for I/O transformations/optimizations at the MPI-IO layer 

– Discussed these earlier today 

– e.g., two-phase I/O 

Small individual 

requests 
Large collective 

access 
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Simple MPI-IO 

• Collective open: all processes in communicator  

• File-side data layout with file views 

• Memory-side data layout with MPI datatype passed to write 

 
MPI_File_open(COMM, name, mode, 
 info, fh); 
MPI_File_set_view(fh, disp, etype,  
 filetype, datarep, info); 
MPI_File_write_all(fh, buf, count,  
 datatype, status);  

MPI_File_open(COMM, name, mode, 
 info, fh); 
MPI_File_set_view(fh, disp, etype,  
 filetype, datarep, info); 
MPI_File_write_all(fh, buf, count,  
 datatype, status);  
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Collective MPI I/O Functions 

• Not going to go through the MPI-IO API in excruciating detail 

– Happy to discuss during exercises, evening 

• MPI_File_write_at_all, etc. 

– _all indicates that all processes in the group specified by the communicator passed to 
MPI_File_open will call this function 

– _at indicates that the position in the file is specified as part of the call; this provides thread-
safety and clearer code than using a separate “seek” call 

• Each process specifies only its own access information 

– the argument list is the same as for the non-collective functions 

– OK to participate with zero data 

• All processes must call a collective 

• Process providing zero data might participate behind the scenes anyway 
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HANDS-ON 5: writing with MPI-IO 

• Let’s take “I/O from master” example and make it parallel 

• Use MPI_File_open instead of open 

• Only one process needs to write header 
– Independent MPI_File_write 

• Every process sets a “file view” 
– Need to skip over header – file view has an “offset” field just for this case 

– The “file view” here is not complicated but we are operating on integers, not 
bytes: 

• MPI_File_set_view(fh, sizeof(header), MPI_INT, MPI_INT, 
"native", info)); 

• Each process writes one slice/row of array 
– MPI_File_write_at_all 

– Offset “rank*XDIM*YDIM” 

– “(bufer, count, datatype)” tuple: (values, XDIM*YDIM, MPI_INT) 
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Solution fragments for Hands-On 5  

if (rank == 0) { 

    MPI_CHECK(MPI_File_write(fh, 

        &header, sizeof(header), MPI_BYTE, 

        MPI_STATUS_IGNORE) ); 

} 

MPI_File_write_at_all(fh, rank*XDIM*YDIM, 

        values, XDIM*YDIM, MPI_INT, 

        MPI_STATUS_IGNORE)); 

Header I/O from rank 0: 

Collective I/O from all ranks 
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Hands-on 5 continued: Darshan 

• A lot like #4:  let’s use Darshan 

• What do you think the report will say? 

• OK, now you generated the report.  Were you surprised? 
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Managing Concurrent Access 

Files are treated like global shared memory regions. Locks are used to 
manage concurrent access: 

• Files are broken up into lock units 
– Unit boundaries are dictated by the storage system, regardless of access pattern 

• Clients obtain locks on units that they will access before I/O occurs 

• Enables caching on clients as well (as long as client has a lock, it knows its 
cached data is valid) 

• Locks are reclaimed from clients when others desire access  

If an access touches any data in 

a lock unit, the lock for that 

region must be obtained before 

access occurs. 
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Implications of Locking in Concurrent Access 
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I/O Transformations 

Software between the application and the file system performs 
transformations, primarily to improve performance. 

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

 Goals of transformations: 
– Reduce number of operations to PFS 

(avoiding latency) 

– Avoid lock contention  

(increasing level of concurrency) 

– Hide number of clients  

(more on this later) 

 With “transparent” transformations, 

data ends up in the same locations 

in the file as it would have been 

normally 
– i.e., the file system is still aware of the 

actual data organization 

When we think about I/O 

transformations, we consider the 

mapping of data between application 

processes and locations in file. 
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I/O Transformations 

Software between the application and the file system performs 
transformations, primarily to improve performance. 

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

 We will tour through a few examples 

of data transformations in the 

following slides 

 The important thing to remember is 

that software already exists to do 

these things for you in HDF5, 

PnetCDF, ADIOS, and MPI-IO 

 If you find yourself replicating these 

optimizations by hand, look around 

to see if you can find an off-the-shelf 

solution 

When we think about I/O 

transformations, we consider the 

mapping of data between application 

processes and locations in file. 
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Reducing Number of Operations 

Because most operations go over multiple networks, I/O to a PFS incurs more 
latency than with a local FS. Data sieving is a technique to address I/O latency by 
combining operations: 

• When reading, application process reads a large region holding all needed data and 
pulls out what is needed 

• When writing, three steps required (below) 

• Somewhat counter-intuitive: do extra I/O to avoid contention 

Step 1: Data in region to be 

modified are read into intermediate 

buffer (1 read). 

Step 2: Elements to be written to 

file are replaced in intermediate 

buffer. 

Step 3: Entire region is written back 

to storage with a single write 

operation. 
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Avoiding Lock Contention 

We can reorder data among processes to avoid lock contention. Two-
phase I/O splits I/O into a data reorganization phase and an interaction with the 
storage system (two-phase write depicted): 

• Data exchanged between processes to match file layout 

• 0th phase determines exchange schedule (not shown) 

 
 

Phase 1: Data are exchanged between processes 

based on organization of data in file. 

Phase 2: Data are written to file (storage servers) 

with large writes, no contention. 
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Two-Phase I/O Algorithms 
(or, You don’t want to do this yourself…) 

For more information, see W.K. Liao and A. Choudhary, “Dynamically 

Adapting File Domain Partitioning Methods for Collective  

I/O Based on Underlying Parallel File System Locking Protocols,” 

SC2008, November, 2008. 

Today’s systems also choose aggregators 
that are “closest” to storage 
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S3D Turbulent Combustion Code 

• S3D is a turbulent combustion application using a 

direct numerical simulation solver from Sandia 

National Laboratory 

• Checkpoints consist of four global arrays 

– 2 3-dimensional 

– 2 4-dimensional 

– 50x50x50 fixed 

subarrays 

 

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and 

Wei-Keng Liao (NWU) for providing the S3D I/O 

benchmark, Wei-Keng Liao for providing this diagram, 

C. Wang, H. Yu, and K.-L. Ma of UC Davis for image. 
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Impact of Transformations on S3D I/O 

• Testing with PnetCDF output to single file, three configurations, 16 processes 

– All MPI-IO optimizations (collective buffering and data sieving) disabled 

– Independent I/O optimization (data sieving) enabled 

– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled 

Coll. Buffering and 

Data Sieving Disabled 

Data Sieving Enabled Coll. Buffering 

Enabled (including 

Aggregation) 

POSIX writes 102,401 81 5 

POSIX reads 0 80 0 

MPI-IO writes 64 64 64 

Unaligned in file 102,399 80 4 

Total written (MB) 6.25 87.11 6.25 

Runtime (sec) 1443 11 6.0 

Avg. MPI-IO time per 

proc (sec) 

1426.47 4.82 0.60 

Application did the same 
thing in every case 
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HANDS-ON 6: reading with MPI-IO 

• Slightly different:  all processes read one row 
– For simplicity, same row 

• File view will be more complicated, use MPI “Subarray” 
datatype 

• In C, array access is described in “row-major” 
– array_size[0] = 5; array_size[1] = 4; 

• File view uses derived ‘subarray’, not built-in MPI_INT 

• Location in file given with subarray type; no offset in 
MPI_File_read_all 

– Still provide a “buffer, count, datatype” tuple for memory layout 

 

4 

5
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Solution fragments 

/* In C-order the arrays are row-major: 

 * 

 * |-----| 

 * |-----| 

 * |-----| 

 * 

 * The 'sizes' of the above array would be 3,5 

 * The last column would be a "subsize" of 3,1 

 * And a "start" of 0,5 */ 

 

 sizes[0] = nprocs; sizes[1] = XDIM; 

 sub[0] = nprocs;   sub[1] = 1; 

 starts[0] = 0;     starts[1] = XDIM/2; 

 

 MPI_Type_create_subarray(NDIMS, 

    sizes, sub, starts, 

    MPI_ORDER_C, MPI_INT, &subarray); 

 MPI_Type_commit(&subarray); 

MPI_CHECK(MPI_File_set_view(fh, sizeof(header), 

  MPI_INT, subarray, "native", info)); 

MPI_Type_free(&subarray); 

MPI_CHECK(MPI_File_read_all(fh, 

  read_buf, nprocs, MPI_INT, MPI_STATUS_IGNORE); 

Type creation File view and read 



  20 

Hands on 6 continued: Darshan  

• How does this workload differ from the write? 

• Change the ‘read_all’ to an independent ‘read’ 

– What do you think the Darshan output will say?  Find out. 
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GPFS Access three ways 

• POSIX shared vs MPI-IO collective 

– Locking overhead for unaligned writes hits POSIX hard 

• Default MPI-IO parameters not ideal 

– Reported to IBM; simple tuning brings MPI-IO back to parity 

– “Vendor Defaults” might give you bad first impression  

• File per process (fpp) extremely seductive, but entirely untenable on current generation. 
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MPI-IO Takeaway 

• Sometimes it makes sense to build a custom library that uses MPI-IO (or maybe 
even MPI + POSIX) to write a custom format 
– e.g., a data format for your domain already exists, need parallel API 

 

• We’ve only touched on the API here 
– There is support for data that is noncontiguous in file and memory 

– There are independent calls that allow processes to operate without coordination 

 

• In general we suggest using data model libraries 
– They do more for you 

– Performance can be competitive 
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MPI-IO References 

• On Cray systems, “man intro_mpi” for 3,000 lines of 
tuning parameters, debug configuration  

• Using Advanced MPI, Gropp, Hoeffler, Thakur, Lusk 

– Chapter on MPI I/O routines covers entire API as well as 
consistency semantics 
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Up next: Parallel-NetCDF – 
hiding MPI-IO details 


