
exascaleproject.org

Data models with MPI-IO

ATPESC 2018

Rob Latham

Argonne National Laboratory

Q Center, St. Charles, IL (USA)
3 August 2018

 2

Parallel I/O and MPI

• The stdio checkpoint routine works but is not parallel

– One process is responsible for all I/O

– Wouldn’t want to use this approach for real

• How can we get the full benefit of a parallel file system?

– We first look at how parallel I/O works in MPI

– We then implement a fully parallel checkpoint routine

• MPI is a good setting for parallel I/O

– Writing is like sending and reading is like receiving

– Any parallel I/O system will need:

• collective operations

• user-defined datatypes to describe both memory and file layout

• communicators to separate application-level message passing from I/O-related message passing

• non-blocking operations

– i.e., lots of MPI-like machinery

 3

Collective I/O

• A critical optimization in parallel I/O

• All processes (in the communicator) must call the collective
I/O function

• Allows communication of “big picture” to file system

– Framework for I/O transformations/optimizations at the MPI-IO layer

– Discussed these earlier today

– e.g., two-phase I/O

Small individual

requests
Large collective

access

 4

Simple MPI-IO

• Collective open: all processes in communicator

• File-side data layout with file views

• Memory-side data layout with MPI datatype passed to write

MPI_File_open(COMM, name, mode,
 info, fh);
MPI_File_set_view(fh, disp, etype,
 filetype, datarep, info);
MPI_File_write_all(fh, buf, count,
 datatype, status);

MPI_File_open(COMM, name, mode,
 info, fh);
MPI_File_set_view(fh, disp, etype,
 filetype, datarep, info);
MPI_File_write_all(fh, buf, count,
 datatype, status);

 5

Collective MPI I/O Functions

• Not going to go through the MPI-IO API in excruciating detail

– Happy to discuss during exercises, evening

• MPI_File_write_at_all, etc.

– _all indicates that all processes in the group specified by the communicator passed to
MPI_File_open will call this function

– _at indicates that the position in the file is specified as part of the call; this provides thread-
safety and clearer code than using a separate “seek” call

• Each process specifies only its own access information

– the argument list is the same as for the non-collective functions

– OK to participate with zero data

• All processes must call a collective

• Process providing zero data might participate behind the scenes anyway

 6

HANDS-ON 5: writing with MPI-IO

• Let’s take “I/O from master” example and make it parallel

• Use MPI_File_open instead of open

• Only one process needs to write header
– Independent MPI_File_write

• Every process sets a “file view”
– Need to skip over header – file view has an “offset” field just for this case

– The “file view” here is not complicated but we are operating on integers, not
bytes:

• MPI_File_set_view(fh, sizeof(header), MPI_INT, MPI_INT,
"native", info));

• Each process writes one slice/row of array
– MPI_File_write_at_all

– Offset “rank*XDIM*YDIM”

– “(bufer, count, datatype)” tuple: (values, XDIM*YDIM, MPI_INT)

xdim

y
d
im

ra
n
k
 0

 1
 2

 3
 4

 7

Solution fragments for Hands-On 5

if (rank == 0) {

 MPI_CHECK(MPI_File_write(fh,

 &header, sizeof(header), MPI_BYTE,

 MPI_STATUS_IGNORE));

}

MPI_File_write_at_all(fh, rank*XDIM*YDIM,

 values, XDIM*YDIM, MPI_INT,

 MPI_STATUS_IGNORE));

Header I/O from rank 0:

Collective I/O from all ranks

 8

Hands-on 5 continued: Darshan

• A lot like #4: let’s use Darshan

• What do you think the report will say?

• OK, now you generated the report. Were you surprised?

 9

Managing Concurrent Access

Files are treated like global shared memory regions. Locks are used to
manage concurrent access:

• Files are broken up into lock units
– Unit boundaries are dictated by the storage system, regardless of access pattern

• Clients obtain locks on units that they will access before I/O occurs

• Enables caching on clients as well (as long as client has a lock, it knows its
cached data is valid)

• Locks are reclaimed from clients when others desire access

If an access touches any data in

a lock unit, the lock for that

region must be obtained before

access occurs.

 10

Implications of Locking in Concurrent Access

 11

I/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

 Goals of transformations:
– Reduce number of operations to PFS

(avoiding latency)

– Avoid lock contention

(increasing level of concurrency)

– Hide number of clients

(more on this later)

 With “transparent” transformations,

data ends up in the same locations

in the file as it would have been

normally
– i.e., the file system is still aware of the

actual data organization

When we think about I/O

transformations, we consider the

mapping of data between application

processes and locations in file.

 12

I/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

 We will tour through a few examples

of data transformations in the

following slides

 The important thing to remember is

that software already exists to do

these things for you in HDF5,

PnetCDF, ADIOS, and MPI-IO

 If you find yourself replicating these

optimizations by hand, look around

to see if you can find an off-the-shelf

solution

When we think about I/O

transformations, we consider the

mapping of data between application

processes and locations in file.

 13

Reducing Number of Operations

Because most operations go over multiple networks, I/O to a PFS incurs more
latency than with a local FS. Data sieving is a technique to address I/O latency by
combining operations:

• When reading, application process reads a large region holding all needed data and
pulls out what is needed

• When writing, three steps required (below)

• Somewhat counter-intuitive: do extra I/O to avoid contention

Step 1: Data in region to be

modified are read into intermediate

buffer (1 read).

Step 2: Elements to be written to

file are replaced in intermediate

buffer.

Step 3: Entire region is written back

to storage with a single write

operation.

 14

Avoiding Lock Contention

We can reorder data among processes to avoid lock contention. Two-
phase I/O splits I/O into a data reorganization phase and an interaction with the
storage system (two-phase write depicted):

• Data exchanged between processes to match file layout

• 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between processes

based on organization of data in file.

Phase 2: Data are written to file (storage servers)

with large writes, no contention.

 15

Two-Phase I/O Algorithms
(or, You don’t want to do this yourself…)

For more information, see W.K. Liao and A. Choudhary, “Dynamically

Adapting File Domain Partitioning Methods for Collective

I/O Based on Underlying Parallel File System Locking Protocols,”

SC2008, November, 2008.

Today’s systems also choose aggregators
that are “closest” to storage

 16

S3D Turbulent Combustion Code

• S3D is a turbulent combustion application using a

direct numerical simulation solver from Sandia

National Laboratory

• Checkpoints consist of four global arrays

– 2 3-dimensional

– 2 4-dimensional

– 50x50x50 fixed

subarrays

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and

Wei-Keng Liao (NWU) for providing the S3D I/O

benchmark, Wei-Keng Liao for providing this diagram,

C. Wang, H. Yu, and K.-L. Ma of UC Davis for image.

 17

Impact of Transformations on S3D I/O

• Testing with PnetCDF output to single file, three configurations, 16 processes

– All MPI-IO optimizations (collective buffering and data sieving) disabled

– Independent I/O optimization (data sieving) enabled

– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled

Coll. Buffering and

Data Sieving Disabled

Data Sieving Enabled Coll. Buffering

Enabled (including

Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time per

proc (sec)

1426.47 4.82 0.60

Application did the same
thing in every case

 18

HANDS-ON 6: reading with MPI-IO

• Slightly different: all processes read one row
– For simplicity, same row

• File view will be more complicated, use MPI “Subarray”
datatype

• In C, array access is described in “row-major”
– array_size[0] = 5; array_size[1] = 4;

• File view uses derived ‘subarray’, not built-in MPI_INT

• Location in file given with subarray type; no offset in
MPI_File_read_all

– Still provide a “buffer, count, datatype” tuple for memory layout

4

5

 19

Solution fragments

/* In C-order the arrays are row-major:

 *

 * |-----|

 * |-----|

 * |-----|

 *

 * The 'sizes' of the above array would be 3,5

 * The last column would be a "subsize" of 3,1

 * And a "start" of 0,5 */

 sizes[0] = nprocs; sizes[1] = XDIM;

 sub[0] = nprocs; sub[1] = 1;

 starts[0] = 0; starts[1] = XDIM/2;

 MPI_Type_create_subarray(NDIMS,

 sizes, sub, starts,

 MPI_ORDER_C, MPI_INT, &subarray);

 MPI_Type_commit(&subarray);

MPI_CHECK(MPI_File_set_view(fh, sizeof(header),

 MPI_INT, subarray, "native", info));

MPI_Type_free(&subarray);

MPI_CHECK(MPI_File_read_all(fh,

 read_buf, nprocs, MPI_INT, MPI_STATUS_IGNORE);

Type creation File view and read

 20

Hands on 6 continued: Darshan

• How does this workload differ from the write?

• Change the ‘read_all’ to an independent ‘read’

– What do you think the Darshan output will say? Find out.

 21

GPFS Access three ways

• POSIX shared vs MPI-IO collective

– Locking overhead for unaligned writes hits POSIX hard

• Default MPI-IO parameters not ideal

– Reported to IBM; simple tuning brings MPI-IO back to parity

– “Vendor Defaults” might give you bad first impression

• File per process (fpp) extremely seductive, but entirely untenable on current generation.

 22

MPI-IO Takeaway

• Sometimes it makes sense to build a custom library that uses MPI-IO (or maybe
even MPI + POSIX) to write a custom format
– e.g., a data format for your domain already exists, need parallel API

• We’ve only touched on the API here
– There is support for data that is noncontiguous in file and memory

– There are independent calls that allow processes to operate without coordination

• In general we suggest using data model libraries
– They do more for you

– Performance can be competitive

 23

MPI-IO References

• On Cray systems, “man intro_mpi” for 3,000 lines of
tuning parameters, debug configuration

• Using Advanced MPI, Gropp, Hoeffler, Thakur, Lusk

– Chapter on MPI I/O routines covers entire API as well as
consistency semantics

exascaleproject.org

Up next: Parallel-NetCDF –
hiding MPI-IO details

