
Cameron W. Smith and Mark S. Shephard
Rensselaer Polytechnic Institute

Putting it all together: One perspective

Why “One perspective”? Because you have to first:
§ Define what functionality you provide
§ Determine what supporting components are needed
§ Understand the constraints that you must work within
Functionality to be provided
§ Integrated, parallel, unstructured mesh adaptation
Tools to be ‘put together’
§ FASTMath unstructured meshing tools and analysis codes,

solvers, UQ tools, optimization tools, in-situ vis tools, etc.
§ Application analysis components w/ required physics and math

models

Putting it all together: One perspective

2

The constraints
§ The applications people must advance their application
§ If they have an existing analysis tools, they expect to build on it
• It may not be an optimal code for the long term goal
• But, the large investment to date can not just be scrapped

Approach taken when there is an existing analysis code:
§ Provide mechanisms to integrate needed tools with their code

with little or no modification
§ Work directly with application to gain understanding and trust
§ Incrementally evolve tools on both sides to be more effective –

always with direct consideration of advancing the capabilities
of the application

Putting it all together: Constraints

3

When requirements or constraints change the ‘best’ approach to
‘put it together’ changes

If the analysis code is found to be deficient we could use an
existing infrastructure like MFEM or Albany… but, you must:
§ Overcome all deficiencies
§ Maintain backward compatibility
§ Maintain or improve performance
§ Demonstrate useful functionality quickly
§ Support the ‘real’ physics – often harder than what mini-apps do

With that lets talk about providing application code developers
with the ability to generate, solve and adapt unstructured meshes

Putting it all together: Things Change

4

FASTMath tools in Unstructured Mesh Applications

• Parallel Unstructured Mesh Infrastructure (PUMI/MeshAdapt)
- Operate on evolving meshes of any size in parallel
- Geometry consistent, anisotropic, conforming adaptation

• Dynamic load balancing
- Zoltan - graph and geometric load balancing
- EnGPar – multicriteria partition improvement

• Unstructured mesh analysis codes
- MFEM, Albany, Phasta – introduced this morning

• Matrix systems “solvers” and time integrators
- hypre, SuperLU, PETSc – introduced today (FASTMath has more)

• Optimization (TAO) – introduced today
• UQ (DAKOTA, UQTk)

5

Need to Integrate with Geometry and Meshing Tools

§ Link with existing tools
• Open source (e.g. Gmsh) and commercial

§ Geometry and meshing components
from Simmetrix
• Direct links to CAD, geometry

simplification and combination
• Fully automatic parallel meshing
• Mesh-based field manipulation
• Customizable user interface

6 6

§ Automation and adaptive methods critical
to reliable simulations

§ Approaches include providing
• Meshing capabilities
• File based integration –

often done first
• In-memory integration – when

they see files are a bottleneck
• Replace infrastructure but

retain their numerics
• Directly build in one of the FASTMath

simulation infrastructures
-MFEM and Albany designed for

doing such developments

Parallel Adaptive Simulation Workflows

Application of
active flow control

to aircraft tails

Blood flow on the
arterial system

Fields in a particle accelerator

Geometry/meshing tool developed for tokamak cross sections
n “Field following” XGC meshes
n2D to 3D and mesh adaptivity for M3D-C1
n Tokamak cross-section geometry

l Analytic, spline or discrete physical components –
ITER, DIII-D, Alcator C-MOD, NSTX, KSTAR,etc.

l EFIT defined physics geometry
n Graphical user interface

Providing Mesh Capabilities for Tokamak Plasma Simulations

����������������	������

�������
������������

���������	�������

	�

8

Providing Geometry, Meshing and Analysis for RF simulations

§ Accurate RF simulations require
• Complex Geometry
• Detailed antenna CAD geometry
• Extracted physics curves from EFIT
• Faceted surfaces from coupled meshes
• Analysis geometry combining CAD,

physics geometry and faceted interfaces

• Fully automatic meshing
• Massively Parallel High-Order FEM
• MFEM has been extended to address

basic RF physics – hyper is core solver
• Additional physics being developed

• Integration into RF workflow
• Coupling to RF workflow environment

9

Goal: Develop, implement, and apply methods for massively parallel in-
memory iterative execution of simulation components

In-memory Workflows
§ MFEM
§ M3D-C1
§ SLAC ACE3P
§ Albany
§ PHASTA
§ FUN3D (NASA)
§ Proteus (DoD)

Most codes employ
FASTMath matrix solution
or load balancing components
Many have UQ extensions using Dakota

In-Memory Parallel-Adaptive Simulation Workflows

10

Component Coupling: Component functional interfaces for control and field
information passing and transformation
§ Coordinate workflow with driver (e.g., main()) that calls major components
§ Change/Add components with minimal development costs
§ Abstract component complexities and implementation details
• Keep information at the right abstraction level (i.e., not just the mesh!)

§ Coupling across languages; vast majority are FORTRAN and C/C++

Coordinating Component Interactions

11

Challenges
§ Elimination of file I/O for component coupling
§ Managing Memory
§ Selecting coupling method – depends on the component implementation!
§ Balancing the work distribution
§ Knowing when a rewrite is needed – when there is funding and skill!

Eliminating File I/O

On massively parallel systems I/O dominates power consumption

Use APIs and data-streams to keep inter-component information
transfers in on-process memory
• Bulk Transfers

• Transfer large sets of data using files or APIs
• Ideal for components using POSIX files – minimal change for streams
• Key Challenge - interface definition and memory management

• Atomic Transfers
• Transfer a small set of data over a subset of the domain using APIs
• Ideal for components with abstracted mesh and field interfaces
• Key Challenge - understanding implementation++

• Component implementation determines the coupling approach

12

APIs or Data Streams?

PHASTA
F77/90 + existing file I/O à

data streams

1.1 billion element parallel mesh
generated on BG/Q.

Model of liner film only.

Albany
templated C++ à

bulk APIs

Cut views of initial (leff) and adapted anistropic boundary
layer meshes for NASA trap wing [Chitale et al. 2014]

13

Balancing the work distribution in Adaptive Workflows

 At >16Ki ranks, existing tools providing multi-level graph
methods consume too much memory and fail; geometric
methods have high cuts and are inefficient for analysis.

 An approach that combines existing methods with ParMA
diffusive improvement accounts for multiple criteria:
■ Accounts for DOF on any mesh entity
■ Analysis and partitioning is quicker

 Goal of current EnGPar developments is to generalize methods
■ Take advantage of graph methods and new hardware
■ Broaden the areas of application to new applications

(mesh based and others)

14

Partitioning to 1M Parts

 Multiple tools needed to maintain partition quality at scale
■ Local and global topological and geometric methods
■ ParMA quickly reduces large imbalances

and improves part shape

 Partitioning 1.6B element mesh from 128K to
1M parts (1.5k elms/part) then running ParMA.

■ Global RIB - 103 sec, ParMA - 20 sec:
209% vtx imb reduced to 6%, elm imb up
to 4%, 5.5% reduction in avg vtx per part

■ Local ParMETIS - 9.0 sec, ParMA - 9.4
sec results in: 63% vtx imb reduced to
5%, 12% elm imb reduced to 4%,
and 2% reduction in avg vtx per part

 Partitioning 12.9B element mesh from 128K (< 7% imb)
to 1Mi parts (12k elms/part) then running ParMA.

■ Local ParMETIS - 60 sec, ParMA - 36 sec results in:
35% vtx imb to 5%, 11% elm imb to 5%, and 0.6% reduction

in avg vtx per part
15

Developing Infrastructure for Select Fusion Applications

Sometimes a significant portion of the code is replaced…

Initial version of M3D-C1 lacked a sufficient mesh component
§ Replaced mesh component with PUMI’s
§ Retained the element stiffness calculation - simply provided the

needed mesh information
§ Built the equation assembly routines on the PUMI mesh
Parallel mesh version of XGC gyrokinetics PIC code
§ Replaced all core mesh and particle data structures with

PUMIpic to support particle-to-element association
§ Retained the physics operations and most of the numerics
§ Worked closely with XGC developers

16

Parallel Unstructured Mesh PIC – PUMIpic

Red and Blue designate
quantities associated with
particles and mesh, resp.

Particle Push (update x, v)

Field to Particle
(mesh → particle)

Field solve on mesh
with new RHS

Charge Deposition
(particle → mesh)

17

PUMIpic supports a distributed mesh
�Employ large overlaps to avoid communication during push
�All particle information accessed through the mesh

computationally
dominant step

PICpart – Particle Aware Mesh Distribution

A PICpart core –
these elements ‘push’

the particles associated
with them

Buffer elements –
avoids communication
during computationally

dominant ‘push’

A PICpart

+ =

§ FASTMath components are designed for effective
integration into application codes (in multiple ways)

§ FASTMath team provides:
• software components
• effective means for integration into applications – there

are multiple levels of capability for this
• direct user support – mailing lists, slack, git, … direct work

with application developers on their codes
§ We provided our perspective of “putting it all together”

Be sure to talk with other FASTMath team members this
evening on how they may help you “put it all together”

Closing Remarks

19

Backup Slides

Developments for M3D-C1

§ Extended field and numbering routines to support alternative
ordering of unknowns
• By-node ordering is not ideal for numerical conditioning

when the nodal dof list has derivative dof – M3D-C1 has
value, 1st and 2nd derivative dof

• Developing support for by-component ordering – all dof for
the value are followed by all dof of the first derivative, etc.

§ Improved solver interface (github.com/tobinw/las) toward
full thread safe assembly

§ Adding PIC capability to M3D-C1
• PUMI based overlap and adjacency

based element containment
being used in M3D-C1 with PIC

M3D-C1 By Component DOF Ordering

§ Support ordering at the
• process level,
• poloidal plan level, or
• globally

§ Alternatives options
• Yield different matrix sparsity patterns
• Support different preconditioning options
• Have different assembly interprocess

communication requirements
• Likely to yield different solution times
• Implementation is generic –

will allow the effective
evaluation of the options

Pe
r-p

ro
ce

ss
Pe

r-p
la

ne
G

lo
ba

l
22

M3D-C1 Linear Solver Interface

§ Need more efficient and flexible linear system assembly step
§ Implementing a generic linear solver interface (LAS) to wrap

multiple supporting linear algebra libraries
• Compile-time decision to target a specific backend library

- Allows leveraging of best library/implementation for a target machine
without touching matrix assembly algorithms

- Libraries for accelerators (CUDA / PHIs)
- Libraries for threaded or MPI-only

• LAS API is aggressively in-lined to compile
down to identical machine code as raw use
of a library backend

LAS

PETSc

SUPERLU

Trilinos solvers

etc

FEA
Assembly
Routines

API

23

PUMIpic for XGC Gyrokinetic Code

§ XGC uses a 2D poloidal plane mesh considering particle paths
• Mesh distribution takes advantage

of physics defined model/mesh
• Separate parallel field solve on

each poloidal plane
§ XGC gyro-averaging

for Charge-to-Mesh
§ PETSc used for field solve
• Solves on each plane
• Mesh partitioned over

Nranks/Nplanes ranks
• Ranks for a given plane form MPI

sub-communicators

Two-level partition for solver
(left) and particle push (right)

Model
Mesh

Distribution

