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Parallel I/O and MPI 

• The stdio checkpoint routine works but is not parallel 

– One process is responsible for all I/O 

– Wouldn’t want to use this approach for real 

• How can we get the full benefit of a parallel file system? 

– We first look at how parallel I/O works in MPI 

– We then implement a fully parallel checkpoint routine 

• MPI is a good setting for parallel I/O 

– Writing is like sending and reading is like receiving 

– Any parallel I/O system will need: 

• collective operations 

• user-defined datatypes to describe both memory and file layout 

• communicators to separate application-level message passing from I/O-related message passing 

• non-blocking operations 

– i.e., lots of MPI-like machinery 
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Collective I/O 

• A critical optimization in parallel I/O 

• All processes (in the communicator) must call the collective  
I/O function 

• Allows communication of “big picture” to file system 

– Framework for I/O transformations/optimizations at the MPI-IO layer 

– Discussed these earlier today 

– e.g., two-phase I/O 

Small individual 

requests 
Large collective 

access 
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Simple MPI-IO 

• Collective open: all processes in communicator  

• File-side data layout with file views 

• Memory-side data layout with MPI datatype passed to write 

 
MPI_File_open(COMM, name, mode, 
 info, fh); 
MPI_File_set_view(fh, disp, etype,  
 filetype, datarep, info); 
MPI_File_write_all(fh, buf, count,  
 datatype, status);  

MPI_File_open(COMM, name, mode, 
 info, fh); 
MPI_File_set_view(fh, disp, etype,  
 filetype, datarep, info); 
MPI_File_write_all(fh, buf, count,  
 datatype, status);  
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Collective MPI I/O Functions 

• Not going to go through the MPI-IO API in excruciating detail 

– Happy to discuss during exercises, evening 

• MPI_File_write_at_all, etc. 

– _all indicates that all processes in the group specified by the communicator passed to 
MPI_File_open will call this function 

– _at indicates that the position in the file is specified as part of the call; this provides thread-
safety and clearer code than using a separate “seek” call 

• Each process specifies only its own access information 

– the argument list is the same as for the non-collective functions 

– OK to participate with zero data 

• All processes must call a collective 

• Process providing zero data might participate behind the scenes anyway 
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HANDS-ON 5: writing with MPI-IO 

• Let’s take “I/O from master” example and make it parallel 

• Use MPI_File_open instead of open 

• Only one process needs to write header 
– Independent MPI_File_write 

• Every process sets a “file view” 
– Need to skip over header – file view has an “offset” field just for this case 

– The “file view” here is not complicated but we are operating on integers, not 
bytes: 

• MPI_File_set_view(fh, sizeof(header), MPI_INT, MPI_INT, 
"native", info)); 

• Each process writes one slice/row of array 
– MPI_File_write_at_all 

– Offset “rank*XDIM*YDIM” 

– “(bufer, count, datatype)” tuple: (values, XDIM*YDIM, MPI_INT) 
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Solution fragments for Hands-On 5  

if (rank == 0) { 

    MPI_CHECK(MPI_File_write(fh, 

        &header, sizeof(header), MPI_BYTE, 

        MPI_STATUS_IGNORE) ); 

} 

MPI_File_write_at_all(fh, rank*XDIM*YDIM, 

        values, XDIM*YDIM, MPI_INT, 

        MPI_STATUS_IGNORE)); 

Header I/O from rank 0: 

Collective I/O from all ranks 
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Hands-on 5 continued: Darshan 

• A lot like #4:  let’s use Darshan 

• What do you think the report will say? 

• OK, now you generated the report.  Were you surprised? 
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Managing Concurrent Access 

Files are treated like global shared memory regions. Locks are used to 
manage concurrent access: 

• Files are broken up into lock units 
– Unit boundaries are dictated by the storage system, regardless of access pattern 

• Clients obtain locks on units that they will access before I/O occurs 

• Enables caching on clients as well (as long as client has a lock, it knows its 
cached data is valid) 

• Locks are reclaimed from clients when others desire access  

If an access touches any data in 

a lock unit, the lock for that 

region must be obtained before 

access occurs. 
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Implications of Locking in Concurrent Access 
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I/O Transformations 

Software between the application and the file system performs 
transformations, primarily to improve performance. 

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

 Goals of transformations: 
– Reduce number of operations to PFS 

(avoiding latency) 

– Avoid lock contention  

(increasing level of concurrency) 

– Hide number of clients  

(more on this later) 

 With “transparent” transformations, 

data ends up in the same locations 

in the file as it would have been 

normally 
– i.e., the file system is still aware of the 

actual data organization 

When we think about I/O 

transformations, we consider the 

mapping of data between application 

processes and locations in file. 
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I/O Transformations 

Software between the application and the file system performs 
transformations, primarily to improve performance. 

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

 We will tour through a few examples 

of data transformations in the 

following slides 

 The important thing to remember is 

that software already exists to do 

these things for you in HDF5, 

PnetCDF, ADIOS, and MPI-IO 

 If you find yourself replicating these 

optimizations by hand, look around 

to see if you can find an off-the-shelf 

solution 

When we think about I/O 

transformations, we consider the 

mapping of data between application 

processes and locations in file. 
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Reducing Number of Operations 

Because most operations go over multiple networks, I/O to a PFS incurs more 
latency than with a local FS. Data sieving is a technique to address I/O latency by 
combining operations: 

• When reading, application process reads a large region holding all needed data and 
pulls out what is needed 

• When writing, three steps required (below) 

• Somewhat counter-intuitive: do extra I/O to avoid contention 

Step 1: Data in region to be 

modified are read into intermediate 

buffer (1 read). 

Step 2: Elements to be written to 

file are replaced in intermediate 

buffer. 

Step 3: Entire region is written back 

to storage with a single write 

operation. 
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Avoiding Lock Contention 

We can reorder data among processes to avoid lock contention. Two-
phase I/O splits I/O into a data reorganization phase and an interaction with the 
storage system (two-phase write depicted): 

• Data exchanged between processes to match file layout 

• 0th phase determines exchange schedule (not shown) 

 
 

Phase 1: Data are exchanged between processes 

based on organization of data in file. 

Phase 2: Data are written to file (storage servers) 

with large writes, no contention. 
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Two-Phase I/O Algorithms 
(or, You don’t want to do this yourself…) 

For more information, see W.K. Liao and A. Choudhary, “Dynamically 

Adapting File Domain Partitioning Methods for Collective  

I/O Based on Underlying Parallel File System Locking Protocols,” 

SC2008, November, 2008. 

Today’s systems also choose aggregators 
that are “closest” to storage 
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S3D Turbulent Combustion Code 

• S3D is a turbulent combustion application using a 

direct numerical simulation solver from Sandia 

National Laboratory 

• Checkpoints consist of four global arrays 

– 2 3-dimensional 

– 2 4-dimensional 

– 50x50x50 fixed 

subarrays 

 

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and 

Wei-Keng Liao (NWU) for providing the S3D I/O 

benchmark, Wei-Keng Liao for providing this diagram, 

C. Wang, H. Yu, and K.-L. Ma of UC Davis for image. 
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Impact of Transformations on S3D I/O 

• Testing with PnetCDF output to single file, three configurations, 16 processes 

– All MPI-IO optimizations (collective buffering and data sieving) disabled 

– Independent I/O optimization (data sieving) enabled 

– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled 

Coll. Buffering and 

Data Sieving Disabled 

Data Sieving Enabled Coll. Buffering 

Enabled (including 

Aggregation) 

POSIX writes 102,401 81 5 

POSIX reads 0 80 0 

MPI-IO writes 64 64 64 

Unaligned in file 102,399 80 4 

Total written (MB) 6.25 87.11 6.25 

Runtime (sec) 1443 11 6.0 

Avg. MPI-IO time per 

proc (sec) 

1426.47 4.82 0.60 

Application did the same 
thing in every case 
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HANDS-ON 6: reading with MPI-IO 

• Slightly different:  all processes read one row 
– For simplicity, same row 

• File view will be more complicated, use MPI “Subarray” 
datatype 

• In C, array access is described in “row-major” 
– array_size[0] = 5; array_size[1] = 4; 

• File view uses derived ‘subarray’, not built-in MPI_INT 

• Location in file given with subarray type; no offset in 
MPI_File_read_all 

– Still provide a “buffer, count, datatype” tuple for memory layout 

 

4 

5
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Solution fragments 

/* In C-order the arrays are row-major: 

 * 

 * |-----| 

 * |-----| 

 * |-----| 

 * 

 * The 'sizes' of the above array would be 3,5 

 * The last column would be a "subsize" of 3,1 

 * And a "start" of 0,5 */ 

 

 sizes[0] = nprocs; sizes[1] = XDIM; 

 sub[0] = nprocs;   sub[1] = 1; 

 starts[0] = 0;     starts[1] = XDIM/2; 

 

 MPI_Type_create_subarray(NDIMS, 

    sizes, sub, starts, 

    MPI_ORDER_C, MPI_INT, &subarray); 

 MPI_Type_commit(&subarray); 

MPI_CHECK(MPI_File_set_view(fh, sizeof(header), 

  MPI_INT, subarray, "native", info)); 

MPI_Type_free(&subarray); 

MPI_CHECK(MPI_File_read_all(fh, 

  read_buf, nprocs, MPI_INT, MPI_STATUS_IGNORE); 

Type creation File view and read 
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Hands on 6 continued: Darshan  

• How does this workload differ from the write? 

• Change the ‘read_all’ to an independent ‘read’ 

– What do you think the Darshan output will say?  Find out. 
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GPFS Access three ways 

• POSIX shared vs MPI-IO collective 

– Locking overhead for unaligned writes hits POSIX hard 

• Default MPI-IO parameters not ideal 

– Reported to IBM; simple tuning brings MPI-IO back to parity 

– “Vendor Defaults” might give you bad first impression  

• File per process (fpp) extremely seductive, but entirely untenable on current generation. 
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MPI-IO Takeaway 

• Sometimes it makes sense to build a custom library that uses MPI-IO (or maybe 
even MPI + POSIX) to write a custom format 
– e.g., a data format for your domain already exists, need parallel API 

 

• We’ve only touched on the API here 
– There is support for data that is noncontiguous in file and memory 

– There are independent calls that allow processes to operate without coordination 

 

• In general we suggest using data model libraries 
– They do more for you 

– Performance can be competitive 
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MPI-IO References 

• On Cray systems, “man intro_mpi” for 3,000 lines of 
tuning parameters, debug configuration  

• Using Advanced MPI, Gropp, Hoeffler, Thakur, Lusk 

– Chapter on MPI I/O routines covers entire API as well as 
consistency semantics 
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Up next: Parallel-NetCDF – 
hiding MPI-IO details 


