ECP

e oo et Higher-level I/O libraries

ATPESC 2018

Rob Latham, Phil Carns
Title and affiliation

Q Center, St. Charles, IL (USA)
3 August 2018

' FaR Office of N \ / Sg“i
exascaleproject.org ' ENERGY Science Am-'ﬂ

Reminder: HPC I/O Software Stack

The software used to provide data model support and to transform 1/O to
better perform on today’s I/O systems is often referred to as the |I/O stack.

Data Model Libraries map application
abstractions onto storage abstractions and

provide data portability. 4‘
HDF5, Parallel netCDF, ADIOS

Parallel file system maintains logical file
model and provides efficient access to data.

PVFES, PanFS, GPFS, Lustre

Application

I/O Middleware organizes accesses from
many processes, especially those using
collective

Data Model Support

1/0.

MPI-10, GLEAN, PLFS

Transformations

I/O Forwarding transforms 1/0O from many
clients into fewer, larger request; reduces
lock contention; and bridges between the

Parallel File System

HPC system and external storage.

IBM ciod, IOFSL, Cray DVS

I/O Hardware

AER>, U.S. DEPARTMENT OF Office of

2 -
ENERGY Science _\(\)_) FROJECT

\ EXASCALE

Data Model Libraries

 Scientific applications work with structured data and desire more self-describing
file formats

* PnetCDF and HDF5 are two popular “higher level” I/O libraries
— Abstract away details of file layout
— Provide standard, portable file formats
— Include metadata describing contents

 For parallel machines, these use MPI and probably MPI-10

— MPI-10 implementations are sometimes poor on specific platforms, in which case libraries
might directly call POSIX calls instead

S&w Y-S DEPARTMENT OF Oﬂ-’lce Of \ ExXASCALE

oy
;?w = /\E EN ERGY) — (\) —) COMPUTING
?3?;;—;,7;;;(;5 SCIenCe \ FReIEET

How It Works: The Parallel netCDF Interface and File
Format

Thanks to Wei-Keng Liao, Alok Choudhary, and Kalyuan Hou
(NWU) for their help in the development of PnetCDF.

www.mcs.anl.qgov/parallel-netcdf

PR, U.S- DEPARTMENT OF Office of —\
@ JENERGY science _\(\... \)I_) .

http://www.mcs.anl.gov/parallel-netcdf
http://www.mcs.anl.gov/parallel-netcdf
http://www.mcs.anl.gov/parallel-netcdf

Parallel NetCDF (PnetCDF)

Based on original “Network Common Data Format” (netCDF) work from Unidata

Derived from their source code

Data Model:

Collection of variables in single file
Typed, multidimensional array variables
Attributes on file and variables

Features:

C, Fortran, and F90 interfaces

Portable data format (identical to netCDF)
Noncontiguous I/O in memory using MPI datatypes
Noncontiguous I/O in file using sub-arrays
Collective 1/0

Non-blocking I/O

Unrelated to netCDF-4 work

Parallel-NetCDF tutorial:

http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/Quick Tutorial

Interface guide:

http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

U.S. DEPARTMENT OF Ofﬁce Of

EN ERGY Science

>

=\
\)

I_J

EXASCALE
COMPUTING
PROJECT

http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

Parallel netCDF (PnetCDF) Cluster

: PnetCDF
» (Serial) netCDF netc
— API for accessing multi-dimensional data sets ROMIO
— Portable file format
— Popular in both fusion and climate communities Lustre
IBM Blue Gene
« Parallel netCDF
— Very similar API to netCDF PnetCDF
— Tuned for better performance in today’s computing
environments IBM MPI
— Retains the file format so netCDF and PnetCDF applications _
can share files ciod
— PnetCDF builds on top of any MPI-IO implementation GPES
%I\T U.S. DEPARTMENT OF Office of — ":\\ expscALe
ENERGY science \(\) — s

netCDF Data Model

The netCDF model provides a means for storing multiple,
multi-dimensional arrays in a single file.

Application Data Structures

Double temp

Coofonaiono

26

Float surface_pressure

512
—

12

SIFRUEESTS

netCDF File "checkpoint07.nc"

Variable "temp" {

start offset = 65536,
attributes = {"Units"

type = NC_FLOAT,
dims = {512, 512},

attributes = {"Units"

type = NC_DOUBLE,
dims = {1024, 1024, 26},

= "K'}

Variable "surface_pressure" {

start offset = 218103808,

= "Pa}

< Data for "temp" >

< Data for "surface_pressure" >

/_N/

U.S. DEPARTMENT OF Ofﬂce Of

EN ERGY Science _\(\)

netCDF header describes
the contents of the file:
typed, multi-dimensional
variables and attributes

on variables or the dataset
itself.

Data for variables is stored
in contiguous blocks,
encoded in a portable binary
format according to the
variable's type.

J EXASCALE
COMPUTING
PROJECT

Record Variables in netCDF

« Record variables are defined to have a single
“unlimited” dimension
— Convenient when a dimension size is unknown at time of
variable creation

 Record variables are stored after all the other
variables in an interleaved format

— Using more than one in a file is likely to result in poor
performance due to number of nhoncontiguous accesses

R, U.S. DEPARTMENT OF

ENERGY Science _\(

™,

Record Data

Fixed—sized data

netCDF Header

15t non-—record variable

2nd non-record variable

7
Vi

]

LI

nth non-record variable

1zt Record for 1st Record ¥ar

1zt Record for 2nd Record ¥ar

e

1zt Record for rth Record ¥ar

2nd Record for 1st,
2nd, ..., rth Record
Variables 1n order

:E’____&_____m-

REecords grow in the URLINITED

. dimen=sion for 1,2,..., rth war
' S
\
GtlIEEE P o
PROJECT

r""n.
L

%

Pre-declaring 1/O

 netCDF / Parallel-NetCDF: bimodal write interface

— Define mode: “here are my dimensions, variables, and attributes”
— Data mode: “now I’'m writing out those values”

» Decoupling of description and execution shows up several places
— MPI non-blocking communication
— Parallel-NetCDF “write combining” (talk more in a few slides)
— MPI datatypes to a collective routines (if you squint really hard)

:/%5"‘\""72{.\":{\1% U.S. DEPARTMENT OF Oﬂ-’lce Of

EN ERGY Science _\(

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

10

HANDS-ON 7: writing with Parallel-NetCDF

« Many details managed by pnetcdf library
« Be mindful of define/data mode: call ncmpi_enddef ()
« Library will take care of header i/o for you

1. Define two dimensions
— ncmpi_def _dim()
2. Define one variable

— ncmpi_def_var()

3. Collectively put variable
— ncmpi_put_vara_int _all()

AR, U.S. DEPARTMENT OF Office of

XN EN ERGY Science

EEEEEEEE
CCCCCCCCC
EEEEEEE

Solution fragments for Hands-on #7

Defining dimension: give name, size; get ID

/* row-major ordering */

NC CHECK (ncmpi def dim(ncfile, , YDIM*nprocs, &(dims[0])))

NC CHECK (ncmpi def dim(ncfile, , XDIM, &(dims[1])))

Defining variable: give name, “rank” and dimensions (id); get ID
Attributes: can be placed globally, on variables, dimensions

NC CHECK (ncmpi def var (ncfile, , NC INT, NDIMS, dims,
&varid array));

iterations=1;
NC CHECK (ncmpi put att int(ncfile, varid array,
, NC INT, 1, &iterations));

I/O: ‘start’ and ‘count’ give location, shape of subarray. ‘All' means collective

start[0] = rank*YDIM; start[l] = O;
count[0] = YDIM; count[l] = XDIM;

NC CHECK (ncmpi put vara int all(ncfile, varid array, start, count, values)

11

U.S. DEPARTMENT OF

EN ERGY Science

Office of

) ;

>

—
\\ J EXASCALE
) COMPUTING
PROJECT

Inside PnetCDF Define Mode

* In define mode (collective)
— Use MPI_F1ile_open to create file at create time
— Set hints as appropriate (more later)
— Locally cache header information in memory

« All changes are made to local copies at each process

« At ncmpi_enddef
— Process 0 writes header with MPI_File_write_at
— MPI_Bcast result to others
— Everyone has header data in memory, understands placement of all variables

—_

SSENT 08 H f—
4 R, U.S. DEPARTMENT OF Oﬂ:lce Of \\ EXASCALE

EN ERGY Science _\() — S

PROJECT

12

Inside PnetCDF Data Mode

M Inside ncmpi_put_vara_all (once per variable)

— Each process performs data conversion into internal buffer
— Uses MPI_File_set_view to define file region

« Contiguous region for each process in FLASH case
— MPI_File_write_all collectively writes data

B At ncmpi_close
— MPI_File_close ensures data is written to storage

B MPI-10 performs optimizations
— Two-phase possibly applied when writing variables

B MPI-10 makes PFS calls
— PFS client code communicates with servers and stores data

=%, U.S. DEPARTMENT OF

EN ERGY Science

13

Office of

—_

=\
\)

J EXASCALE
COMPUTING
PROJECT

Inside Parallel netCDF: TIME-line view

1: Rank O write header 3: Collectively
(independent I/O) write 4 variables
1 |

v s 2o [<[r]na][a[a]a] [@8]e 22

Az, Depth 4|Zoom Lever Global Min Time View InftTime ZoomFoous Time iew Final Time
‘5 k4 3 |0.2728113824 |5.9591801 085 5.6226676796 |B.E0ESE01059

/O
Aggr

NI K

2: Collectively write
app grid, AMR data 4: Close file

2%, U.S. DEPARTMENT OF Office of

EN ERGY Science

14

14

File open

Indep. write

- Collective write

File close

>

—
\\) EXASCALE
jr—) COMPUTING
PROJECT

15

Hands-on 7 continued

« Take a look at the Darshan report for your job.

SER, U.S. DEPARTMENT OF

EN ERGY Science

Office of

—

)

) EXASCALE
COMPUTING
PROJECT

16

HACC: understanding cosmos via simulation
« “Cosmology = Physics + Simulation “ (Salman
Habib)

« SKy surveys collecting massive amounts of data
— (~100 PB)

 Understanding of these massive datasets rests on
modeling distribution of cosmic entities

 Seed simulations with initial conditions

* Run for 13 billion (simulated) years

« Comparison with observed data validates physics

model.

* |/O challenges:

— Checkpointing

— analysis
\‘9».\):“‘!’!:!;-3‘¢ U.S. DEPARTMENT OF Oﬂ-‘lce Of

EN ERGY Science

Parallel NetCDF Particle Output

« Metadata, index, and particle data

» Self-describing portable format Metadata _ Particles
Disraiin oz pid|x,y,z| vx,vy,vz phi
« Can be read with different number of Notes
processes than written Time step
« Can be queried for particles within Index

Spatial bounds Block| Bounds Start|End
* Collaboration with Northwestern and P \

Argonne: research demonstration N min. max, e

File schema for analysis output enables spatial queries of
particle data in a high-level self-describing format.

=
S&w Y-S DEPARTMENT OF Oﬂ-’lce Of \ ExASCAL =

oy
;?w = /\E EN ERGY) — (\) —) COMPUTING
’ég:mr:;(;.’é‘ S cience \ FReIEET

HACC particles with pnetcdf: metadata (1/2)

I0::I0(int mode, char *filename, MPI Comm comm) {
ncmpi create(comm, filename, NC 64BIT DATA,
MPI_INFO NULL, &ncfile);

void IO::WriteMetadata(char *notes, float *block size,
float *global min, int *num blocks,
int first time step, int last time step,
int this time step, int num secondary keys,
char **secondary keys) ({

ncmpi put att (ncfile, NC GLOBAL, "notes",
strlen (notes), notes);
ncmpi put att (ncfile, NC GLOBAL, "global min z",

NC FLOAT, 1,&global min[2]);

A%, U.S. DEPARTMENT OF Office Of

EN ERGY Science

18

J EXASCALE
COMPUTING
PROJECT

HACC particles with pnetcdf: metadata (2/2)

void IO: :DefineDims () {

ncmpi def dim(ncfile, "KeyIndex", key index, &dim keyindex) ;
char str attribute[100 =
"num blocks x * num blocks y * num blocks z * num kys";

ncmpi def var(ncfile, "KeyIndex", NC_INT,
, &var keyindex);
ncmpi put att text(ncfile, var keyindex, "Key Index",
strlen(str_attribute), str attribute);

strcpy (unit, “km/s”);
ncmpi def var(ncfile, "“Velocity”, NC_FLOAT,
ndims, dimpids, &var velid);
ncmpi put att text(ncfile, var velid, “unit of velocity”, strlen(unit),
unit) ;

}

cxw> U.S. DEPARTMENT OF Oﬂ-’lce Of \ ExXASCALE

. ——
EN ERGY Science _\(\) — SR

19

HACC particles with pnetcdf: data

void IO::WriteData(int num particles, float *xx, float *yy, float *zz,
float *vx, float *vy, float *vz,
float *phi, inté4_t *pid, float *mins,
float *maxs) {

nParticles = num particles;
myOffset = 0;
(&nParticles, &myOffset, 1, MPI OFFSET, MPI SUM, comm) ;
MPI Allreduce (MPI IN PLACE, &nParticles, 1, MPI OFFSET,
MPI SUM, comm) ;

start[0] = myOffset; start[l] = O;
count[0] = num particles; count[l] = 3; /* ZYX dimensions */

ncmpi put vara float all(ncfile, var velid, start, count,
&data vel[0] [0]);

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

V , U.S. DEPARTMENT OF Office of

EN ERGY Science _\(

21

Parallel-NetCDF Inquiry routines

Talked a lot about writing, but what about reading?

Parallel-NetCDF QuickTutorial contains examples of several approaches to reading and
writing

General approach
1. Obtain simple counts of entities (similar to MPI datatype “envelope”)
2. Inquire about length of dimensions
3. Inquire about type, associated dimensions of variable

Real application might assume convention, skip some steps

A full parallel reader would, after determining shape of variables, assign regions of
variable to each rank (“decompose”).

— Next slide focuses only on inquiry routines. (See website for I/O code)

AR, U.S. DEPARTMENT OF Office of

EN ERGY Science _\(

T \
\ J EXASCALE
) COMPUTING

PROJECT

Parallel NetCDF Inquiry Routines

OI0

22

int main (int argc, char **argv) {

/* extracted from
*http://trac.mcs.anl.gov/projects/parallel -netcdf/wiki/QuickTutorial
* M"Reading Data via standard API" */
MPI_Init(&argc, &argv) ;
ncmpi_open (MPI_COMM _WORLD, argv([1l], NC_NOWRITE,
MPI_TINFO_NULL, &ncfile);

/* reader knows nothing about dataset, but we can interrogate with
* query routines: ncmpli_ing tells us how many of each kind of
* mthing" (dimension, variable, attribute) we will find in file */

ncmpi_ing(ncfile, &ndims, &nvars, &ngatts, &has_unlimited) ;
/* no communication needed after ncmpil_open: all processors have a
* cached view of the metadata once ncmpi_open returns */

dim_sizes = calloc(ndims, sizeof (MPI_Offset));
/* netcdf dimension identifiers are allocated sequentially starting
* at zero; same for variable identifiers */
for (i=0; i<ndims; i++) {
ncmpi_ing dimlen(ncfile, i, &(dim _sizes[i]));
}
for(i=0; i<nvars; i++) {
ncmpi_ing var (ncfile, i, varname, &type, &var_ndims, dimids,
&var_natts) ;
printf ("variable %d has name %s with %d dimensions"
" and %d attributes\n",
i, wvarname, var_ndims, var_natts);
}
ncmpi_close(ncfile) ;
MPI Finalize();

U.S. DEPARTMENT OF Ofﬁce of

‘; ENERGY Science

—-—
\\) EXASCALE
) I COMPUTING

PROJECT

23

HANDS-ON 8: reading with pnetcdf

« Similar to MPI-IO reader: just read one row

« Operate on netcdf arrays, not MPI datatypes

« Shortcut: can rely on “convention” 5
— One could know nothing about file as in previous slide
— In our case we know there’s a variable called “array” (id of 0) and an

attribute called “iteration”

* Routines you'll need:
— ncmpi_ing_dim to turn dimension id to dimension length

— ncmpi_get att int to read “iteration” attribute
— ncmpi_get vara_int_all to read column of array

45 %>, U-S- DEPARTMENT OF Office of

E N E RGY Science

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

Solution fragments: reading with pnetcdf
Making inquiry about variable, dimensions
NC CHECK (ncmpili ing var (ncfile, 0, varname, &vartype, &nr dims,
dim ids, &nr attrs));

NC CHECK (ncmpi ing dim(ncfile, dim ids[0], NULL, &(dim lens[O0])));
NC CHECK (ncmpi ing dim(ncfile, dim ids[1l], NULL, &(dim lens[1])));

The “lteration” attribute

NC CHECK (ncmpi get att int(ncfile, O, , <erations));

No file views, datatypes: just a starting coordinate and size

count [0] = nprocs; count[l] = 1;
starts[0] = 0; starts[1l] = XDIM/2;
NC CHECK (ncmpi get vara int all(ncfile, 0, starts, count, read buf));

AENT Op . ’
B R, U-S- DEPARTMENT OF Office of - \\ el e

@ENERGY sicr. E(CP 25

PROJECT

24

Parallel-NetCDF write-combining optimization

ncmpi iput vara(ncfile, varidl, é&start, &count, &data,
count, MPI INT, &requests[0]);

ncmpi wait all(ncfile, 2, requests, statuses);

* netCDF variables laid out contiguously

* Applications typically store data in separate
variables

— temperature(lat, long, elevation)

HEADER VAR1 VAR2 — Velocity _x(Xx, Y, z, timestep)
‘ « Operations posted independently, completed

collectively
— Defer, coalesce synchronization
— Increase average request size

) U.S. DEPARTMENT OF Office of \ EXASCALE

JENERGY scene (TP 2555

25

Example: FLASH Astrophysics

 FLASH is an astrophysics code for
studying events such as supernovae

— Adaptive-mesh hydrodynamics
— Scales to 1000s of processors

— MPI for communication

* Frequently checkpoints:

— Large blocks of typed variables
from all processes

Vars 0,1, 2, 3, ... 23

— Portable format

— Canonical ordering (different than
In memory)

B Ghost cell
B stored element

— Skipping ghost cells

U.S. DEPARTMENT OF Ofﬂce Of

EN ERGY Science _\(

T \
\) EXASCALE
) COMPUTING

PROJECT

26

ENTOp
S

> 2
S alha \E

& \&

- =
RN
D ZATES Ui

FLASH Astrophysics and the write-combining optimization

* FLASH writes one variable at a

time FLASH checkpont I/0
- - el | ' |
« Could combine all 4D variables i
(temperature, pressure, etc) into ol
one 5D variable . 55T
— Altered file format (conventions) |
requires updating entire analysis 4
toolchain 3.5 4\
* erte-comblnlng prOVIdeS 2.54096 Bi‘BE 16I3E|4 BEI'."E‘B 65;36
Improved performance with npracs

same file conventions

— Larger requests, less
synchronization.

U.S. DEPARTMENT OF Oﬂ:lce Of \ EXASCALE

T
ENERGY science _\(\) — SR

ENTOP
PSERTE N
A7 S
S B \E
& \%
%\)3
2\ 5
N

2N

055

27

27

28

HANDS-ON 9: pnetcdf write-combining

1. Define a second variable, changing only the name
2. Write this second variable to the netcdf file

3. Convert to the non-blocking interface (ncmpi_iput_vara_int)
— not collective — “collectiveness” happens in ncmpi_wait all
— takes an additional ‘request’ argument

4. Wait (collectively) for completion

\‘x‘“""‘”’\‘i’f{\z,% U.S. DEPARTMENT OF Oﬂ-’lce Of

E N E RGY Science

—

J EXASCALE
COMPUTING
PROJECT

29

Solution fragments for write-combining

Defining a second variable

NC CHECK (ncmpi def var (ncfile, , NC INT, NDIMS, dims,
&varid array));
NC CHECK (ncmpi def var (ncfile,
&varid other));

, NC INT, NDIMS, dims,

The non-blocking interface: looks a lot like MPI
NC CHECK(ncmpi iput vara int(ncfile, varid array, start, count,

values, &(regs[0])));
NC CHECK(ncmpi iput vara int(ncfile, varid other, start, count,
values, &(regs[1l]))):

Waiting for 1/0O to complete

/* all the I/O0 actually happens here */
NC CHECK (ncmpi wait all(ncfile, 2, regs, status));

% U.S. DEPARTMENT OF Ofﬁce Of

EN ERGY Science

>

=\
\)

J EXASCALE
COMPUTING
PROJECT

30

Hands-on 9 continued

* Look at the darshan output. Compare to the prior example
— Results surprised me: vendor might know something | don’t

U.S. DEPARTMENT OF

ENERGY

ENT Op
SSENTOF
5 >
S/ e \&
& \&

- =
2\ &
R
I

Office of
Science

J EXASCALE
COMPUTING
PROJECT

31

PnetCDF Life Checkpoint/Restart Code Walkthrough

« Stores matrix as a two-dimensional array of integers
— Same canonical ordering as in MPI-10 version

* [teration number stored as an attribute
* Note: A naive reader will know how to read this

integer iter

lteration

integer “matrix” [rows][cols]

Global Matrix

31

:y‘?"‘) U.S. DEPARTMENT OF Oﬂ-’lce Of
2\

EN ERGY Science

PO

P1

P2

P3

>

—_—

=

)

J EXASCALE
COMPUTING
PROJECT

File: mlife-io-pnetcdf.c

O O ~Joy Ul E

/* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */
/* —*— Mode: C; c-basic-offset:4 ; —-*- */

/*
* (C) 2004 by University of Chicago.

* See COPYRIGHT in top-level directory.
*/

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#include <pnetcdf.h>
#include "mlife-io.h"

/* Parallel netCDF implementation of checkpoint and restart for
* MPI Life

*

* Data stored in a 2D variable called "matrix" in matrix order,
* with dimensions "row" and "col".

*

* Each checkpoint is stored in its own file.
*/
static MPI Comm mlifeio comm = MPI COMM NULL;

int MLIFEIO Init (MPI Comm comm)

{
int err;
err = MPI Comm dup (comm, &mlifeio comm) ;
return erE; N N

Page 1 of 7

32

File: mlife-io-pnetcdf.c

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
47 :
42
43:
44 .

/* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */
int MLIFEIO Finalize (void)

{
int err;

err = MPI Comm free(&mlifeio comm);

return err;

int MLIFEIO Can restart (void)

return 1;

Page 2 of 7

33

File: mlife-io-pnetcdf.c Page 3 of 7

45: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */
46: int MLIFEIO Checkpoint (char *prefix, int **matrix, int rows,

477 2 int cols, int iter, MPI Info info)
48: |

49: int err;

50: int cmode = 0;

51: int rank, nprocs;

52: int myrows, myoffset;

53:

54: int ncid, wvarid, coldim, rowdim, dims|[2];

55: MPI Offset start([2];

56: MPI Offset count[2];

57: int 1, 7j, *buf;

58: char filename([64];

59:

60 : MPI Comm size (mlifeio comm, &nprocs);

61: MPI Comm rank(mlifeio comm, &rank);

62:

63: myrows = MLIFE myrows (rows, rank, nprocs);

64 : myoffset = MLIFE myrowoffset (rows, rank, nprocs);

65:

66: snprintf (filename, 63, , prefix, iter);

67:

68: err = ncmpl create (mlifeio>comm, filename, cmode, info, &ncid);
69: if (ex '=0) |

70: fprintf (stderr, , filename);
71: return MPI ERR IO;

72 }
73:

Describing Subarray Access in PnetCDF

* PnetCDF provides calls for reading/writing subarrays in a single (collective) call:

ncmpi put vara all (ncid,

4

start[], count]],

datatype)

P1

o~
N
=
Local Sub-matrix in
memory
GlobalMatrix jn RReiCRF File. - =\
35 ENERGY Science _\(\) — SRe

35

Define mode vs data mode
Can describe anything in
memory, but constrained to
multidimensional arrays in
storage

File: mlife-io-pnetcdf.c

74
75:
76:
77
78 :
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 .
95:
96:
97:
98:
99:
100:
101:
102:

/* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

ncmpli def dim(ncid, , cols, &coldim) ;

ncmpi def dim(ncid, , rows, &rowdim);

dims[0] = coldim;

dims[1l] = rowdim;

ncmpi def var (ncid, , NC INT, 2, dims, &varid);

/* store iteration as global attribute */
ncmpli put att int (ncid, NC GLOBAL, , NC INT, 1, &iter);

ncmpl enddef (ncid);

start[0] = 0; /* col start */
start[1l] = myoffset; /* row start */
count [0] = cols;

count[l] = myrows;

MLIFEIO Type create rowblk(matrix, myrows, cols, &type);
MPI Type commit (&type) ;

ncmpi_put_varaﬁb EE Ilm:id, start, count, MPI BOTTOM, 1,

MPI Type free (&type);

ncmpl close(ncid) ;
return MPI SUCCESS;

Page 4 of 7/

36

File:

103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:

mlife-io-pnetcdf.c Page 5 of 7

/* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */
int MLIFEIO Restart (char *prefix, int **matrix, int rows,

{

int cols, int iter, MPI Info info)

int err = MPI SUCCESS;
int rank, nprocs;

int myrows, myoffset;
int flag;

int cmode = 0;

int ncid, wvarid, dims([2];

MPI Offset start([2];

MPI Offset count[2];

MPI Offset coldimsz, rowdimsz;
int 1, 7j, *buf;

char filename([64];

MPI Comm size(mlifeio comm, &nprocs);
MPI Comm rank(mlifeio comm, &rank);

myrows = MLIFE myrows (rows, rank, nprocs);
myoffset = MLIFE myrowoffset (rows, rank, nprocs);

snpzri ' Tam 03, , prefix, iter);

erx ncmpli open (mlifeio comm, filename, cmode, info, é&ncid);
(e L=
fprintf (stderr, , filename) ;
return MPI_ERR IO;

37

Discovering Variable Dimensions

* Because netCDF is self-describing, applications can inquire about data In

netCDF files:

err = ncmpi ing dimlen (ncid,
dims[0],

&coldimsz) ;

* Allows us to discover the dimensions of our matrix at restart time

A5 %>, U.S. DEPARTMENT OF Office of

ENERGY science

38

38

EEEEEEEE
EEEEEEE

File:

132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:

mlife-io-pnetcdf.c

Page 6 of 7

/* SLIDE: Discovering Variable Dimensions */

err = ncmpl ing varid(ncid,
if (err != 0) {

return MPI ERR IO;
}

&varid) ;

/* verify that dimensions in file are same as input row/col */

err = ncmpl ing vardimid(ncid, varid,

if (err !'= 0) {
return MPI_ERR_IO;
}

err = ncmpl ing dimlen(ncid, dims[0],

if (coldimsz != cols) {
fprintf (stderr,
return MPI_ERR_IO;
}

err = ncmpl ing dimlen(ncid, dims([1],

if (rowdimsz != rows) {
fprintf (stderr,
return MPI ERR IO;

dims) ;

&coldimsz) ;

) ;

&rowdimsz) ;

) ;

39

File: mlife-io-pnetcdf.c

156:
157:
158:
159:
160:
161l:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:

/* SLIDE: Discovering Variable Dimensions */

buf = (int *) malloc(myrows * cols * sizeof (int));
flag = (buf == NULL);
/* See i1if any process failed to allocate memory */
MPI Allreduce (MPI IN PLACE, &flag, 1, MPI INT, MPI LOR,
mlifeio comm) ;
if (flag) {
return MPI ERR IO;

start[0] =0; /* col start */

start = myoffset; * row start */
count = cols;

count [= MYrows;

ncmpl get vara int all(ncid, varid, start, count, buf);

for (i=0; 1 < myrows; i++) {
for (J=0; j < cols; J++) {
matrix[i+1][j] = buf[(i*cols) + F1;
}
}

free (buf) ;

return MPI SUCCESS;

Page 7 of 7

40

Takeaway from PnetCDF Game of Life Example

* PnetCDF abstracts away the file system model, giving us something closer to
(many) domain models

— Arrays
— Types
— Attributes

« Captures metadata for us (e.g., rows, columns, types) and allows us to
programmatically explore datasets

« Uses MPI-10 underneath, takes advantage of data sieving and two-phase |/O
when possible

PR, U-S- DEPARTMENT OF Office of

£ o
ENERGY science _\(\) = s

41

41

PnetCDF Wrap-Up

* PnetCDF gives us
— Simple, portable, self-describing container for data
— Collective 1/0
— Data structures closely mapping to the variables described

* If PnetCDF meets application needs, it is likely to give good performance
— Type conversion to portable format does add overhead

« Some limits on (old, common CDF-2) file format:
— Fixed-size variable: <4 GIiB
— Per-record size of record variable: < 4 GiB
— 232-1 records

— New extended file format to relax these limits (CDF-5, released in pnetcdf-1.1.0,
November 2009, integrated in Unidata NetCDF-4.4)

RSENTOp
WD
S/ e \&
2 oA 2
% u 5
A\ /&4
O\
S
ATES O8

U.S. DEPARTMENT OF Ofﬂce Of

EN ERGY Science _\(

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

42

43

Additional I/O Interfaces

Data Model Libraries map application
abstractions onto storage abstractions and
provide data portability.

HDF5, Parallel netCDF, ADIOS

Parallel file system maintains logical file

model and provides efficient access to data. _

PVFS, PanFS, GPFS, Lustre

Application

I/O Middleware organizes accesses from
many processes, especially those using
collective

| [DaiaModel Support |

1/0.
MPI-10, GLEAN, PLFS

I/O Forwarding transforms 1/O from many
clients into fewer, larger request; reduces
lock contention; and bridges between the
HPC system and external storage.

/O Hardware

IBM ciod, IOFSL, Cray DVS

43

" ’_\
U.S. DEPARTMENT OF Offlce Of (— \\ EXASCALE

@WENERGY scence (L '1— =m©

44

Data Model I/O libraries

Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf
HDF5: http://www.hdfgroup.orqg/HDF5/

NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
— netCDF API with HDF5 back-end

ADIOS: http://adiosapi.org
— Configurable (xml) I/O approaches

SILO: https://wci.lInl.gov/codes/silo/
— A mesh and field library on top of HDF5 (and others)

H5part: http://vis.Ibl.gov/IResearch/AcceleratorSAPP/
— simplified HDF5 API for particle simulations

GIO: https://svn.pnl.gov/gcrm
— Targeting geodesic grids as part of GCRM

PIO:
— climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-netcdf (from master)

... Many more: consider existing libs before deciding to make your own.

\\\25-‘3’"”’1'!:" U.S. DEPARTMENT OF Oﬁ:lce Of

@ ENERGY Science

>

=\
\)

) EXASCALE
COMPUTING
PROJECT

http://www.mcs.anl.gov/pnetcdf
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm
https://svn.pnl.gov/gcrm

ECP

EXASCALE COMPUTING PROJECT

Thank you!

: g U.S. DEPARTMENT OF Office of 'S‘E""
exascaleproject.org “)ENERGY | science N A =4

National Nuclear Security Administration

