
exascaleproject.org

Higher-level I/O libraries

ATPESC 2018

Rob Latham, Phil Carns
Title and affiliation

Q Center, St. Charles, IL (USA)
3 August 2018

 2

Reminder: HPC I/O Software Stack

The software used to provide data model support and to transform I/O to
better perform on today’s I/O systems is often referred to as the I/O stack.

Data Model Libraries map application

abstractions onto storage abstractions and

provide data portability.

HDF5, Parallel netCDF, ADIOS

I/O Middleware organizes accesses from

many processes, especially those using

collective

I/O.

MPI-IO, GLEAN, PLFS

I/O Forwarding transforms I/O from many

clients into fewer, larger request; reduces

lock contention; and bridges between the

HPC system and external storage.

IBM ciod, IOFSL, Cray DVS

Parallel file system maintains logical file

model and provides efficient access to data.

PVFS, PanFS, GPFS, Lustre

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

2

 3

Data Model Libraries

• Scientific applications work with structured data and desire more self-describing
file formats

• PnetCDF and HDF5 are two popular “higher level” I/O libraries

– Abstract away details of file layout

– Provide standard, portable file formats

– Include metadata describing contents

• For parallel machines, these use MPI and probably MPI-IO

– MPI-IO implementations are sometimes poor on specific platforms, in which case libraries
might directly call POSIX calls instead

3

 4

Thanks to Wei-Keng Liao, Alok Choudhary, and Kaiyuan Hou
(NWU) for their help in the development of PnetCDF.

www.mcs.anl.gov/parallel-netcdf

How It Works: The Parallel netCDF Interface and File
Format

http://www.mcs.anl.gov/parallel-netcdf
http://www.mcs.anl.gov/parallel-netcdf
http://www.mcs.anl.gov/parallel-netcdf

 5

Parallel NetCDF (PnetCDF)

• Based on original “Network Common Data Format” (netCDF) work from Unidata

– Derived from their source code

• Data Model:

– Collection of variables in single file

– Typed, multidimensional array variables

– Attributes on file and variables

• Features:

– C, Fortran, and F90 interfaces

– Portable data format (identical to netCDF)

– Noncontiguous I/O in memory using MPI datatypes

– Noncontiguous I/O in file using sub-arrays

– Collective I/O

– Non-blocking I/O

• Unrelated to netCDF-4 work

• Parallel-NetCDF tutorial:

– http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial

• Interface guide:

– http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

 6

Parallel netCDF (PnetCDF)

• (Serial) netCDF

– API for accessing multi-dimensional data sets

– Portable file format

– Popular in both fusion and climate communities

• Parallel netCDF

– Very similar API to netCDF

– Tuned for better performance in today’s computing
environments

– Retains the file format so netCDF and PnetCDF applications
can share files

– PnetCDF builds on top of any MPI-IO implementation

ROMIO

PnetCDF

Lustre

Cluster

IBM MPI

PnetCDF

ciod

IBM Blue Gene

GPFS

 7

netCDF Data Model

The netCDF model provides a means for storing multiple,
multi-dimensional arrays in a single file.

 8

Record Variables in netCDF

• Record variables are defined to have a single

“unlimited” dimension

– Convenient when a dimension size is unknown at time of

variable creation

• Record variables are stored after all the other

variables in an interleaved format

– Using more than one in a file is likely to result in poor

performance due to number of noncontiguous accesses

 9

Pre-declaring I/O

• netCDF / Parallel-NetCDF: bimodal write interface

– Define mode: “here are my dimensions, variables, and attributes”

– Data mode: “now I’m writing out those values”

• Decoupling of description and execution shows up several places

– MPI non-blocking communication

– Parallel-NetCDF “write combining” (talk more in a few slides)

– MPI datatypes to a collective routines (if you squint really hard)

 10

HANDS-ON 7: writing with Parallel-NetCDF

• Many details managed by pnetcdf library

• Be mindful of define/data mode: call ncmpi_enddef()

• Library will take care of header i/o for you

1. Define two dimensions

– ncmpi_def_dim()

2. Define one variable

– ncmpi_def_var()

3. Collectively put variable

– ncmpi_put_vara_int_all()

 11

Solution fragments for Hands-on #7

/* row-major ordering */

NC_CHECK(ncmpi_def_dim(ncfile, "rows", YDIM*nprocs, &(dims[0])));

NC_CHECK(ncmpi_def_dim(ncfile, "elements", XDIM, &(dims[1])));

NC_CHECK(ncmpi_def_var(ncfile, "array", NC_INT, NDIMS, dims,

 &varid_array));

iterations=1;

NC_CHECK(ncmpi_put_att_int(ncfile, varid_array,

 "iteration", NC_INT, 1, &iterations));

start[0] = rank*YDIM; start[1] = 0;

count[0] = YDIM; count[1] = XDIM;

NC_CHECK(ncmpi_put_vara_int_all(ncfile, varid_array, start, count, values));

Defining dimension: give name, size; get ID

Defining variable: give name, “rank” and dimensions (id); get ID
Attributes: can be placed globally, on variables, dimensions

I/O: ‘start’ and ‘count’ give location, shape of subarray. ‘All’ means collective

 12

Inside PnetCDF Define Mode

• In define mode (collective)

– Use MPI_File_open to create file at create time

– Set hints as appropriate (more later)

– Locally cache header information in memory

• All changes are made to local copies at each process

• At ncmpi_enddef

– Process 0 writes header with MPI_File_write_at

– MPI_Bcast result to others

– Everyone has header data in memory, understands placement of all variables

• No need for any additional header I/O during data mode!

 13

Inside PnetCDF Data Mode

Inside ncmpi_put_vara_all (once per variable)

– Each process performs data conversion into internal buffer

– Uses MPI_File_set_view to define file region

• Contiguous region for each process in FLASH case

– MPI_File_write_all collectively writes data

At ncmpi_close

– MPI_File_close ensures data is written to storage

MPI-IO performs optimizations

– Two-phase possibly applied when writing variables

MPI-IO makes PFS calls

– PFS client code communicates with servers and stores data

 14

Inside Parallel netCDF: TIME-line view

1: Rank 0 write header

(independent I/O)

2: Collectively write

app grid, AMR data

3: Collectively

 write 4 variables

4: Close file

I/O

Aggr

Collective write

File open

File close

Indep. write

14

 15

Hands-on 7 continued

• Take a look at the Darshan report for your job.

 16

HACC: understanding cosmos via simulation

• “Cosmology = Physics + Simulation “ (Salman
Habib)

• Sky surveys collecting massive amounts of data
– (~100 PB)

• Understanding of these massive datasets rests on
modeling distribution of cosmic entities

• Seed simulations with initial conditions

• Run for 13 billion (simulated) years

• Comparison with observed data validates physics
model.

• I/O challenges:
– Checkpointing

– analysis

 17

Parallel NetCDF Particle Output

• Metadata, index, and particle data

• Self-describing portable format

• Can be read with different number of
processes than written

• Can be queried for particles within
spatial bounds

• Collaboration with Northwestern and
Argonne: research demonstration

File schema for analysis output enables spatial queries of
particle data in a high-level self-describing format.

 18

HACC particles with pnetcdf: metadata (1/2)

/* class constructor creates dataset */

IO::IO(int mode, char *filename, MPI_Comm comm) {

 ncmpi_create(comm, filename, NC_64BIT_DATA,

 MPI_INFO_NULL, &ncfile);

}

/* describe simulation metadata, not pnetcdf metadata */

void IO::WriteMetadata(char *notes, float *block_size,

 float *global_min, int *num_blocks,

 int first_time_step, int last_time_step,

 int this_time_step, int num_secondary_keys,

 char **secondary_keys) {

 ncmpi_put_att_text(ncfile, NC_GLOBAL, "notes",

 strlen(notes), notes);

 ncmpi_put_att_float(ncfile, NC_GLOBAL, "global_min_z",

 NC_FLOAT, 1,&global_min[2]);

}

 19

HACC particles with pnetcdf: metadata (2/2)

void IO::DefineDims() {

 ncmpi_def_dim(ncfile, "KeyIndex", key_index, &dim_keyindex);

 char str_attribute[100 =

 "num_blocks_x * num_blocks_y * num_blocks_z * num_kys";

 /* variable with no dimensions: “scalar” */

 ncmpi_def_var(ncfile, "KeyIndex", NC_INT, 0,

 NULL, &var_keyindex);

 ncmpi_put_att_text(ncfile, var_keyindex, "Key_Index",

 strlen(str_attribute), str_attribute);

 /* pnetcdf knows shape and type, but application must

 annotate with units */

 strcpy(unit, “km/s”);

 ncmpi_def_var(ncfile, “Velocity”, NC_FLOAT,

 ndims, dimpids, &var_velid);

 ncmpi_put_att_text(ncfile, var_velid, “unit_of_velocity”, strlen(unit),

unit);

}

 20

HACC particles with pnetcdf: data

void IO::WriteData(int num_particles, float *xx, float *yy, float *zz,

 float *vx, float *vy, float *vz,

 float *phi, int64_t *pid, float *mins,

 float *maxs) {

 // calculate total number of particles and individual array offsets

 nParticles = num_particles; // typecast to MPI_Offset

 myOffset = 0; // particle offset of this process

 MPI_Exscan(&nParticles, &myOffset, 1, MPI_OFFSET, MPI_SUM, comm);

 MPI_Allreduce(MPI_IN_PLACE, &nParticles, 1, MPI_OFFSET,

 MPI_SUM, comm);

 start[0] = myOffset; start[1] = 0;

 count[0] = num_particles; count[1] = 3; /* ZYX dimensions */

 // write "Velocity" in parallel, partitioned

 // along dimension nParticles

 // "Velocity" is of size nParticles x nDimensions

 // data_vel array set up based on method parameters

 ncmpi_put_vara_float_all(ncfile, var_velid, start, count,

 &data_vel[0][0]);

}

 21

Parallel-NetCDF Inquiry routines

• Talked a lot about writing, but what about reading?

• Parallel-NetCDF QuickTutorial contains examples of several approaches to reading and
writing

• General approach

1. Obtain simple counts of entities (similar to MPI datatype “envelope”)

2. Inquire about length of dimensions

3. Inquire about type, associated dimensions of variable

• Real application might assume convention, skip some steps

• A full parallel reader would, after determining shape of variables, assign regions of
variable to each rank (“decompose”).

– Next slide focuses only on inquiry routines. (See website for I/O code)

 22

Parallel NetCDF Inquiry Routines

1

3

2

 23

HANDS-ON 8: reading with pnetcdf

• Similar to MPI-IO reader: just read one row

• Operate on netcdf arrays, not MPI datatypes

• Shortcut: can rely on “convention”

– One could know nothing about file as in previous slide

– In our case we know there’s a variable called “array” (id of 0) and an
attribute called “iteration”

• Routines you’ll need:

– ncmpi_inq_dim to turn dimension id to dimension length

– ncmpi_get_att_int to read “iteration” attribute

– ncmpi_get_vara_int_all to read column of array

4

5

 24

Solution fragments: reading with pnetcdf

NC_CHECK(ncmpi_inq_var(ncfile, 0, varname, &vartype, &nr_dims,

 dim_ids,&nr_attrs));

NC_CHECK(ncmpi_inq_dim(ncfile, dim_ids[0], NULL, &(dim_lens[0])));

NC_CHECK(ncmpi_inq_dim(ncfile, dim_ids[1], NULL, &(dim_lens[1])));

NC_CHECK(ncmpi_get_att_int(ncfile, 0, "iteration", &iterations));

count[0] = nprocs; count[1] = 1;

starts[0] = 0; starts[1] = XDIM/2;

NC_CHECK(ncmpi_get_vara_int_all(ncfile, 0, starts, count, read_buf));

Making inquiry about variable, dimensions

The “Iteration” attribute

No file views, datatypes: just a starting coordinate and size

 25

Parallel-NetCDF write-combining optimization

• netCDF variables laid out contiguously

• Applications typically store data in separate
variables

– temperature(lat, long, elevation)

– Velocity_x(x, y, z, timestep)

• Operations posted independently, completed
collectively

– Defer, coalesce synchronization

– Increase average request size

ncmpi_iput_vara(ncfile, varid1, &start, &count, &data,

 count, MPI_INT, &requests[0]);

ncmpi_iput_vara(ncfile, varid2, &start, &count, &data,

 count, MPI_INT, &requests[1]);

ncmpi_wait_all(ncfile, 2, requests, statuses);

HEADER VAR1 VAR2

 26

Example: FLASH Astrophysics

• FLASH is an astrophysics code for

studying events such as supernovae

– Adaptive-mesh hydrodynamics

– Scales to 1000s of processors

– MPI for communication

• Frequently checkpoints:

– Large blocks of typed variables

from all processes

– Portable format

– Canonical ordering (different than

in memory)

– Skipping ghost cells

Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

26

 27

FLASH Astrophysics and the write-combining optimization

• FLASH writes one variable at a
time

• Could combine all 4D variables
(temperature, pressure, etc) into
one 5D variable

– Altered file format (conventions)
requires updating entire analysis
toolchain

• Write-combining provides
improved performance with
same file conventions

– Larger requests, less
synchronization.

27

 28

HANDS-ON 9: pnetcdf write-combining

1. Define a second variable, changing only the name

2. Write this second variable to the netcdf file

3. Convert to the non-blocking interface (ncmpi_iput_vara_int)

– not collective – “collectiveness” happens in ncmpi_wait_all

– takes an additional ‘request’ argument

4. Wait (collectively) for completion

 29

Solution fragments for write-combining

NC_CHECK(ncmpi_def_var(ncfile, "array", NC_INT, NDIMS, dims,

 &varid_array));

NC_CHECK(ncmpi_def_var(ncfile, "other array", NC_INT, NDIMS, dims,

 &varid_other));

NC_CHECK(ncmpi_iput_vara_int(ncfile, varid_array, start, count,

 values, &(reqs[0])));

NC_CHECK(ncmpi_iput_vara_int(ncfile, varid_other, start, count,

 values, &(reqs[1])));

/* all the I/O actually happens here */

NC_CHECK(ncmpi_wait_all(ncfile, 2, reqs, status));

Defining a second variable

The non-blocking interface: looks a lot like MPI

Waiting for I/O to complete

 30

Hands-on 9 continued

• Look at the darshan output. Compare to the prior example

– Results surprised me: vendor might know something I don’t

 31

PnetCDF Life Checkpoint/Restart Code Walkthrough

• Stores matrix as a two-dimensional array of integers
– Same canonical ordering as in MPI-IO version

• Iteration number stored as an attribute

• Note: A naïve reader will know how to read this

See mlife-io-pnetcdf.c pp. 1-5 for code example.

integer iter

P0

P1

P2

P3

integer “matrix” [rows][cols]

Iteration

Global Matrix

31

File: mlife-io-pnetcdf.c Page 1 of 7

1: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

2: /* -*- Mode: C; c-basic-offset:4 ; -*- */

3: /*

4: * (C) 2004 by University of Chicago.

5: * See COPYRIGHT in top-level directory.

6: */

7: #include <stdio.h>

8: #include <stdlib.h>

9: #include <mpi.h>

10: #include <pnetcdf.h>

11: #include "mlife-io.h"

12:

13: /* Parallel netCDF implementation of checkpoint and restart for

14: * MPI Life

15: *

16: * Data stored in a 2D variable called "matrix" in matrix order,

17: * with dimensions "row" and "col".

18: *

19: * Each checkpoint is stored in its own file.

20: */

21: static MPI_Comm mlifeio_comm = MPI_COMM_NULL;

22:

23: int MLIFEIO_Init(MPI_Comm comm)

24: {

25: int err;

26: err = MPI_Comm_dup(comm, &mlifeio_comm);

27: return err;

28: }

29:

32

File: mlife-io-pnetcdf.c Page 2 of 7

30: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

31: int MLIFEIO_Finalize(void)

32: {

33: int err;

34:

35: err = MPI_Comm_free(&mlifeio_comm);

36:

37: return err;

38: }

39:

40: int MLIFEIO_Can_restart(void)

41: {

42: return 1;

43: }

44:

33

File: mlife-io-pnetcdf.c Page 3 of 7

45: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

46: int MLIFEIO_Checkpoint(char *prefix, int **matrix, int rows,

47: int cols, int iter, MPI_Info info)

48: {

49: int err;

50: int cmode = 0;

51: int rank, nprocs;

52: int myrows, myoffset;

53:

54: int ncid, varid, coldim, rowdim, dims[2];

55: MPI_Offset start[2];

56: MPI_Offset count[2];

57: int i, j, *buf;

58: char filename[64];

59:

60: MPI_Comm_size(mlifeio_comm, &nprocs);

61: MPI_Comm_rank(mlifeio_comm, &rank);

62:

63: myrows = MLIFE_myrows(rows, rank, nprocs);

64: myoffset = MLIFE_myrowoffset(rows, rank, nprocs);

65:

66: snprintf(filename, 63, "%s-%d.nc", prefix, iter);

67:

68: err = ncmpi_create(mlifeio_comm, filename, cmode, info, &ncid);

69: if (err != 0) {

70: fprintf(stderr, "Error opening %s.\n", filename);

71: return MPI_ERR_IO;

72: }

73:

34

 35

Describing Subarray Access in PnetCDF

• PnetCDF provides calls for reading/writing subarrays in a single (collective) call:

 ncmpi_put_vara_all(ncid,

 varid,

 start[], count[],

 buf, count,

 datatype)

P1

Global Matrix in PnetCDF File

Local Sub-matrix in

memory

35

File: mlife-io-pnetcdf.c Page 4 of 7

74: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

75: ncmpi_def_dim(ncid, "col", cols, &coldim);

76: ncmpi_def_dim(ncid, "row", rows, &rowdim);

77: dims[0] = coldim;

78: dims[1] = rowdim;

79: ncmpi_def_var(ncid, "matrix", NC_INT, 2, dims, &varid);

80:

81: /* store iteration as global attribute */

82: ncmpi_put_att_int(ncid, NC_GLOBAL, "iter", NC_INT, 1, &iter);

83:

84: ncmpi_enddef(ncid);

85:

86: start[0] = 0; /* col start */

87: start[1] = myoffset; /* row start */

88: count[0] = cols;

89: count[1] = myrows;

90:

91: MLIFEIO_Type_create_rowblk(matrix, myrows, cols, &type);

92: MPI_Type_commit(&type);

93:

94: ncmpi_put_vara_all(ncid, varid, start, count, MPI_BOTTOM, 1,

95: type);

96:

97: MPI_Type_free(&type);

98:

99: ncmpi_close(ncid);

100: return MPI_SUCCESS;

101: }

102:

36

• Define mode vs data mode
• Can describe anything in

memory, but constrained to
multidimensional arrays in
storage

File: mlife-io-pnetcdf.c Page 5 of 7

103: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

104: int MLIFEIO_Restart(char *prefix, int **matrix, int rows,

105: int cols, int iter, MPI_Info info)

106: {

107: int err = MPI_SUCCESS;

108: int rank, nprocs;

109: int myrows, myoffset;

110: int flag;

111:

112: int cmode = 0;

113: int ncid, varid, dims[2];

114: MPI_Offset start[2];

115: MPI_Offset count[2];

116: MPI_Offset coldimsz, rowdimsz;

117: int i, j, *buf;

118: char filename[64];

119:

120: MPI_Comm_size(mlifeio_comm, &nprocs);

121: MPI_Comm_rank(mlifeio_comm, &rank);

122:

123: myrows = MLIFE_myrows(rows, rank, nprocs);

124: myoffset = MLIFE_myrowoffset(rows, rank, nprocs);

125:

126: snprintf(filename, 63, "%s-%d.nc", prefix, iter);

127: err = ncmpi_open(mlifeio_comm, filename, cmode, info, &ncid);

128: if (err != 0) {

129: fprintf(stderr, "Error opening %s.\n", filename);

130: return MPI_ERR_IO;

131: }

37

 38

Discovering Variable Dimensions

• Because netCDF is self-describing, applications can inquire about data in
netCDF files:

 err = ncmpi_inq_dimlen(ncid,

 dims[0],

 &coldimsz);

• Allows us to discover the dimensions of our matrix at restart time

See mlife-io-pnetcdf.c pp. 6-7 for code example.

38

File: mlife-io-pnetcdf.c Page 6 of 7

132: /* SLIDE: Discovering Variable Dimensions */

133: err = ncmpi_inq_varid(ncid, "matrix", &varid);

134: if (err != 0) {

135: return MPI_ERR_IO;

136: }

137:

138: /* verify that dimensions in file are same as input row/col */

139: err = ncmpi_inq_vardimid(ncid, varid, dims);

140: if (err != 0) {

141: return MPI_ERR_IO;

142: }

143:

144: err = ncmpi_inq_dimlen(ncid, dims[0], &coldimsz);

145: if (coldimsz != cols) {

146: fprintf(stderr, "cols does not match\n");

147: return MPI_ERR_IO;

148: }

149:

150: err = ncmpi_inq_dimlen(ncid, dims[1], &rowdimsz);

151: if (rowdimsz != rows) {

152: fprintf(stderr, "rows does not match\n");

153: return MPI_ERR_IO;

154: }

155:

39

File: mlife-io-pnetcdf.c Page 7 of 7

156: /* SLIDE: Discovering Variable Dimensions */

157: buf = (int *) malloc(myrows * cols * sizeof(int));

158: flag = (buf == NULL);

159: /* See if any process failed to allocate memory */

160: MPI_Allreduce(MPI_IN_PLACE, &flag, 1, MPI_INT, MPI_LOR,

161: mlifeio_comm);

162: if (flag) {

163: return MPI_ERR_IO;

164: }

165:

166: start[0] = 0; /* col start */

167: start[1] = myoffset; /* row start */

168: count[0] = cols;

169: count[1] = myrows;

170: ncmpi_get_vara_int_all(ncid, varid, start, count, buf);

171:

172: for (i=0; i < myrows; i++) {

173: for (j=0; j < cols; j++) {

174: matrix[i+1][j] = buf[(i*cols) + j];

175: }

176: }

177:

178: free(buf);

179:

180: return MPI_SUCCESS;

181: }

40

 41

Takeaway from PnetCDF Game of Life Example

• PnetCDF abstracts away the file system model, giving us something closer to
(many) domain models

– Arrays

– Types

– Attributes

• Captures metadata for us (e.g., rows, columns, types) and allows us to
programmatically explore datasets

• Uses MPI-IO underneath, takes advantage of data sieving and two-phase I/O
when possible

41

 42

PnetCDF Wrap-Up

• PnetCDF gives us

– Simple, portable, self-describing container for data

– Collective I/O

– Data structures closely mapping to the variables described

• If PnetCDF meets application needs, it is likely to give good performance

– Type conversion to portable format does add overhead

• Some limits on (old, common CDF-2) file format:

– Fixed-size variable: < 4 GiB

– Per-record size of record variable: < 4 GiB

– 232 -1 records

– New extended file format to relax these limits (CDF-5, released in pnetcdf-1.1.0,

November 2009, integrated in Unidata NetCDF-4.4)

 43

Additional I/O Interfaces

43

Data Model Libraries map application

abstractions onto storage abstractions and

provide data portability.

HDF5, Parallel netCDF, ADIOS

I/O Middleware organizes accesses from

many processes, especially those using

collective

I/O.

MPI-IO, GLEAN, PLFS

I/O Forwarding transforms I/O from many

clients into fewer, larger request; reduces

lock contention; and bridges between the

HPC system and external storage.

IBM ciod, IOFSL, Cray DVS

Parallel file system maintains logical file

model and provides efficient access to data.

PVFS, PanFS, GPFS, Lustre

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

 44

Data Model I/O libraries

 Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf

 HDF5: http://www.hdfgroup.org/HDF5/

 NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/

– netCDF API with HDF5 back-end

 ADIOS: http://adiosapi.org

– Configurable (xml) I/O approaches

 SILO: https://wci.llnl.gov/codes/silo/

– A mesh and field library on top of HDF5 (and others)

 H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/

– simplified HDF5 API for particle simulations

 GIO: https://svn.pnl.gov/gcrm

– Targeting geodesic grids as part of GCRM

 PIO:

– climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-netcdf (from master)

 … Many more: consider existing libs before deciding to make your own.

http://www.mcs.anl.gov/pnetcdf
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm
https://svn.pnl.gov/gcrm

exascaleproject.org

Thank you!

